

Covariance functions

Defining a Gaussian process

A Gaussian process $GP(\mu, k)$ is completely specified by a mean function μ and covariance function (or kernel) k.

- $\mu: \mathcal{X} \to \mathbb{R}^d$ defines how the average deformation looks like
- $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}^{d \times d}$ defines how it can deviate from the mean

The mean function

- Usual assumption:

 - average shape.

$\mu(x) = \begin{pmatrix} \mu_1(x) \\ \mu_2(x) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ The reference shape is an

The covariance function

- Defines characteristics of the deformations fields
 - Main assumption: deformation fields are smooth
- Mathematical requirement
 - The covariance function k(x, x')should be a symmetric, positive semi-definite kernel.

Positive semi-definite kernels

Positive semi-definite matrix A real $n \times n$ matrix K which satisfies $v^T K v \geq 0$ for all vectors $v \in \mathbb{R}^n$ is called positive semi-definite.

Positive semi-definite kernels

Positive semi-definite kernel A kernel $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}^{d \times d}$ is called positive semi-definite, if it gives rise to a positive-semi-definite kernel matrix K with $K_{ij} = k(x_i, x_j), \quad i, j = 1, ..., n$ for any choice of n and $X = (x_1, ..., x_n)$

Positive semi-definite kernels

Positive semi-definite kernel A kernel $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}^{d \times d}$ is called positive semi-definite, if it gives rise to a positive-semi-definite kernel matrix K with $K_{ij} = k(x_i, x_j), \quad i, j = 1, ..., n$ for any choice of n and $X = (x_1, ..., x_n)$

• Ensures that the GP defines a valid $N(\mu, K)$ for any discretization.

Scalar-valued Gaussian kernel

$$k(x, x') = s \exp(-\frac{\|x - x'\|^2}{\sigma^2})$$

Diagonal kernels

$$k(x, x') = \begin{pmatrix} k^{(1)}(x, x') & \cdots \\ \vdots & \ddots \\ 0 & \cdots & k^{(d)} \end{pmatrix}$$

- $k^{(1)}, \dots, k^{(d)}: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ are scalar-valued kernels
- $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}^{d \times d}$ becomes a matrix valued kernel.

Assumption: Each dimension is modelled independently.

• the output-dimensions are uncorrelated.

 $s_1 = s_2$ large, $\sigma_1 = \sigma_2$ large

 $s_1 = s_2$ small, $\sigma_1 = \sigma_2$ large

 s_1 small, s_2 large, $\sigma_1 = \sigma_2$ large

 $s_1 = s_2$ large, $\sigma_1 = \sigma_2$ small

Sum of two kernels

The sum of two positive semi-definite kernels is a positive semi-definite kernel k(x, x') = g(x, x') + h(x, x')

- k(x, x') is correlated if g(x, x') or h(x, x') are correlated
- Ideal for defining deformations on multiple scales

Product of two kernels

The (element-wise) product of two positive semi-definite kernels is a positive semi-definite kernel

$k(x, x') = g(x, x') \odot h(x, x')$

- k(x, x') is correlated if g(x, x') and h(x, x') are correlated
- Ideal for localizing correlations

Other combinations of kernels

Rules for constructing kernels:
1.
$$k(x, x') = k_1(x, x') + k_2(x, x')$$

2. $k(x, x') = \alpha k_1(x, x'), \alpha \in \mathbb{R}_+$
3. $k(x, x') = k_1(x, x') \odot k_2(x, x')$
4. $k(x, x') = f(x) f(x')^T, f: X \to \mathbb{R}^d$
5. $k(x, x') = B^T k(x, x') B, B \in \mathbb{R}^{r \times d}$

• These rules will be explored in the following article.

