
> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

Registration – Deformation models

Marcel Lüthi

Graphics and Vision Research Group
Department of Mathematics and Computer Science

University of Basel



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

University of Basel

Registration as analysis by synthesis

Parameters 𝜃

Comparison: 𝑝 𝐼𝑇 𝜃, 𝐼𝑅)

Update using 𝑝(𝜃|𝐼𝑇 , 𝐼𝑅) Synthesis 𝜑[𝜃]

Prior 𝜑[𝜃] ∼ 𝑝(𝜃)
𝐼𝑇 𝐼𝑅 ∘ 𝜑[𝜃]



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

University of Basel

Priors

Define the Gaussian process 
𝑢 ∼ 𝐺𝑃 𝜇, 𝑘

with mean function

𝜇: Ω → ℝ2

and covariance function

𝑘: Ω × Ω → ℝ2×2 .

Characteristics
of deformation

fields
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Zero mean:

𝜇 𝑥 =
0
0

Squared exponential covariance function (Gaussian kernel)

𝑘 𝑥, 𝑥′ =

s1exp −
𝑥 − 𝑥′ 2

𝜎1
2 0

0 s2exp −
𝑥 − 𝑥′ 2

𝜎2
2

Example prior: Smooth 2D deformations
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𝑠1 = 𝑠2 small,     𝜎1 = 𝜎2 large

Example prior: Smooth 2D deformations



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

University of Basel

𝑠1 = 𝑠2 small,     𝜎1 = 𝜎2 small

Example prior: Smooth 2D deformations
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𝑠1 = 𝑠2 large,     𝜎1 = 𝜎2 large

Example prior: Smooth 2D deformations
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Why are priors interesting?

𝜃

𝜃∗ = argmax
𝜃

𝑝 𝜑 𝜃 𝑝(𝐼𝑇|𝐼𝑅, 𝜑[𝜃])
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Why are priors interesting?

𝜃∗ = argmax
𝜃

𝑝 𝜑 𝜃 𝑝(𝐼𝑇|𝐼𝑅, 𝜑[𝜃])

𝜃
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Intermezzo – The space of samples

10
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Gaussian processes - Deeper Insights



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

University of Basel

Scalar-valued Gaussian processes

Vector-valued (this course)

• Samples u are deformation fields: 
𝑢:ℝ𝑛 → ℝ𝑑

Scalar-valued (more common)

• Samples f are real-valued functions
𝑓 ∶ ℝ𝑛 → ℝ
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The space of samples

Argument:

• Covariance function 𝑘 is symmetric and positive definite

• For any finite sample it holds that:
=> the covariance matrix is symmetric
=> rowspace = columnspace = eigenspace

18

𝑢 ∼ 𝜇 + σ𝑖 𝛼𝑖 𝜆𝑖 𝜙𝑖 = σ𝑖 𝛽𝑖𝑘(𝑥𝑖 ,⋅) for some 𝛽

Samples are linear combinations of the “rows” of 𝑘
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Example: Gaussian kernel

19

• Click to edit Master text styles
• Second level

• Third level
• Fourth level

• Fifth level

𝑘 𝑥, 𝑥′ = exp −
𝑥 − 𝑥′ 2

𝜎2
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Example: Gaussian kernel

20

𝑘 𝑥, 𝑥′ = exp −
𝑥 − 𝑥′ 2

𝜎2

σ = 3
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Multi-scale signals

• k x, x′ = exp − 𝑥 −
𝑥′

1

2

+ 0.1 exp − 𝑥 −
𝑥′

0.1

2

21



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

University of Basel

Periodic kernels

• Define 𝑢 𝑥 =
cos 𝑥
sin(𝑥)

• 𝑘 𝑥, 𝑥′ = exp(−‖(𝑢 𝑥 − 𝑢 𝑥′ ‖2= exp(−4 sin2
‖𝑥 −𝑥′‖

𝜎2
)

22
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Symmetric kernels

• Enforce that f(x) = f(-x)

• 𝑘 𝑥, 𝑥′ = 𝑘 −𝑥, 𝑥′ + 𝑘(𝑥, 𝑥′)

23
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Changepoint kernels

• 𝑘 𝑥, 𝑥′ = 𝑠 𝑥 𝑘1 𝑥, 𝑥′ 𝑠 𝑥′ + (1 − 𝑠 𝑥 )𝑘2(𝑥, 𝑥
′)(1 − 𝑠 𝑥′ )

• s 𝑥 =
1

1+exp( −𝑥)

24
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f x = x

25

Combining existing functions

𝑘 𝑥, 𝑥′ = 𝑓 𝑥 𝑓 𝑥′



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

University of Basel

26

Combining existing functions

𝑘 𝑥, 𝑥′ = 𝑓 𝑥 𝑓 𝑥′

f x = sin(x)
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{f1 x = x, f2 x = sin(x)}

27

𝑘 𝑥, 𝑥′ =

𝑖

𝑓𝑖 𝑥 𝑓𝑖(𝑥
′)

Combining existing functions
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Statistical models

Statistical shape models are linear combinations of example deformations 𝑢1, … 𝑢𝑛.

𝜇 𝑥 = 𝑢 𝑥 =
1

𝑛


𝑖−1

𝑛

𝑢𝑖 (𝑥)

𝑘𝑆𝑀 𝑥, 𝑥′ =
1

𝑛 − 1


𝑖

𝑛

(𝑢𝑖 𝑥 − 𝑢(𝑥)) 𝑢𝑖 𝑥′ − 𝑢(𝑥′)
𝑇

𝑢1 ∶ Ω → ℝ2 𝑢2 ∶ Ω → ℝ2

…

𝑢𝑛 ∶ Ω → ℝ2
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Gaussian process regression

• Given: observations {(𝑥1, 𝑦1), … , 𝑥𝑛, 𝑦𝑛 }

• Model: 𝑦𝑖 = 𝑓 𝑥𝑖 + 𝜖, 𝑓 ∼ 𝐺𝑃(𝜇, 𝑘)

• Goal: compute p(𝑦∗|𝑥∗, 𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑛)

29𝑥1 𝑥2 𝑥𝑛𝑥∗

𝑦∗

𝑦1

𝑦2

𝑦𝑛
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Gaussian process regression

• Solution given by posterior process 𝐺𝑃 𝜇𝑝, 𝑘𝑝 with  

𝜇𝑝(𝑥∗) = 𝐾 𝑥∗, 𝑋 𝐾 𝑋, 𝑋 + 𝜎2𝐼 −1𝑦

𝑘𝑝 𝑥∗, 𝑥∗′ = 𝑘 𝑥∗, 𝑥∗′ − 𝐾 𝑥∗, 𝑋 𝐾 𝑋, 𝑋 + 𝜎2𝐼 −1𝐾 𝑋, 𝑥∗
′

• The covariance is independent of the value at the training points
• Structure of posterior GP determined solely by kernel.

• The most likely solution is a linear combination of kernels evaluated at the training points
• This is known as the Representer Theorem in machine learning.

• Structure of solution determined solely by kernel.

30
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Illustration: Representer theorem

31



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

University of Basel

Examples

32
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Examples

33

• Gaussian kernel (𝜎 = 1)
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Examples

34

• Gaussian kernel (𝜎 = 5)
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Examples

35

• Periodic kernel
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Examples

36

• Changepoint kernel
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Examples

37

• Symmetric kernel
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Examples

38

• Linear kernel
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Deformation models for registration

39



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

University of Basel

Basic assumption: Deformation fields are smooth

• Typical assumption:

• Deformation field is smooth

• GP approach

• Choose smooth kernel functions

𝑘 𝑥, 𝑥′ = 𝑠 exp(−
𝑥 − 𝑥′ 2

𝜎2
)

• Regularization operators

• Penalize large derivatives

ℛ 𝑢 = 𝑅𝑢 2 = 

𝑖=0

𝑛

𝛼𝑖 𝐷𝑖𝑢
2
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Green’s functions and covariance functions

ℛ 𝑢 = 𝑅𝑢 2 =

𝑖=0

𝑛

𝛼𝑖 𝐷𝑖𝑢
2

Corresponding covariance function for GP is the Greens function G:

𝑅∗𝑅𝐺 𝑥, 𝑦 = 𝛿(𝑥 − 𝑦)

• We can define Gaussian processes, which mimic typical regularization operators.

T. Poggio and F. Girosi; Networks for Approximation and Learning, Proceedings of the IEEE, 1990
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Example: Gaussian kernel

𝑘 𝑥, 𝑥′ = exp(−
𝑥 − 𝑥′ 2

𝜎2
)

ℛ 𝑢 = 𝑅𝑢 2 = 

𝑖=0

∞
𝜎2𝑖

𝑖! 2𝑖
𝐷𝑖𝑢

2

• Non-zero functions are penalized 

• pushes functions to zero away from data

Yuille, A. and Grzywacz M. A mathematical analysis of the motion coherence theory. International Journal of Computer 
vision
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Example: Exponential kernel (1D case)

𝑘 𝑥, 𝑥′ =
1

2𝛼
exp(−𝛼 𝑥 − 𝑥′ )

ℛ 𝑢 = 𝑅𝑢 2 = 𝛼2𝑢 + 𝐷1𝑢
2

Rasmussen, Carl Edward, and Christopher KI Williams. Gaussian processes for machine learning. Vol. 1. Cambridge: 
MIT press, 2006.
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Matérn class of kernels

𝑘 𝑥, 𝑥′ = 𝑠
21−𝜈

Γ 𝜈
2 2𝜈

𝑥 − 𝑥′

𝜌

𝜈

𝐾𝑣( 2𝜈
𝑥 − 𝑥′

𝜌
)

• Γ is the Γ function, 𝑘𝜈 the modified Bessel function and 𝜈, 𝜌 are parameters

• Process 𝑢~𝐺𝑃 0, 𝑘 is  𝜈 − 1 times m.s. differentiable

• Special cases:

• 𝜈 =
1

2
: 𝑘 𝑥, 𝑥′ = 𝑠 exp(−

𝑥−𝑥′

𝜌
)

• 𝜈 =
3

2
: k x, x′ = 𝑠(1 +

3 𝑥−𝑥′

𝜌
) exp(−

3 𝑥−𝑥′

𝜌
)

• 𝜈 → ∞ Gaussian kernel
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Thin-plate splines

• Minimizes the bending energy of a metal sheet 

𝑅 𝑢 = 𝛻𝑇𝛻𝑢
2

• Corresponding covariance function

𝑘 𝑥, 𝑥′ =
1

12
2 𝑥 − 𝑥′ 3 − 3𝑅( 𝑥 − 𝑥′ 2 + 𝑅3

where 𝑅 = max
𝑥,𝑥′∈Ω

‖𝑥 − 𝑥′‖

Rohr, Karl, et al. "Landmark-based elastic registration using approximating thin-plate splines." IEEE Transactions on 
medical imaging 20.6 (2001): 526-534.
Williams, Oliver and Fitzgibbon Andrew, “Gaussian process implicit surfaces”



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

University of Basel

B-Splines

• We can build a covariance function from B-Spline basis functions 𝛽
(𝑠 is a scaling constant)

𝑘 𝑥, 𝑦 = 

𝑘∈ℤ𝑑

𝛽 𝑠𝑥 − 𝑘 𝛽 𝑠𝑦 − 𝑘

• Corresponding deformation model often called “free form deformations”

• Rueckert, Daniel, et al. "Nonrigid registration using free-form deformations: application to breast MR images." 
IEEE transactions on medical imaging 18.8 (1999): 712-721.

• Klein, Stefan, et al. "Elastix: a toolbox for intensity-based medical image registration." IEEE transactions on 
medical imaging 29.1 (2010): 196-205.
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Many standard models for registration can be formulated using Gaussian processes

• Yields probabilistic interpretation

• We can sample and visualize deformation fields 

• Can use them as building blocks for more complicated priors
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1. 𝑘 𝑥, 𝑥′ = 𝑓 𝑥 𝑓 𝑥’ 𝑇 , 𝑓: 𝑋 → ℝ𝑑

2. 𝑘 𝑥, 𝑥′ = 𝛼𝑘1 𝑥, 𝑥′ , 𝛼 ∈ ℝ+ (scaling)

3. k 𝑥, 𝑥′ = 𝐵𝑇𝑘1 𝑥, 𝑥′ 𝐵, B ∈ ℝ𝑟×𝑑 (lifting)

4. 𝑘 𝑥, 𝑥′ = 𝑘1 𝑥, 𝑥′ + 𝑘2 𝑥, 𝑥′ (or relationship)

5. 𝑘 𝑥, 𝑥′ = 𝑘1 𝑥, 𝑥′ ⋅ 𝑘2(𝑥, 𝑥
′) (and relationship)

Constructing s.p.d. kernels
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Multi-scale kernels

Add kernels that act on different scales:

𝑘 𝑥, 𝑥′ =

𝑖=0

𝑛



𝑘∈ℤ𝑑

𝛽 2−𝑖𝑥 − 𝑘 𝛽 2−𝑖𝑦 − 𝑘

• Wavelet like multiscale representation

Opfer, Roland. "Multiscale kernels." 
Advances in computational mathematics 25.4 (2006): 357-380.
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Multi-scale kernel
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Anisotropic priors

Scale deformations differently in each direction

k 𝑥, 𝑥′ = 𝑅𝑇 𝑠1 0

0 𝑠2
𝑘 𝑥, 𝑥′

𝑠1 0

0 𝑠2
𝑅

• R is a rotation matrix

• 𝑘 is scalar valued

• 𝑠1, s2 scaling factors
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Anisotropic priors
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Spatially-varying priors

Use different models for different regions

𝑘 𝑥, 𝑥′ = 𝜒 𝑥 𝜒 𝑥′ 𝑘1 𝑥, 𝑥′

+ 1 − 𝜒 𝑥 (1 − 𝜒 𝑥′ ) 𝑘2(𝑥, 𝑥
′)

χ 𝑥 = ቊ
1 if 𝑥 ∈ thumb region
0 otherwise

𝜒 𝑥 = 1

𝜒 𝑥 = 0

Freiman, Moti, Stephan D. Voss, and Simon K. Warfield. "Demons registration with local affine adaptive regularization: 
application to registration of abdominal structures." Biomedical Imaging: From Nano to Macro, 2011 IEEE 
International Symposium on. IEEE, 2011.



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

University of Basel

Spatially-varying priors
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Statistical deformation models

Estimate mean and covariance function from data:

𝜇 𝑥 = 𝑢 𝑥 =
1

𝑛


𝑖−1

𝑛

𝑢𝑖 (𝑥)

𝑘𝑆𝑀 𝑥, 𝑥′ =
1

𝑛 − 1


𝑖

𝑛

(𝑢𝑖 𝑥 − 𝑢(𝑥)) 𝑢𝑖 𝑥′ − 𝑢(𝑥′)
𝑇

𝑢1 ∶ Ω → ℝ2 𝑢2 ∶ Ω → ℝ2

…

𝑢𝑛 ∶ Ω → ℝ2
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Example 5: Statistical deformation models
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Given:
• Gaussian process: 𝑢 ∼ 𝐺𝑃(𝜇, 𝑘)

• Observations: {(𝑙𝑖
𝑅 , 𝑢𝑖), 𝑖 = 1 ,… , 𝑛}

Assume:
𝑢𝑖 = 𝑢 𝑙𝑖 + 𝜖 with 𝜖 ∼ 𝑁(0, 𝜎2𝐼2×2).

Goal:
• Find posterior distribution 

𝑢 | 𝑙1
𝑅 , … , 𝑙𝑛

𝑅 , 𝑢1, … , 𝑢𝑛

𝑢𝑛

Landmark registration using GP Regression

𝑢1
𝑙𝑅
1

𝑙𝑅
𝑛
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𝜇𝑝(𝑥) = 𝜇 𝑥 + 𝐾 𝑥, 𝑌 (𝐾 𝑌, 𝑌 + 𝜎2𝐼2𝑛×2𝑛 )
−1 𝒖 − 𝜇(𝑌)

𝑘𝑝 𝑥, 𝑥′ = 𝑘 𝑥, 𝑥′ − 𝐾 𝑥, 𝑌 (𝐾 𝑌, 𝑌 + 𝜎2𝐼2𝑛×2𝑛 )
−1𝐾(𝑌, 𝑥′)

The posterior 
𝑢 |𝑙1

𝑅 , … , 𝑙𝑛
𝑅 , 𝑢1, … , 𝑛

is a Gaussian process 
𝐺𝑃 𝜇𝑝, 𝑘𝑝

Its parameters are known analytically.

Gaussian process regression



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

University of Basel

Landmark registration using GP Regression
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Hybrid registration

• We can now combine landmark registration with intensity:

1. Use Gaussian process regression to obtain posterior from 𝐺𝑃(𝜇, 𝑘) from landmarks

2. Use 𝐺𝑃(𝜇𝑝, 𝑘𝑝) as new prior model for registration

Wörz, Stefan, and Karl Rohr. "Hybrid spline-based elastic image registration using analytic solutions of the 
navier equation." Bildverarbeitung für die Medizin 2007. Springer Berlin Heidelberg, 2007. 151-155.

Lu, Huanxiang, Philippe C. Cattin, and Mauricio Reyes. "A hybrid multimodal non-rigid registration of MR 
images based on diffeomorphic demons." Engineering in Medicine and Biology Society (EMBC), 2010 Annual 
International Conference of the IEEE. IEEE, 2010.
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Demo: Priors and interactive registration
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Skull Segmentation in MRI
Lab-meeting

Slides by Patrick Kahr
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● Mathematical Morphology 

(Dogdas et al. 2005)

● Multi-level model fitting (Lerch, Lüthi 2008) ● Multi-Atlas matching (Torrado-

Carvajal et al. 2015)

● Mathematical Morphology 

(Dogdas et al. 2005)

Problem: Bone and air have similar 

intensities in MRI

→ unlike CT, no threshold 

segmentation possible

Skull Segmentation in MRI
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SSM

sample

deformation field defined on 

reference mesh

Model deformations of reference shape using an SSM

𝐺𝑃(𝜇𝑠𝑠𝑚, 𝑘𝑠𝑠𝑚)

Deformations are only defined on surface of reference 

shape: 

→  deformation field needs to be interpolated for the 

rest of the image.

Modeling deformations with SSMs
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sample

deformation field defined on 

complete image domain

SSM + deformation model Hybrid kernel: mix SSM with smooth Gaussian kernel

(1 − 𝑤 𝑥 )𝑘𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑥, 𝑥′ (1 − 𝑤 𝑥′ ) + 𝑤 𝑥 𝑘𝑆𝑆𝑀 𝑥, 𝑥′ 𝑤 𝑥′

where 

x’, y’:  closest points to x,y on the surface,

w = 1 if x, y on the surface,

w→0 for x, y far away from surface.

Modeling deformations with SSMs
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68
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Register 14 CT templates to 12 MR targets (168 registrations).

Measure average distance to a set of 10 anatomical landmarks.

Registration accuracy: KGaussian vs KHybrid
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Multi-atlas matching:

Target segmentation is 

mean shape obtained 

from 14 CT 

registrations.

Mean 

shape

Segmentation accuracy
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Segmentation example
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Segmentation accuracy
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Lower variance between registrations for each of the 12 targets 

with Khybrid.

KGaussian

KHybrid

Variance
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Summary

• GPs provide probabilistic interpretation to classic registration models 
• But, can visualize assumptions 

• New ways to combine priors to individual applications.

• Modelling and model fitting are separated
• Change in prior does not lead to change in algorithm

• No increase in complexity

• Can tailor model to application without
increase in complexity

• Can use SSMs of individual organs to 
guide image registration


