檪
 University of Basel

Covariance functions

Defining a Gaussian process

A Gaussian process
$G P(\mu, k)$
is completely specified by a mean function μ and covariance function (or kernel) k.

- $\mu: \mathcal{X} \rightarrow \mathbb{R}^{d}$ defines how the average deformation looks like
- $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}^{d \times d}$ defines how it can deviate from the mean

The mean function

- Usual assumption:

$$
\mu(x)=\binom{\mu_{1}(x)}{\mu_{2}(x)}=\binom{0}{0}
$$

- The reference shape is an average shape.

The covariance function

- Defines characteristics of the deformations fields
- Main assumption: deformation fields are smooth
- Mathematical requirement
- The covariance function $k\left(x, x^{\prime}\right)$ should be a symmetric, positive semi-definite kernel.

Positive semi-definite kernels

Positive semi-definite matrix
A real $n \times n$ matrix K which satisfies

$$
v^{T} K v \geq 0
$$

for all vectors $v \in \mathbb{R}^{n}$ is called positive semi-definite.

Positive semi-definite kernels

 of Basel
Positive semi-definite kernel

A kernel $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}^{d \times d}$ is called positive semi-definite, if it gives rise to a positive-semi-definite kernel matrix K
with $K_{i j}=k\left(x_{i}, x_{j}\right), \quad i, j=1, \ldots, n$
for any choice of n and $X=\left(x_{1}, \ldots, x_{n}\right)$

Positive semi-definite kernels

Positive semi-definite kernel

A kernel $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}^{d \times d}$ is called positive semi-definite, if it gives rise to a positive-semi-definite kernel matrix K
with $K_{i j}=k\left(x_{i}, x_{j}\right), \quad i, j=1, \ldots, n$
for any choice of n and $X=\left(x_{1}, \ldots, x_{n}\right)$

- Ensures that the GP defines a valid $N(\mu, K)$ for any discretization.

Scalar-valued Gaussian kernel

$$
k\left(x, x^{\prime}\right)=s \exp \left(-\frac{\left\|x-x^{\prime}\right\|^{2}}{\sigma^{2}}\right)
$$

Diagonal kernels

$$
k\left(x, x^{\prime}\right)=\left(\begin{array}{ccc}
k^{(1)}\left(x, x^{\prime}\right) & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & k^{(d)}\left(x, x^{\prime}\right)
\end{array}\right)
$$

- $k^{(1)}, \ldots, k^{(d)}: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ are scalar-valued kernels
- $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}^{d \times d}$ becomes a matrix valued kernel.

Assumption: Each dimension is modelled independently.

- the output-dimensions are uncorrelated.

A model for smooth deformations

$$
k\left(x, x^{\prime}\right)=\left(\begin{array}{ccc}
\mathrm{s}_{1} \exp \left(-\frac{\left\|x-x^{\prime}\right\|^{2}}{\sigma_{1}^{2}}\right) & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \mathrm{~s}_{\mathrm{d}} \exp \left(-\frac{\left\|x-x^{\prime}\right\|^{2}}{\sigma_{d}^{2}}\right)
\end{array}\right)
$$

A model for smooth deformations

$$
s_{1}=s_{2} \text { large }, \quad \sigma_{1}=\sigma_{2} \text { large }
$$

A model for smooth deformations

$$
s_{1}=s_{2} \text { small, } \quad \sigma_{1}=\sigma_{2} \text { large }
$$

A model for smooth deformations

of Basel

s_{1} small, s_{2} large, $\quad \sigma_{1}=\sigma_{2}$ large

A model for smooth deformations

次 University
of Basel

$$
s_{1}=s_{2} \text { large }, \quad \sigma_{1}=\sigma_{2} \text { small }
$$

Sum of two kernels

The sum of two positive semi-definite kernels is a positive semi-definite kernel

$$
k\left(x, x^{\prime}\right)=g\left(x, x^{\prime}\right)+h\left(x, x^{\prime}\right)
$$

- $k\left(x, x^{\prime}\right)$ is correlated if $\mathrm{g}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)$ or $\mathrm{h}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)$ are correlated
- Ideal for defining deformations on multiple scales

Product of two kernels

The (element-wise) product of two positive semi-definite kernels is a positive semi-definite kernel

$$
k\left(x, x^{\prime}\right)=g\left(x, x^{\prime}\right) \odot h\left(x, x^{\prime}\right)
$$

- $k\left(x, x^{\prime}\right)$ is correlated if $\mathrm{g}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)$ and $\mathrm{h}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)$ are correlated
- Ideal for localizing correlations

Other combinations of kernels

Rules for constructing kernels:

1. $k\left(x, x^{\prime}\right)=k_{1}\left(x, x^{\prime}\right)+k_{2}\left(x, x^{\prime}\right)$
2. $k\left(x, x^{\prime}\right)=\alpha k_{1}\left(x, x^{\prime}\right), \alpha \in \mathbb{R}_{+}$
3. $k\left(x, x^{\prime}\right)=k_{1}\left(x, x^{\prime}\right) \odot k_{2}\left(x, x^{\prime}\right)$
4. $k\left(x, x^{\prime}\right)=f(x) f\left(x^{\prime}\right)^{T}, f: X \rightarrow \mathbb{R}^{d}$
5. $k\left(x, x^{\prime}\right)=B^{T} k\left(x, x^{\prime}\right) B, \quad \mathrm{~B} \in \mathbb{R}^{r \times d}$

- These rules will be explored in the following article.

