

Characteristics of the Metropolis-Hastings algorithm

Marcel Lüthi, Departement of Mathematics and Computer Science, University of Basel

The Metropolis-Hastings Algorithm

Generalization of Metropolis algorithm to asymmetric proposal distribution

$$Q(x'|x) \neq Q(x|x')$$

$$Q(x'|x) > 0 \Leftrightarrow Q(x|x') > 0$$

Initialize with sample x

Generate next sample, with current sample x

1. Draw a sample x' from $Q(x'|x)$ ("proposal")
2. With *probability* $\alpha = \min \left\{ \frac{P(x')}{P(x)} \frac{Q(x|x')}{Q(x'|x)}, 1 \right\}$ accept x' as new state x
3. Emit current state x as sample

Example: 2D Gaussian

Target:

$$P(x) = \frac{1}{2\pi\sqrt{|\Sigma|}} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1} (x-\mu)}$$

Proposal:

$$Q(x'|x) = \mathcal{N}(x'|x, \sigma^2 I_2)$$

Random walk

Target

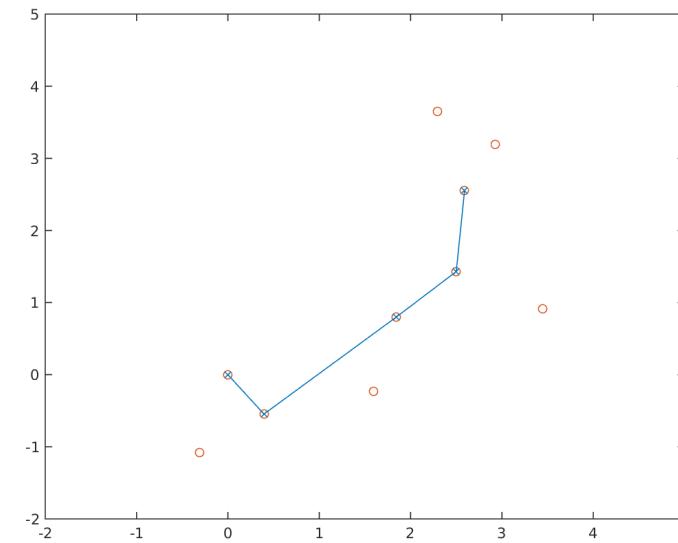
$$\mu = \begin{bmatrix} 1.5 \\ 1.5 \end{bmatrix}$$

$$\Sigma = \begin{bmatrix} 1.25 & 0.75 \\ 0.75 & 1.25 \end{bmatrix}$$

Sampled Estimate

$$\hat{\mu} = \begin{bmatrix} 1.56 \\ 1.68 \end{bmatrix}$$

$$\hat{\Sigma} = \begin{bmatrix} 1.09 & 0.63 \\ 0.63 & 1.07 \end{bmatrix}$$



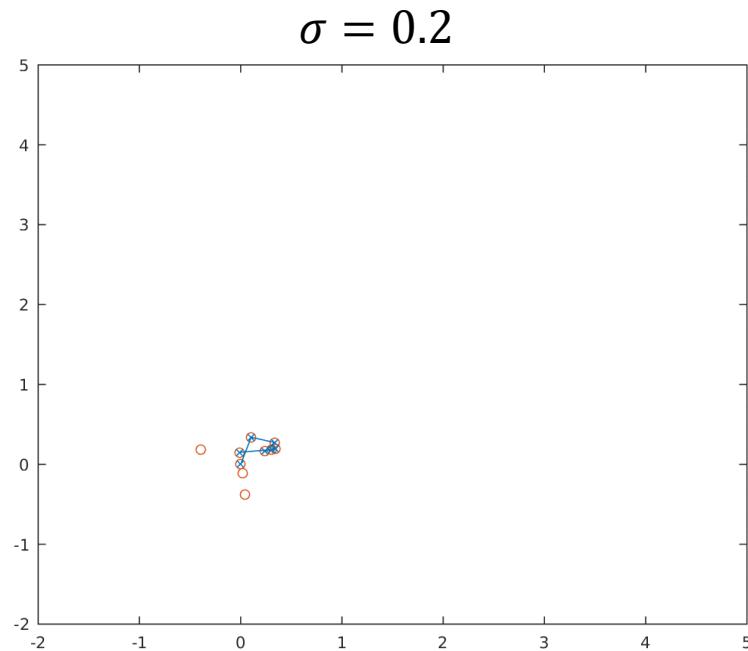
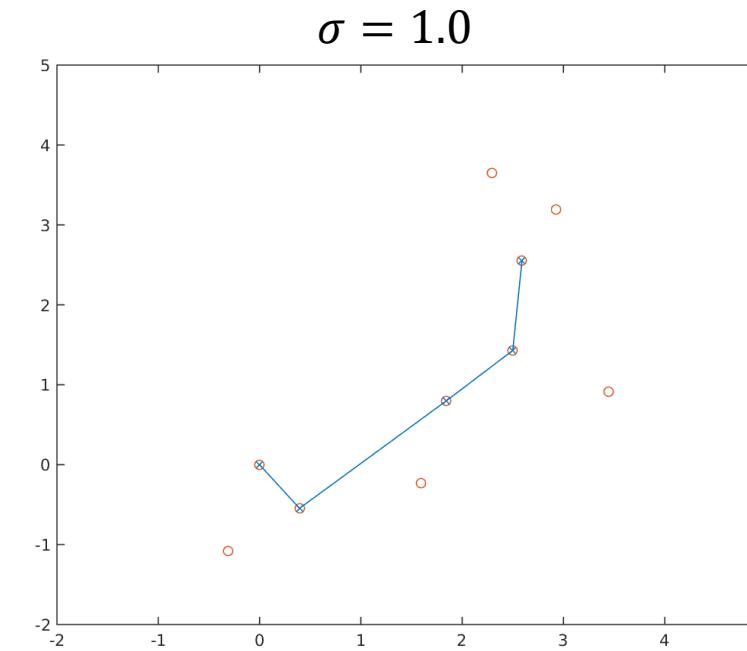
2D Gaussian: Different Proposals

Target:

$$P(x) = \frac{1}{2\pi\sqrt{|\Sigma|}} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1} (x-\mu)}$$

Proposal:

$$Q(x'|x) = \mathcal{N}(x'|x, \sigma^2 I_2)$$



Samples are unbiased, but not uncorrelated

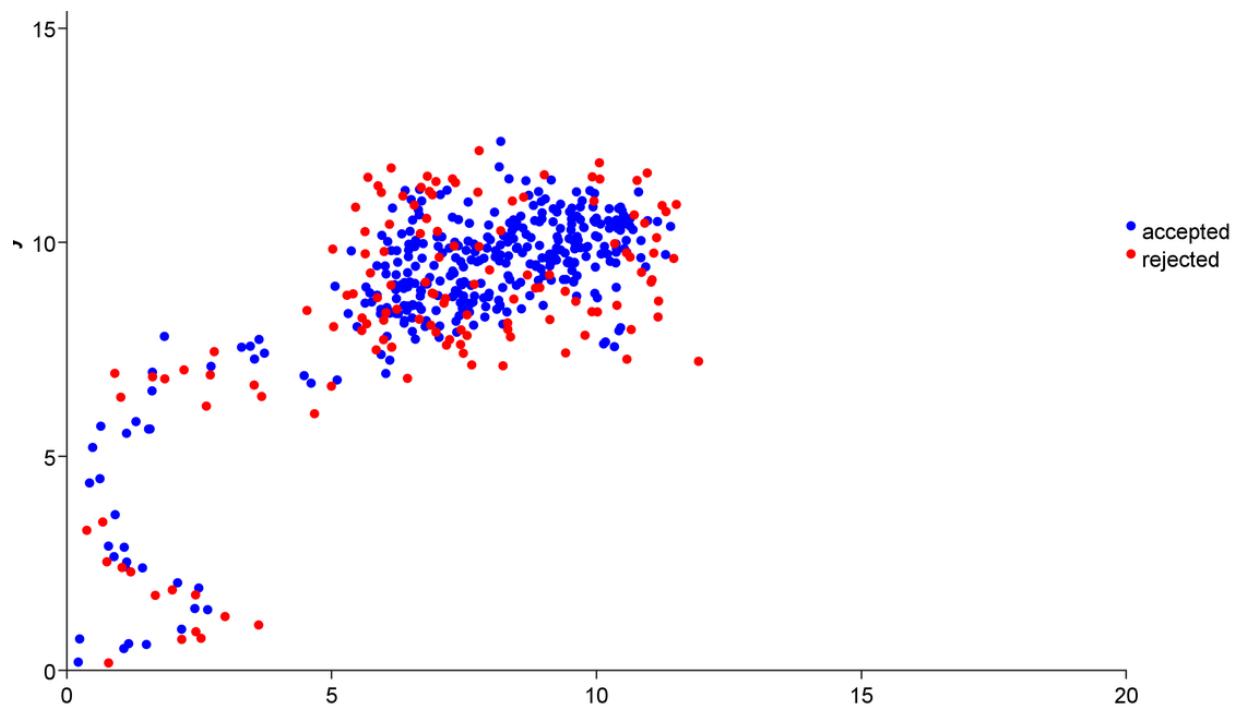
Burn in Phase

Might start far away from high-probability area

- Needs time until chain converges

Samples from *burn in phase* needs to be discarded

- *Length of burn in phase unclear*



Metropolis-Hastings as a Propose-and-Verify Architecture

Propose

Draw a sample x' from $Q(x'|x)$

Verify

With *probability* $\alpha = \min \left\{ \frac{P(x')}{P(x)} \frac{Q(x|x')}{Q(x'|x)}, 1 \right\}$ accept x' as new sample

Decouples the steps of finding the solution from validating a solution

- Natural to integrate uncertain proposals Q (e.g. automatically detected landmarks, ...)
- Possibility to include “local optimization” (e.g. a ICP or ASM updates, gradient step, ...) as proposal

A way to structure complex probabilistic fitting applications