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The Metropolis-Hastings Algorithm

Initialize with sample 𝒙
Generate next sample, with current sample 𝒙

1. Draw a sample 𝒙′ from 𝑄(𝒙′|𝒙) (“proposal”)

2. With probability 𝛼 = min
𝑃 𝑥′

𝑃 𝑥

𝑄 𝑥|𝑥′

𝑄 𝑥′|𝑥
, 1 accept 𝒙′ as new state 𝒙

3. Emit current state 𝒙 as sample
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Generalization of Metropolis algorithm to asymmetric proposal distribution

𝑄 𝒙′ 𝒙 ≠ 𝑄 𝒙 𝒙′

𝑄 𝒙′ 𝒙 > 0 ⇔ 𝑄 𝒙 𝒙′ > 0



Example: 2D Gaussian

Target: 𝑃 𝒙 =
1

2𝜋 Σ
𝑒−

1

2
𝒙−𝝁 𝑇Σ−1(𝒙−𝝁)

Ƹ𝜇 =
1.56
1.68

෠Σ =
1.09 0.63
0.63 1.07

𝜇 =
1.5
1.5

Σ =
1.25 0.75
0.75 1.25

Sampled EstimateTarget

Random walk
Proposal: 𝑄 𝒙′ 𝒙 = 𝒩(𝒙′|𝒙, 𝜎2𝐼2)



2D Gaussian: Different Proposals
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𝜎 = 0.2 𝜎 = 1.0

Target: 𝑃 𝒙 =
1

2𝜋 Σ
𝑒−

1

2
𝒙−𝝁 𝑇Σ−1(𝒙−𝝁)

Proposal: 𝑄 𝒙′ 𝒙 = 𝒩(𝒙′|𝒙, 𝜎2𝐼2)

Samples are unbiased, but not uncorrelated



Burn in Phase

Might start far away from high-probability area

• Needs time until chain converges

Samples from burn in phase needs to be discarded

• Length of burn in phase unclear



Propose

Draw a sample 𝑥′ from 𝑄(𝑥′|𝑥)

Verify

With probability 𝛼 = min
𝑃 𝑥′

𝑃 𝑥

𝑄 𝑥|𝑥′

𝑄 𝑥′|𝑥
, 1 accept 𝒙′ as new sample 

Metropolis-Hastings as a Propose-and-Verify Architecture
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Decouples the steps of finding the solution from validating a solution

• Natural to integrate uncertain proposals Q (e.g. automatically detected landmarks, ...)

• Possibility to include “local optimization” (e.g. a ICP or ASM updates, gradient step, …) as proposal

A way to structure complex probabilistic fitting applications 


