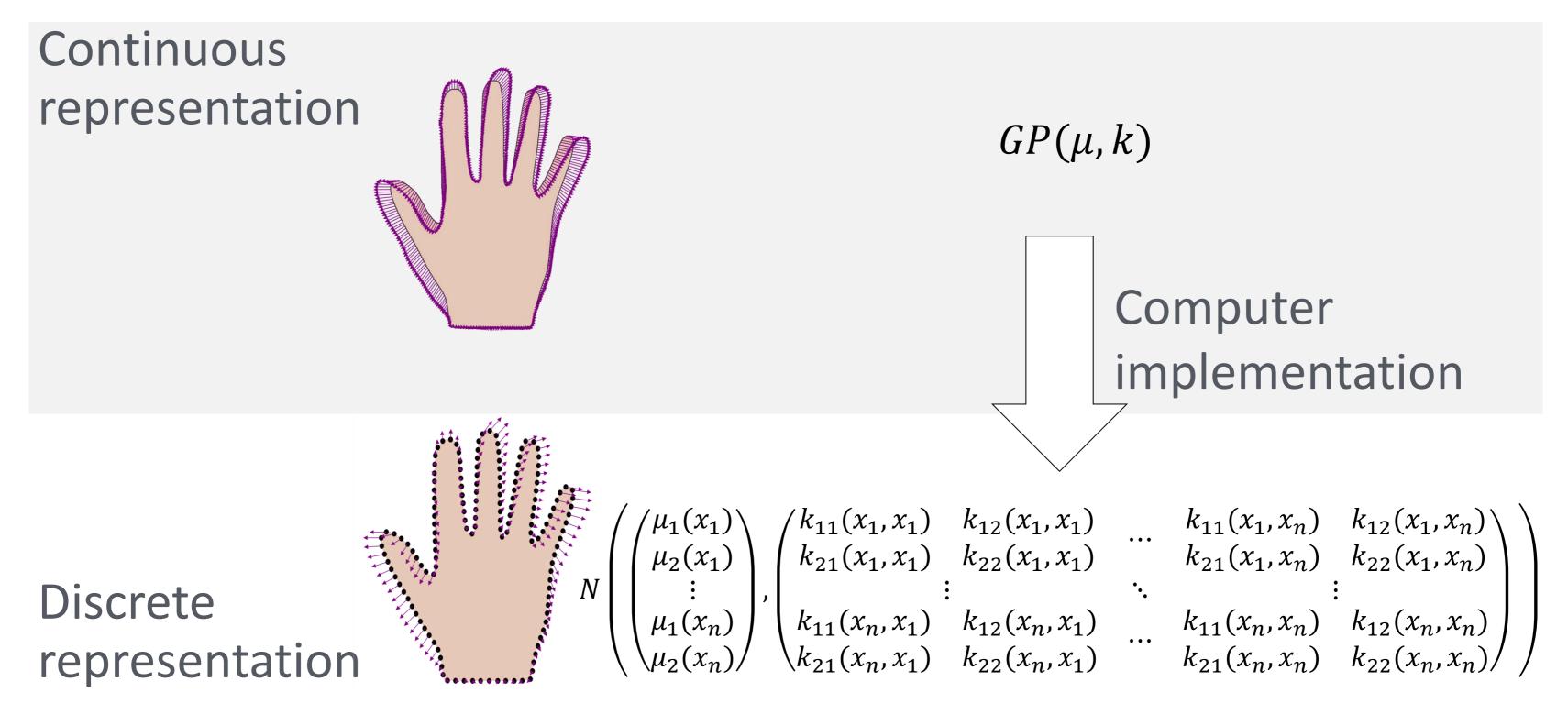


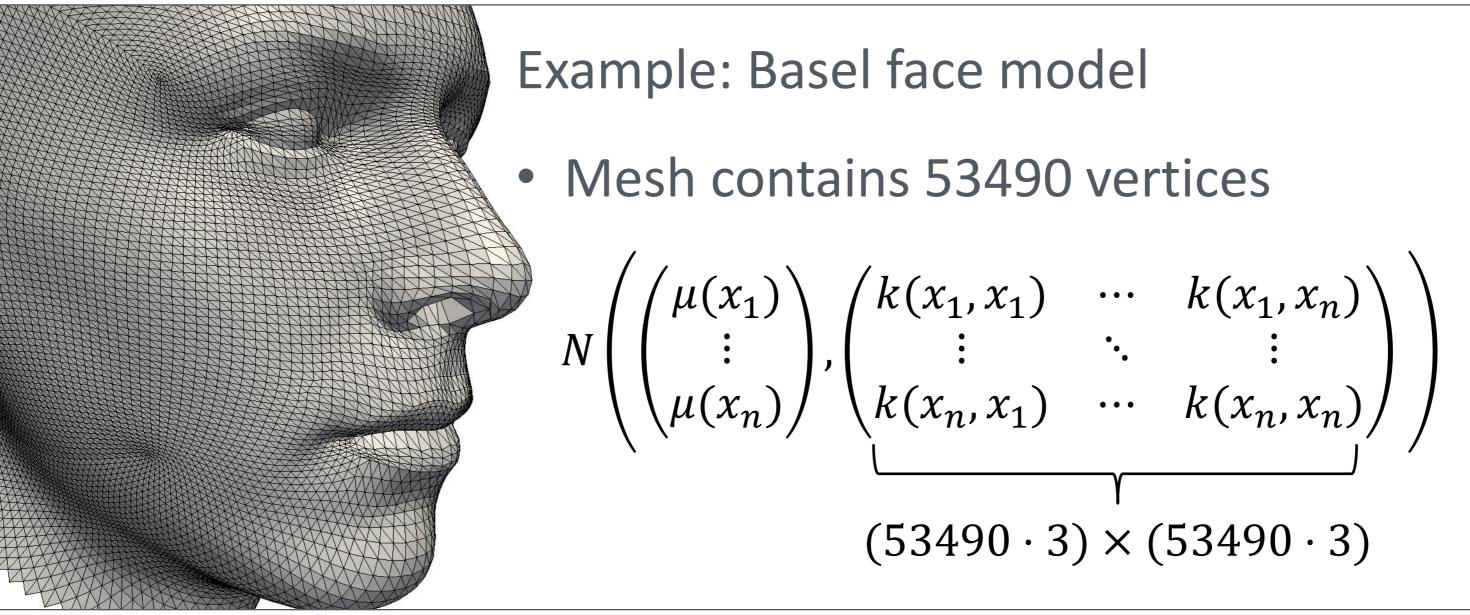
Finite rank representation of a GP (advanced topic)

Finite observations revisited



A problem with GPs

• The resulting covariance matrix can be large



 $(53490 \cdot 3) \times (53490 \cdot 3)$

The Karhunen-Loève expansion

We can write
$$u \sim GP(\mu, k)$$

as $u \sim \mu + \sum_{i=1}^{\infty} \alpha_i \sqrt{\lambda_i} \phi_i, \ \alpha_i \sim N(\lambda_i)$

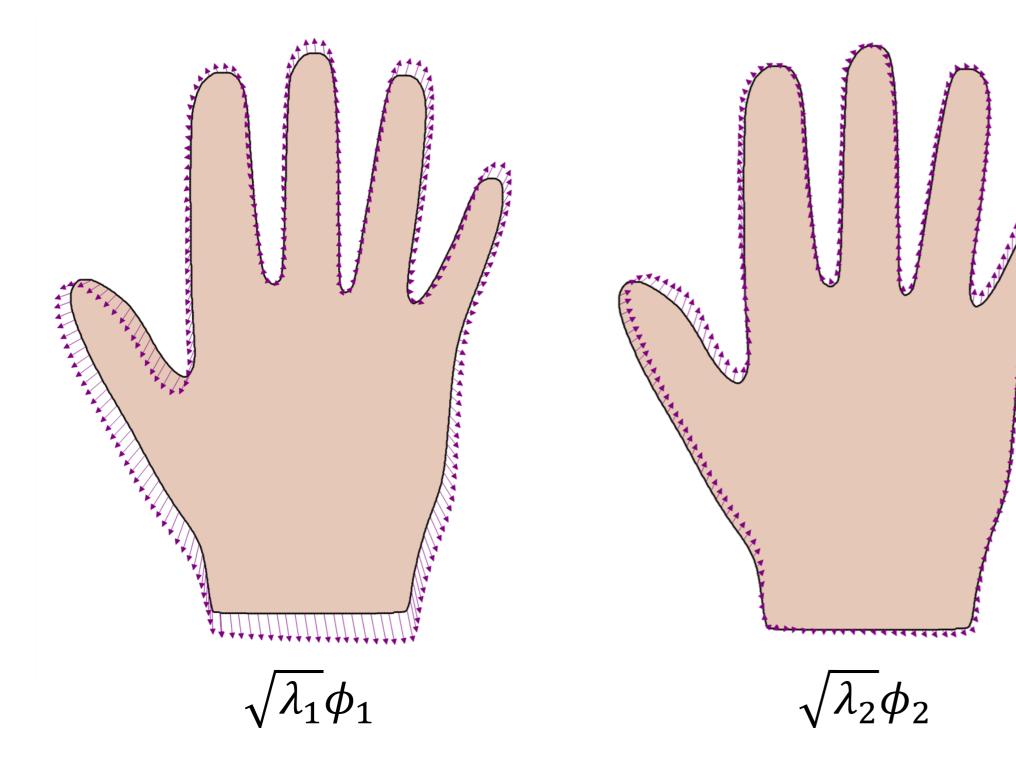
• ϕ_i is the eigenfunction with associated eigenvalue λ_i of the linear operator

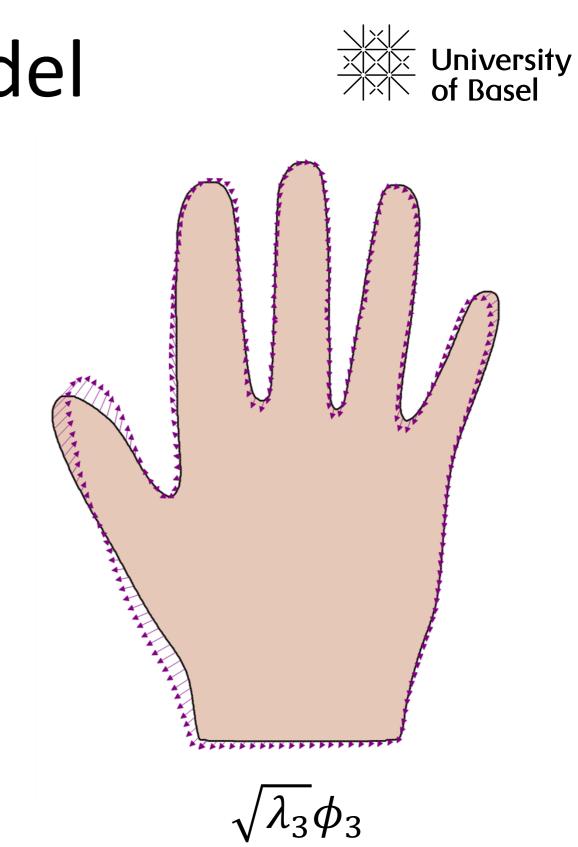
$$[T_k u](x) = \int k(x,s)u(s)ds$$

(0, 1)

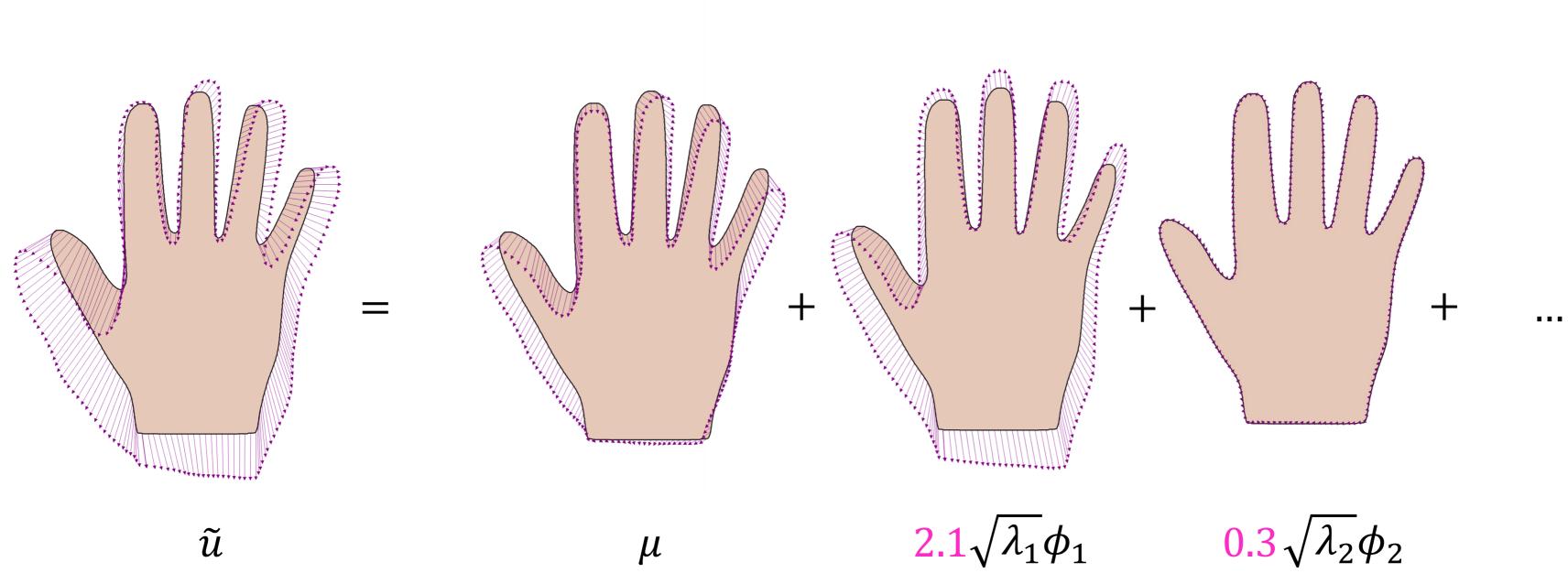
ds

Eigenfunctions of the hand model

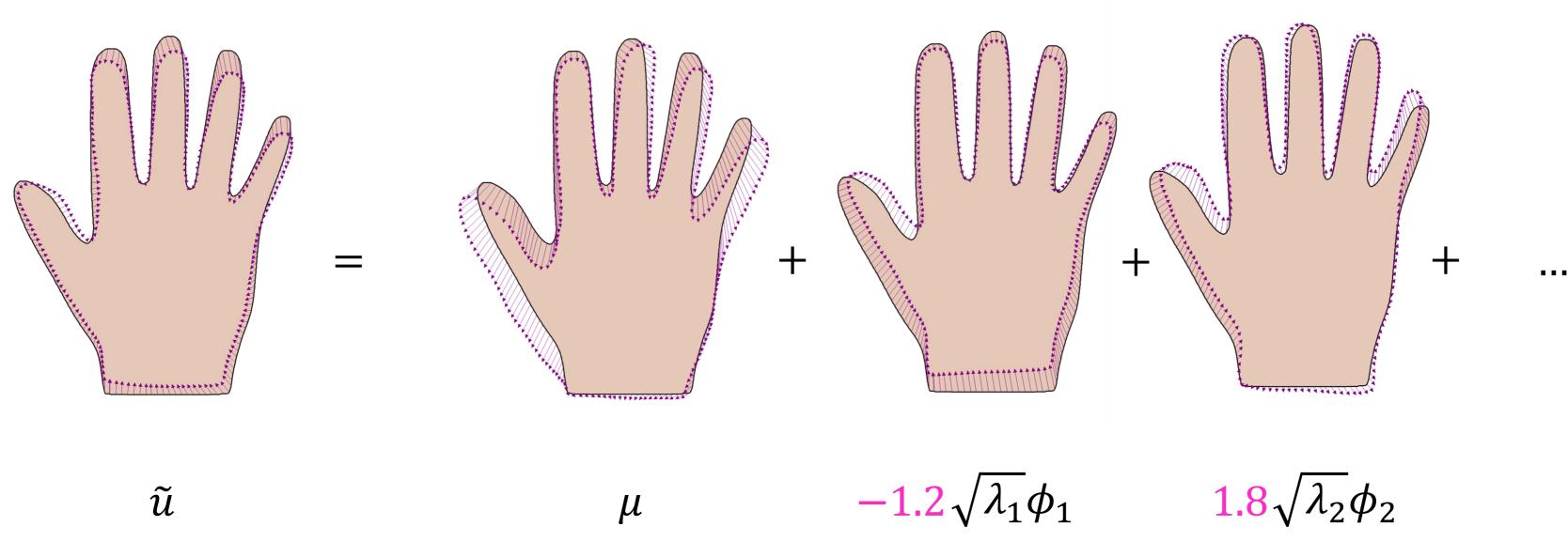




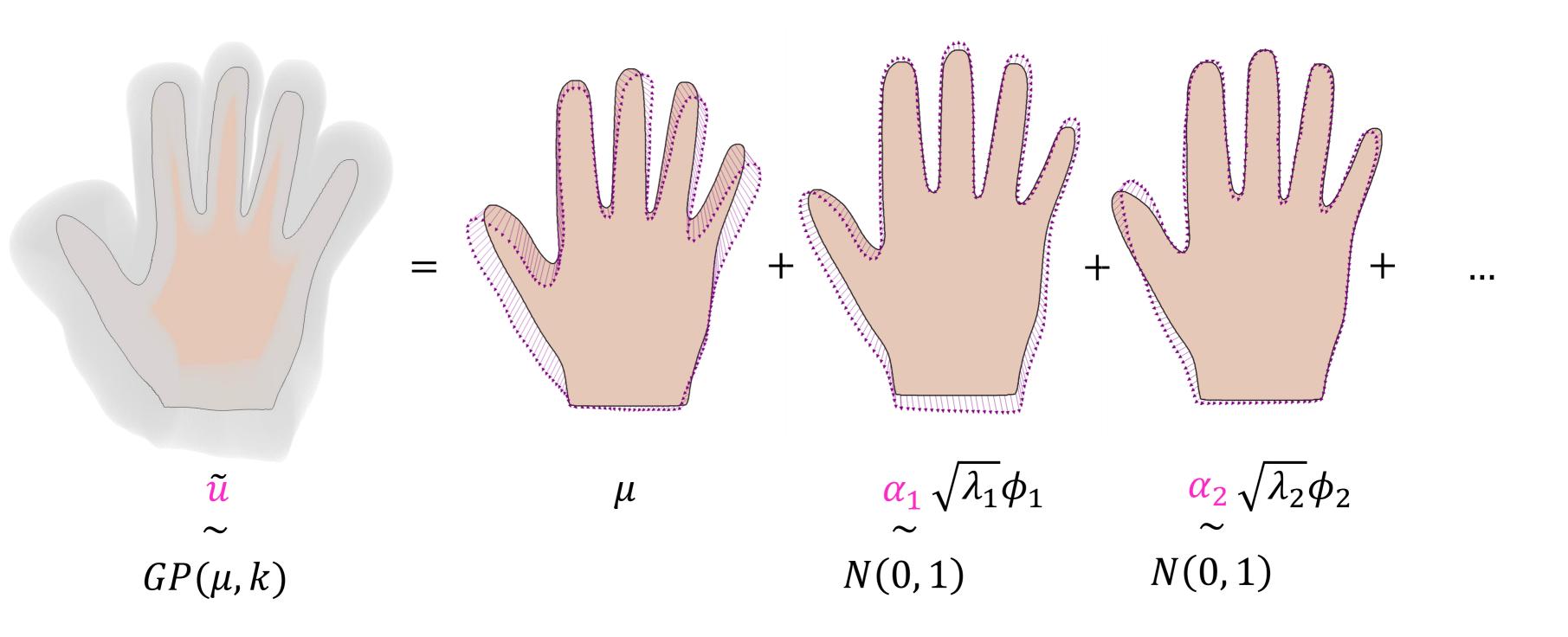
Karhunen-Loève expansion



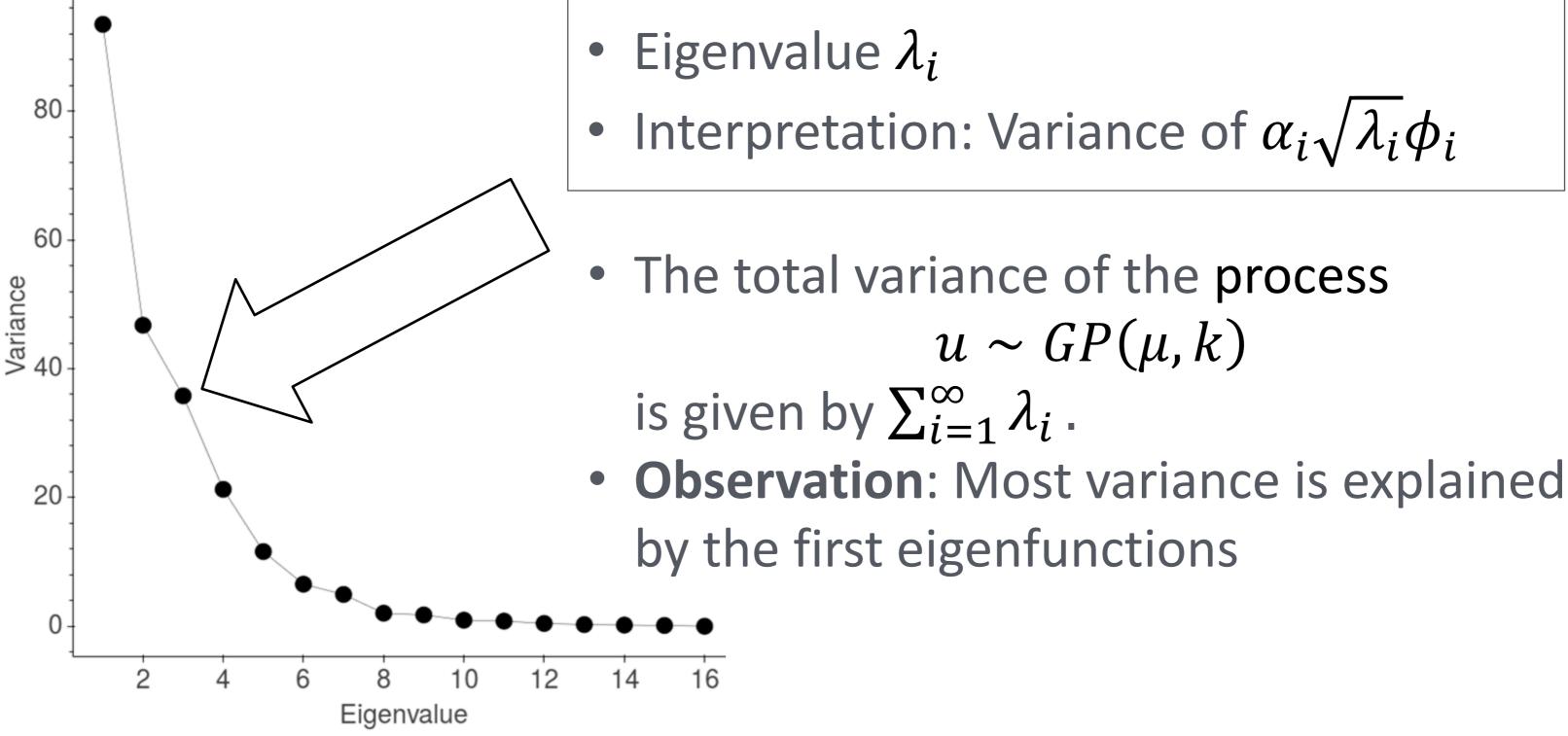
Karhunen-Loève expansion



Karhunen-Loève expansion



Eigenvalues and variance



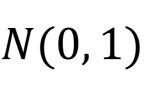
Low-rank approximation

$$u = \mu + \sum_{i=1}^{r} \alpha_i \sqrt{\lambda_i} \phi_i, \qquad \alpha_i \sim I$$

Main idea: Represent process using only the first r components

- We have a finite, parametric representation of the process.
- Any deformation u is determined by the coefficients $\alpha = (\alpha_1, ..., \alpha_r)$

$$p(u) = p(\alpha) = \prod_{i=1}^{\prime} \frac{1}{\sqrt{2\pi}} \exp(\alpha)$$

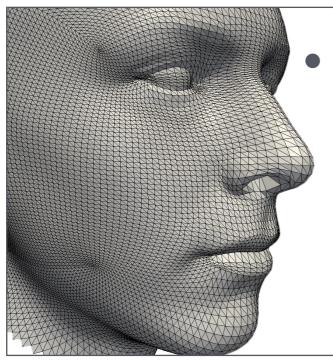


first *r* components n of the process. efficients

 $(-\alpha_{i}^{2}/2)$

Computational aspects

- Numerical methods are used for computing (λ_i, ϕ_i)
 - Very efficient for models that are learned from examples
 - Possible for general models
 - The full covariance matrix is never computed



- If rank r is low, the representation is efficient
 - can represent shapes with millions of points

