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Multivariate normal distribution
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The univariate normal distribution S Uplversity

Let x be a normally distributed random variable.
x~N(u,0%) orp(x) = N(u,0?)

* Mean u: Location of the distribution

 Variance o?: how spread out the values are around the mean
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The univariate normal distribution SR Univers

p(x)

p(x)=N(0, 1.0)

p(x)=N(0, 0.5)

p(x)

p(x)=N(2, 1.0)

p(x)=N(0, 2.0)
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Properties:

e Distribution is unimodal

 Symmetric and centered around
mean

* Values far from the mean quickly
become unlikely
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The multivariate normal distribution R o b

Let x4, ..., X, be jointly normally 1 -
distributed random variables. x=|: |~Nw2)

xn
H1
* Mean vector u = ( : ): Location of the distribution
Un
211 - 21
* Covariance matrixx =| : : |: Shape of the distribution
YXnq1 e Zpp

The covariance matrix X needs to be
symmetric and positive definite.



Density function

Notation:

p(x) = N(u,Z) or p(xy, ..., Xn) = N(i, £)
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Normalization

[(x —w)'Z71(x = u)])
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Mahalanobis distance
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Example: Bivariate normal KR o b

Let x4, X, be jointly normally
distributed random variables.
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U4, U, determine the location




Variance
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2 o4: determine how spread out
the values are in each direction.
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Covariance
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& X1,X,) =N

: i 0., determines how much x; and
| x, change together.

ST J

; .
= _g - 12 == 2
— / = 0.5 G v = —0.9




Marginal and conditional distribution

Bivariate normal:

H1 of
p(xqy,x) =N (Mz)'(al
12

What is the distribution of x;...

e ...if we don’t know anything about x,?
* ...if we have observed the value of x,?
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Marginal and conditional distribution S University
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Bivariate normal:
H1 012 012
= N
P(x1;x2) ((‘uz),(alz 022 ))

What is the distribution of x;...
* ...if we don’t know anything about x,?
* ...if we have observed the value of x,?

Marginal distribution p(x4)
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Marginal and conditional distribution SRK of o™

Bivariate normal:
U1 012 012
= N
P(xbxz) ((MZ)’(UQ 022 ))

What is the distribution of x;...
e ...if we don’t know anything about x,?
* ...if we have observed the value of x,?

Conditional distribution p(x4|x, = X5)
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Marginal and conditional distribution SRK of o™

let x = (x4, ...,%x,) and y = (V4, ..., V,,,) be jointly normal distributed

random variables

X1 Hxy lexl
xn . N Mxn , anxl
y.l Hy, Zyx1
Ym 'uJ’m >

lexn le V1 2 X1Ym

xnxn anyl nan anym
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Marginal and conditional distribution SRK of o™

let x = (x4, ...,%x,) and y = (V4, ..., V,,) be jointly normal distributed
random variables



Marginal and conditional distribution

The marginal distribution is the normal distribution
p(x) — N(//‘x» Zxx)-

The conditional distribution is the normal distribution
p(xly =3) =N X)
where

Hx T 2xylyy (3’ “y)

U=
2 = Zpx — ZuyZip Zyn
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Summary

X1 H1 211 - 21p
Nowl () !
xn .un an ZTLTL

 Completely defined by mean and covariance matrix.

* Very flexible: r
* Definedbyn+n » parameters _ s o
. . o
* Yet always unimodal and symmetric bos
—f—= SES TR 5\ |
* The marginal and conditional distributions = —
~L10 2 \\\f = _4 ]

are again normal distributions.



