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Reminder: Registration as analysis by synthesis

| Comparison: p(I+|8, Ig) |

Prior ¢[0] ~ p(0)
Ig © (0]

| Update using p(01|1r,Ig) | 1 Synthesis @[6] t
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Reminder

(Gaussian process

a; ~ N(0,1)

u~ GP(u, k)

Represented using first 7 components
r
u=p+ 2 a2 b, '

WN\\\;\@W““ .......

w

N bbby
\ Q \\ ...... R
\ i Vb bbby
I ‘?:QQ R ek
\\\ ; 5&\&\&" ."M ------ (A ST S R (5 )
%m\?#ﬁ::i:::.x
N EERRER
S SISEEus sl
A e R el i SN L B M
N 5 S -
O el SeEpaEte R R >
N ) ) ./«/././.I.I./.NM.W .NM x
pr R R
//.H.ﬁk..h///./f“/lfff///////”
?, N s N”// s
AW ~ o~ A P B A 5o
4,/ ,%vflnq\k. /,/.*/MZ,.:”MNNHM
\ A AR NN RS
( //.//. \w...;//un
o \ QLSRR
/N/ A S
\ Ll
Jas A vXNX
/.N/ PN
o~ > A RR XX
S 0 G R

=1

i

Different GP-s lead to very different deformation models

* All of them are parametricu ~ p(0).
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Reminder: Likelihood functions

Likelihood function: p(I+|8, Ir)

e

Comparison Landmarks / Surface / image Image / image Surface / surface
landmark

Stochastic component Noise on landmark Intensity profiles at  Deviation of image (Distance to) exact
points surface boundary  intensity from position of surface

reference image
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Reminder: Obtaining the posterior parameters

MAP-Estimate
0" = arg meaxp(HIIT, Ip) = arg meaxp(Q)p(IﬂH, Ip)

MAP Solution
A 0" = argmeaxp(H)p(ITw,IR)

p(O|Ir, 1) ﬁ

- Solving an optimization problem
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Todays Lecture: Obtaining the posterior distribution

Full posterior distribution
p(@)p(r|6,Ig)
p@|Ir,Ig) =
R p(Ir)

A \

p(O|lr, Ig) Infeasible to compute:
p(Ir)= | p(B)p(Ir|6)d6

p(0)p(r|6,IR)
p(Ir)

- Doing (approximate) Bayesian inference



University of Basel

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

* Basic idea: Sampling methods and MCMC

* The Metropolis-Hastings algorithm
* The Metropolis algorithm
* Implementing the Metropolis algorithm

* The Metropolis-Hastings algorithm

e Example: 3D Landmark fitting
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Approximate Bayesian Inference

Variational methods Sampling methods
 Function approximation q(0) * Numeric approximations through
arg max KL(q(8)|p(6|D)) simulation
q
() KL: Kullback- ()
p Leibler divergence p
—~~—
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e Simulate a distribution p through random samples x;

* Evaluate expectation (of some function f of random variable X)

E[f(X)] = f FOPGOdx

EIF (0] ~ f = NZf(xJ i ~ p() p

V[fx)] ~ ( ) This is dTif‘ficuIt!

* “Independent” of dimensionality of X
* More samples increase accuracy
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Sampling from a Distribution

* Easy for standard distributions ... is it? Random. nextDouble ()
. Random.nextGaussian ()
e Uniform
* Gaussian

* How to sample from more complex distributions?
* Beta, Exponential, Chi square, Gamma, ...

* Posteriors are very often not in a “nice” standard text book form

* We need to sample from an unknown posterior with only unnormalized, expensive point-
wise evaluation &

10
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Markov Chain Monte Carlo

Markov Chain Monte Carlo Methods (MCMC)
Idea: Design a Markov Chain such that samples x obey the target distribution p

Concept: “Use an already existing sample to produce the next one”

* Many successful practical applications
* Proven: developed in the 1950/1970ies (Metropolis/Hastings)

* Direct mapping of computing power to approximation accuracy

11
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MCMC: An ingenious mathematical construction

... an aperiodic and irreducable

from

v

P :
o ! 4 D
distribution istribution p(x)

No need to understand this now: more details follow!

\W induces
If Markov Markov chain MCMC Algorithms
Chain is a- J |
periodic and \ i
irreducable \
it... converges to . Generate samples
;
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The Metropolis Algorithm

Requirements:

* Proposal distribution Q (x'|x) — must generate samples, symmetric
 Target distribution P(x) — with point-wise evaluation

Result:

 Stream of samples approximately from P(x)

* |nitialize with sample x

e Generate next sample, with current sample x
1. Draw asample x’ from Q(x'|x) (“proposal”)

2. With probability & = min {I;((’;)) , 1} accept x' as new state x

3. Emit current state x as sample

13
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Example: 2D Gaussian

1 _l N T~sy—1/n__
e Target: P(x) = e 2R ET (1)
214/ | Z]
* Proposal:  Q(x'|x) = N(x'|x,0%I,) «— Random walk
Target Sampled Estimate
_ [1.5 - [1.56
=115 K= 1168
5 [1.25 0.75 G _ [1.09 0.63
0.75 1.25 0.63 1.07

15
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2D Gaussian: Different Proposals

16
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The Metropolis-Hastings Algorithm

* |nitialize with sample x

e Generate next sample, with current sample x
1. Draw asample x’ from Q(x'|x) (“proposal”)

) .. . P(X') Q(x|x,) } /
2. With probability a« = mln{P(x) L 1¢ accept x' as new state x

3. Emit current state x as sample

* Generalization of Metropolis algorithm to asymmetric Proposal distribution

Q(x'|x) # Q(x[x')
Q(x'|x) >0 Q(x|x") >0

17
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* Approximation: Samples x4, x5, ... approximate P(x)
Unbiased but correlated (not i.i.d.)

* Normalization: P(x) does not need to be normalized
Algorithm only considers ratios P(x") /P (x)

* Dependent Proposals: Q (x'|x) depends on current sample x

Algorithm adapts to target with simple 1-step memory
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Metropolis - Hastings: Limitations

* Highly correlated targets * Serial correlation
Proposal should match target to e Results from rejection
avoid too many rejections and too small stepping

e Subsampling
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O-mlk Bishop. PRML, Springer,
2006

1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20
Standard Deviation of Proposal
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Propose-and-Verity Algorithm

* Metropolis algorithm formalizes: propose-and-verify

» Steps are completely independent.

Propose
Draw a sample x’ from Q (x'|x)

Verify

With probability &« = min {P(x ) Q(xlx') 1} accept x’ as new sample

P(x) Q(x'|x)’

20



University of Basel

MH as Propose and Verity

 Decouples the steps of finding the solution from validating a solution

* Natural to integrate uncertain proposals Q
(e.g. automatically detected landmarks, ...)

e Possibility to include “local optimization” (e.g. a ICP or ASM updates,
gradient step, ...) as proposal

Anything more “informed” than random walk should improve convergence.
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Fitting 3D Landmarks

3D Alignment with Shape and Pose

22
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3D Fitting Example

@ @

right.eye.corner_outer left.eye.corner_outer

@ @

right.lips.corner left.lips.corner

v

23
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Goal: Find posterior distribution for arbitrary pose and shape

Shape transformation Observations
r
« Observed positions I%, ..., %
pslal = u(0) + ) @A) posiions {r. .l
= e Correspondence: Iy, ..., lg
Rigid transformation Parameters
* 3 angles (pitch, yaw, roll) @, ¥, 9 0= (a,o,9,t¢)
* Translation t = (ty, Ly, t;) Posterior distribution:
orl0,1,9,t] = RgRyR,(x) + ¢t PO\, ...,I}) < p(l}, ..., IR16)P(6)

Full transformation
@l0](x) = (¢re s)[0](x)

24
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* Gaussian random walk proposals

"Q(8'16) = N(6']6,%¢)"

* Update different parameter types block-wise

e Shape N(@'|a, 0& Ly m )
* Rotation N(¢'|lp.03), NW'|p,05),N(9'|9,05)
e Translation N(t'|t, 0 1553)

e Large mixture distributions as proposals

* Choose proposal Q; with probability ¢;

Q(8'10) = Xc;Q;(0'19)

25
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3DMM Landmarks Likelihood

Simple models: Independent Gaussians

Observation of L landmark locations I% in image

e Single landmark position model:

p(lr]6,1z) = N(¢|0](R), 13><302)

* Independent model (conditional independence):

L
p(lf, ..., [}|0) = Hpi(liﬂe)
i=1

26
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3D Fit to landmarks

* Influence of landmarks uncertainty on
final posterior?

* oM — Imm
* oM = 4mm
* oy = 10mm
* Only 4 landmark observations:

* Expect only weak shape impact

e Should still constrain pose

 Uncertain landmarks should be looser

27
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Posterior: Pose & Shape, 4mm

Ayaw = 0.511 A, = —1mm g, = 0.4
Byaw = 0.073 (4°) Gy, =4 mm Gy, = 0.6

(Estimation from samples)
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Posterior: Pose & Shape, 1mm

N

fiyaw = 0.50 fie, = —2 mm flog, = 1.5
Oyaw = 0.041 (2.4°) 6y, = 0.8 mm Oq, = 0.35
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Posterior: Pose & Shape, 10mm

N

fyaw = 0.49 flt, = —> mm Hay =

Oyaw = 0.11 (7°) 0y, = 10 mm Oq, = 0.6
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Summary: MCMC for 3D Fitting

Probabilistic inference for fitting probabilistic models
* Bayesian inference: posterior distribution

Probabilistic inference is often intractable
* Use approximate inference methods

MCMC methods provide a powerful sampling framework
* Metropolis-Hastings algorithm
* Propose update step
* Verify and accept with probability

Samples converge to true distribution: More about this later!
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