

Multivariate normal distribution

The univariate normal distribution

Let x be a normally distributed random variable.

$$x \sim N(\mu, \sigma^2)$$
 or $p(x) = N(\mu, \sigma^2)$

- Mean μ : Location of the distribution
- Variance σ^2 : how spread out the values are around the mean

The univariate normal distribution

Properties:

- Distribution is unimodal
- Symmetric and centered around mean
- Values far from the mean quickly become unlikely

The multivariate normal distribution

Let $x_1, ..., x_n$ be jointly normally distributed random variables. $x = \begin{pmatrix} x_1 \\ \vdots \\ x \end{pmatrix} \sim N(\mu, \Sigma)$

$$\mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \sim N(\mu, \Sigma)$$

• Mean vector $\mu = \begin{pmatrix} \mu_1 \\ \vdots \\ \dots \end{pmatrix}$: Location of the distribution

• Covariance matrix
$$\Sigma = \begin{pmatrix} \Sigma_{11} & ... & \Sigma_{1n} \\ \vdots & & \vdots \\ \Sigma_{n1} & ... & \Sigma_{nn} \end{pmatrix}$$
: Shape of the distribution

The covariance matrix Σ needs to be symmetric and positive definite.

Density function

Notation:

$$p(x) = N(\mu, \Sigma) \text{ or } p(x_1, ..., x_n) = N(\mu, \Sigma)$$

$$p(x) = \frac{1}{(2\pi)^{n/2} \sqrt{\det(\Sigma)}} \exp\left(-\frac{1}{2} [(x - \mu)^T \Sigma^{-1} (x - \mu)]\right)$$
Normalization Mahalanobis distance

Example: Bivariate normal

Let x_1, x_2 be jointly normally distributed random variables.

The bivariate normal is defined by

$$p(x_1, x_2) = N\left(\begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \begin{pmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{pmatrix}\right)$$

Mean

$$p(x_1, x_2) = N\left(\begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \begin{pmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{pmatrix}\right)$$

 μ_1, μ_2 determine the location

Variance

$$p(x_1, x_2) = N\left(\begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \begin{pmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{pmatrix}\right)$$

 σ_1^2 , σ_2^2 : determine how spread out the values are in each direction.

Covariance

$$p(x_1, x_2) = N\left(\begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \begin{pmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{pmatrix}\right)$$

 σ_{12} determines how much x_1 and x_2 change together.

Bivariate normal:

$$p(x_1, x_2) = N\left(\begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \begin{pmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{pmatrix}\right)$$

What is the distribution of x_1 ...

- ... if we don't know anything about x_2 ?
- ... if we have observed the value of x_2 ?

Bivariate normal:

$$p(x_1, x_2) = N\left(\begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \begin{pmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{pmatrix}\right)$$

What is the distribution of x_1 ...

- ... if we don't know anything about x_2 ?
- ... if we have observed the value of x_2 ?

Marginal distribution $p(x_1)$

Bivariate normal:

$$p(x_1, x_2) = N\left(\begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \begin{pmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{pmatrix}\right)$$

What is the distribution of x_1 ...

- ... if we don't know anything about x_2 ?
- ... if we have observed the value of x_2 ?

Conditional distribution $p(x_1|x_2 = \tilde{x}_2)$

Let $x = (x_1, ..., x_n)$ and $y = (y_1, ..., y_m)$ be jointly normal distributed random variables

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \\ y_1 \\ \vdots \\ y_m \end{pmatrix} \sim N \begin{pmatrix} \begin{pmatrix} \mu_{x_1} \\ \vdots \\ \mu_{x_n} \\ \mu_{y_1} \\ \vdots \\ \mu_{y_m} \end{pmatrix}, \begin{pmatrix} \Sigma_{x_1x_1} & \dots & \Sigma_{x_1x_n} & \Sigma_{x_1y_1} & \dots & \Sigma_{x_1y_m} \\ \vdots & & \vdots & & \vdots \\ \Sigma_{x_nx_1} & \dots & \Sigma_{x_nx_n} & \Sigma_{x_ny_1} & \dots & \Sigma_{x_ny_m} \\ \Sigma_{yx_1} & \dots & \Sigma_{y_1x_n} & \Sigma_{y_1y_1} & \dots & \Sigma_{y_1y_m} \\ \vdots & & & \vdots & & \vdots \\ \Sigma_{y_mx_1} & \dots & \Sigma_{y_mx_n} & \Sigma_{y_my_1} & \dots & \Sigma_{y_my_m} \end{pmatrix}$$

Let $x = (x_1, ..., x_n)$ and $y = (y_1, ..., y_m)$ be jointly normal distributed random variables

$$\begin{pmatrix} x \\ y \end{pmatrix} \sim N \begin{pmatrix} \mu_x \\ \mu_y \end{pmatrix}, \begin{pmatrix} \Sigma_{xx} & \Sigma_{xy} \\ \Sigma_{yx} & \Sigma_{yy} \end{pmatrix}$$

The marginal distribution is the normal distribution

$$p(x) = N(\mu_x, \Sigma_{xx}).$$

The conditional distribution is the normal distribution

$$p(x|y = \tilde{y}) = N(\overline{\mu}, \overline{\Sigma})$$

where

$$\overline{\mu} = \mu_{x} + \Sigma_{xy} \Sigma_{yy}^{-1} (\widetilde{y} - \mu_{y})$$

$$\overline{\Sigma} = \Sigma_{xx} - \Sigma_{xy} \Sigma_{yy}^{-1} \Sigma_{yx}$$

Summary

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \sim N \begin{pmatrix} \begin{pmatrix} \mu_1 \\ \vdots \\ \mu_n \end{pmatrix}, \begin{pmatrix} \Sigma_{11} & \dots & \Sigma_{1n} \\ \vdots & & \vdots \\ \Sigma_{n1} & \dots & \Sigma_{nn} \end{pmatrix} \end{pmatrix}$$

- Completely defined by mean and covariance matrix.
- Very flexible:
 - Defined by $n + n \frac{(n+1)}{2}$ parameters
 - Yet always unimodal and symmetric
- The marginal and conditional distributions are again normal distributions.

