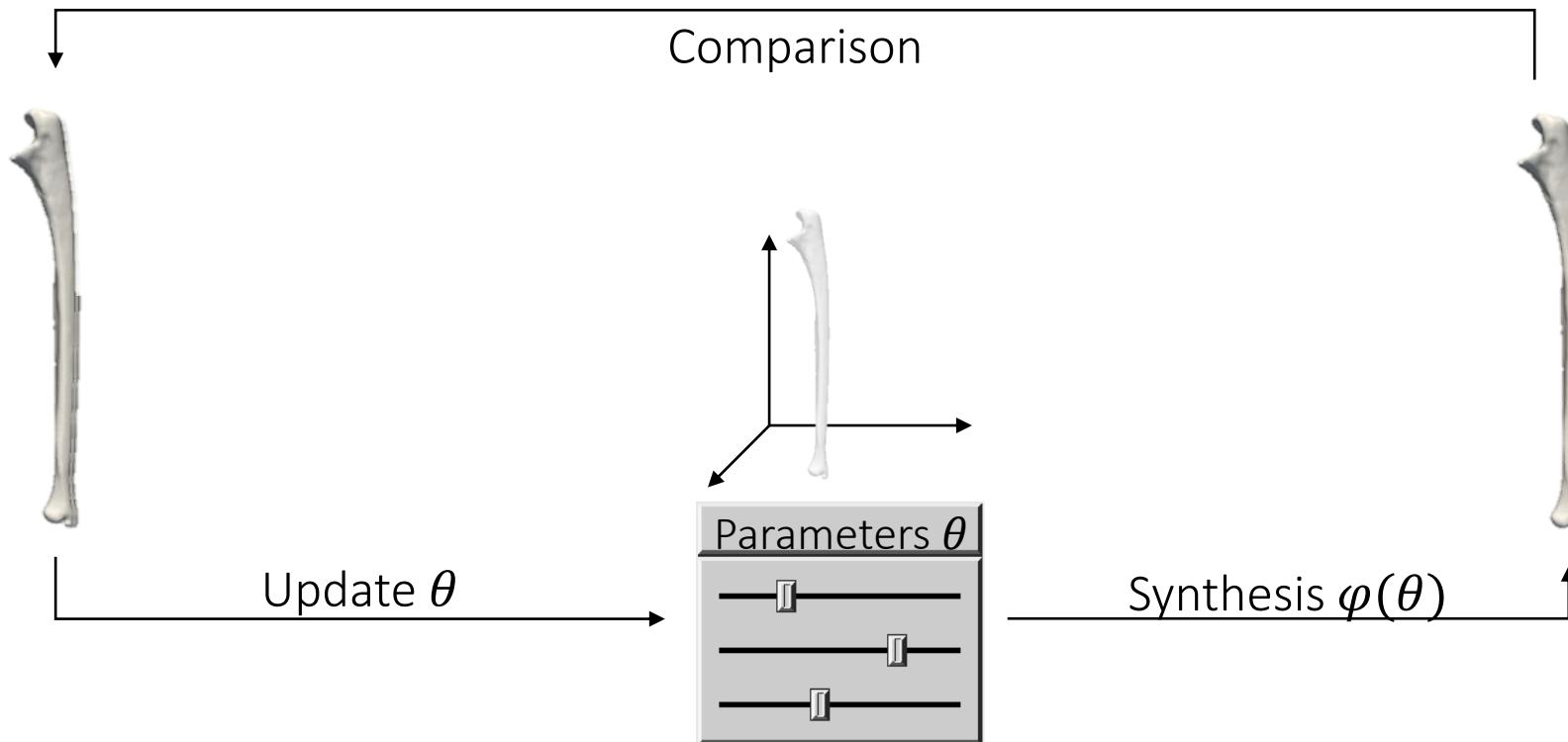


Analysis by synthesis

Marcel Lüthi, 03. Juni 2019

Graphics and Vision Research Group
Department of Mathematics and Computer Science
University of Basel

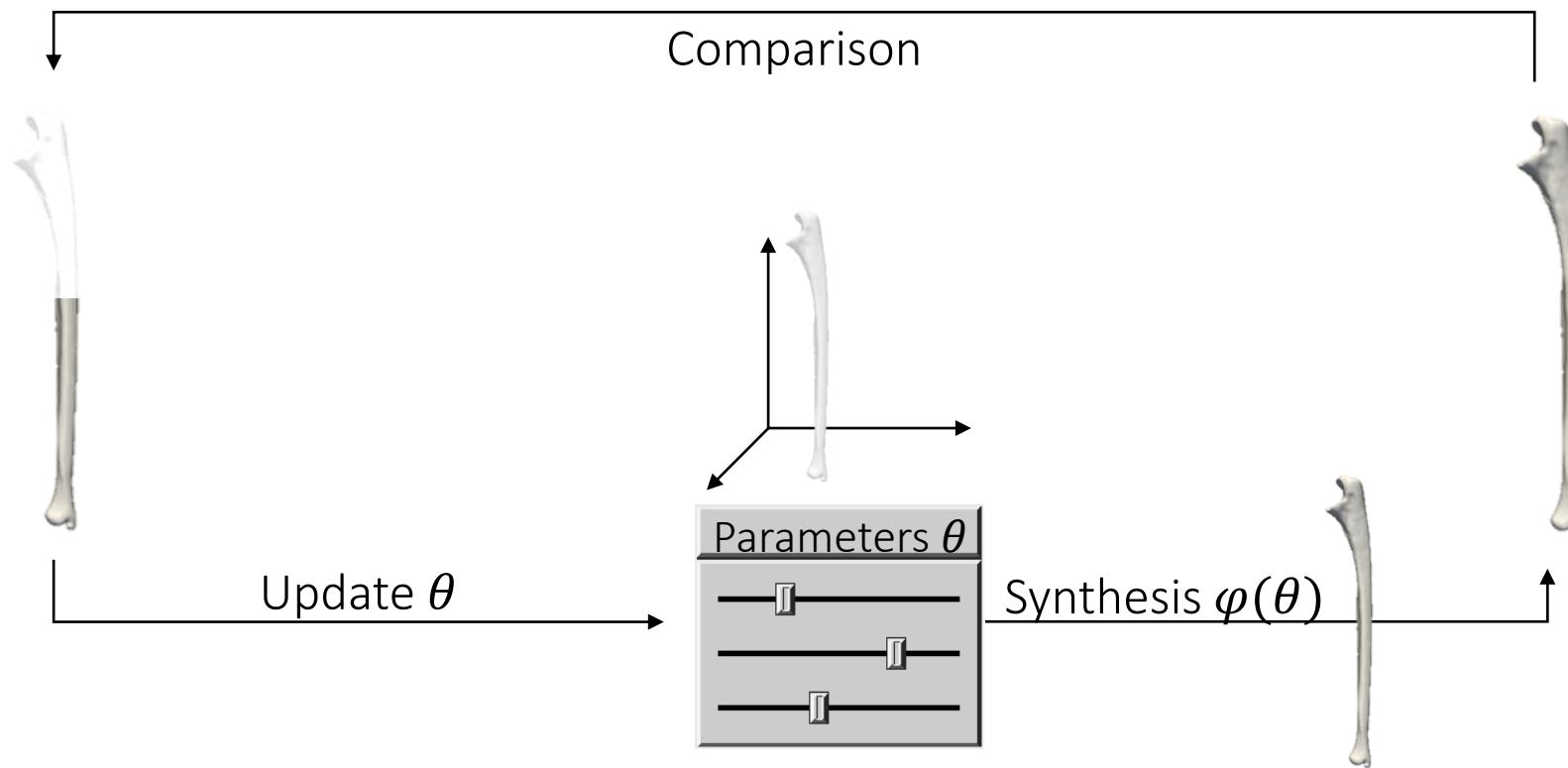
Analysis by synthesis



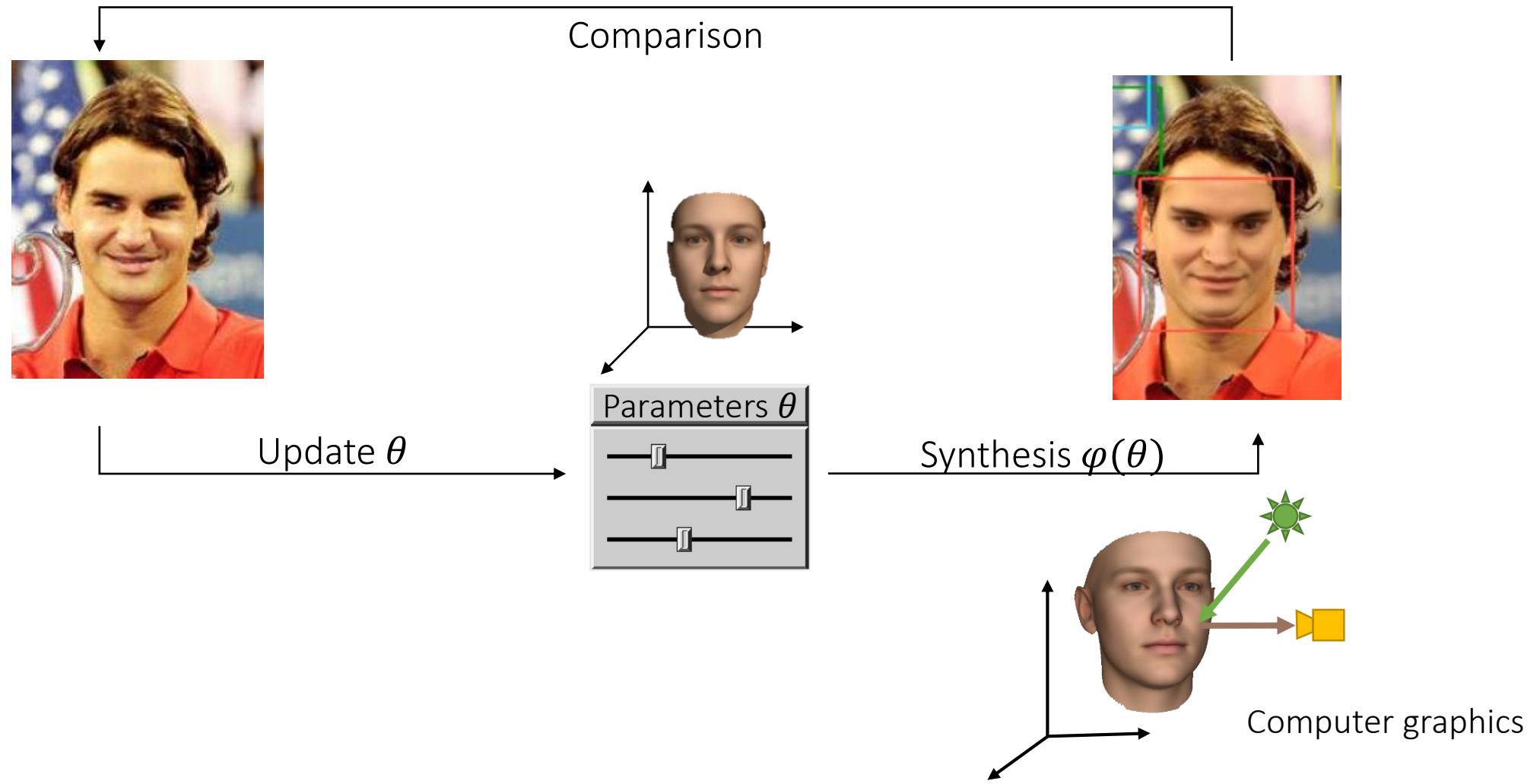
Being able to synthesize data means we can understand how it was formed.

- Allows reasoning about unseen parts.

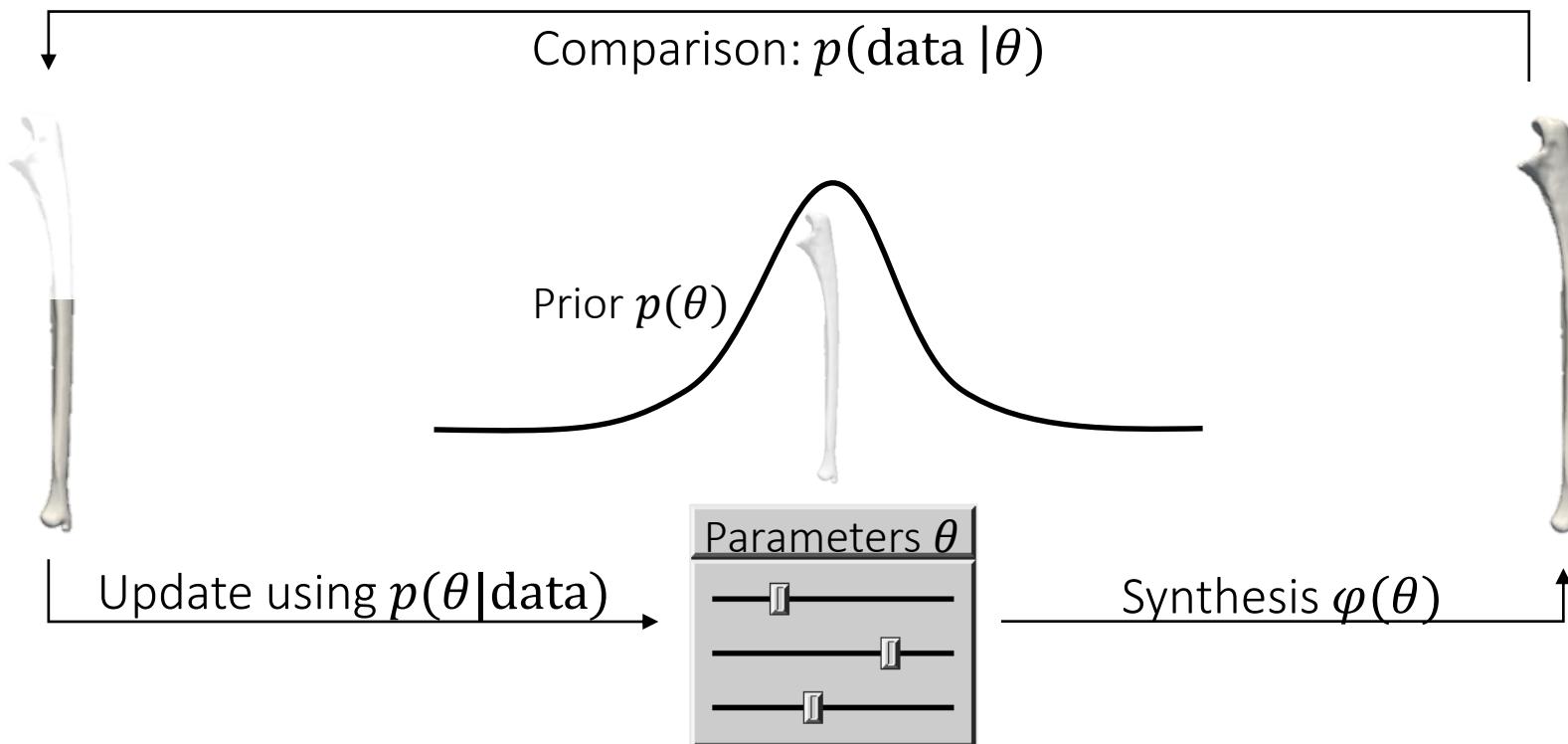
Analysis by synthesis



Analysis by synthesis – Computer vision

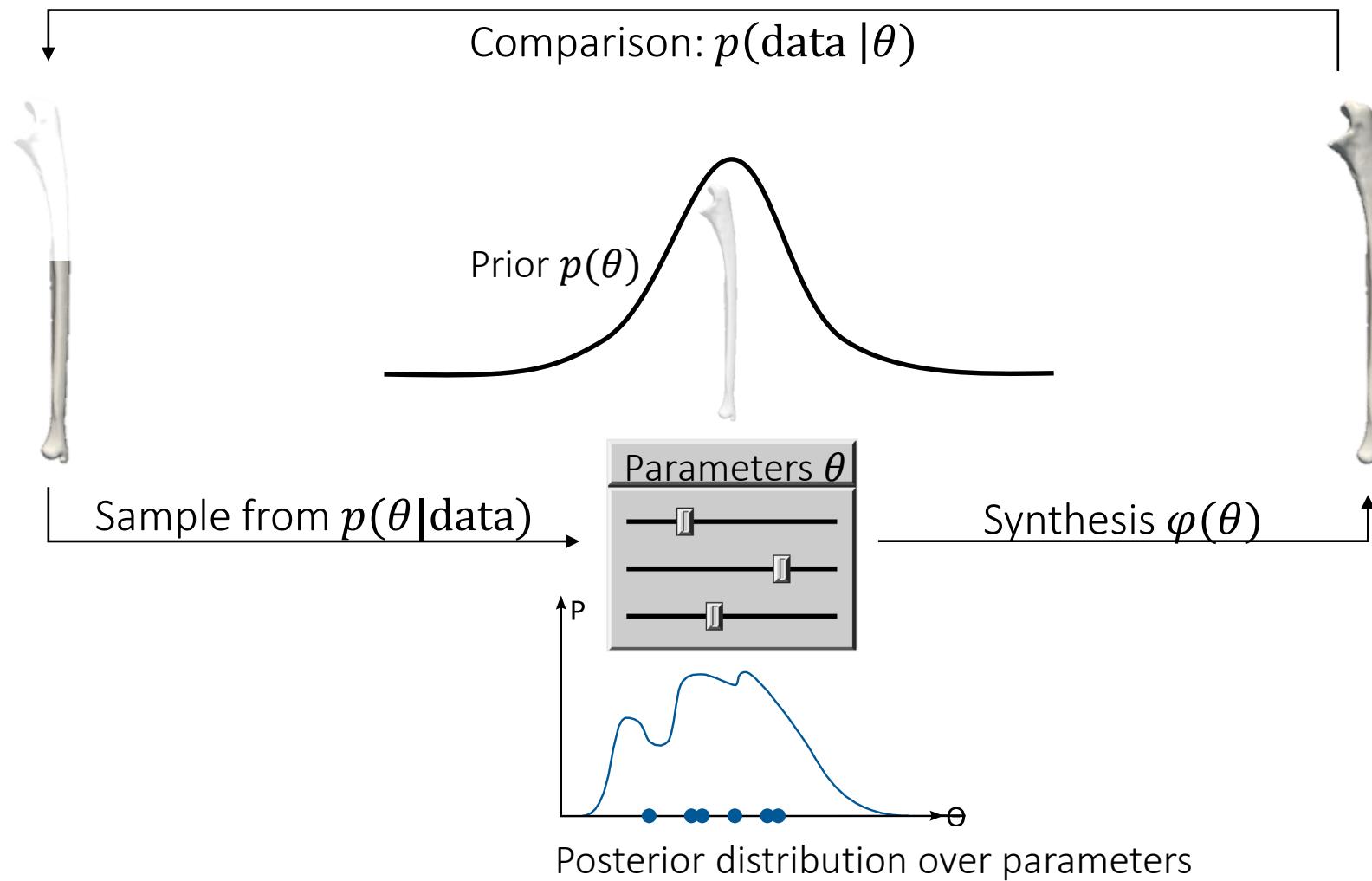


Mathematical Framework: Bayesian inference



- Principled way of dealing with uncertainty.

Algorithmic implementation: MCMC



The course in context

Pattern Theory

Ulf Grenander

Computational
anatomy

Text

Music

Research at
Gravis

Natural language

Medical Images

Fotos

This course

Speech

Pattern Theory

Computational
anatomy

Medical Images

Fotos

This course

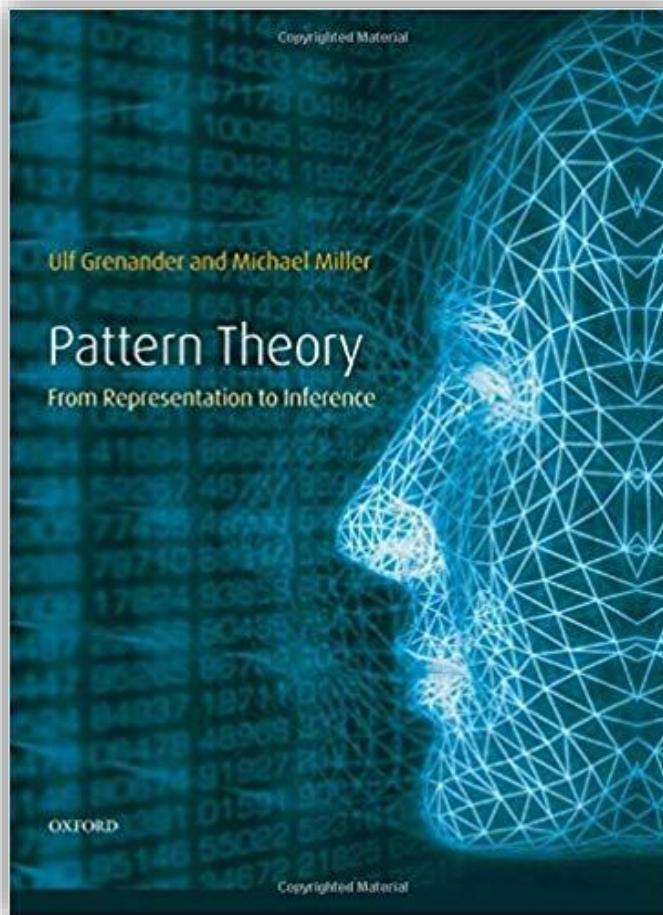
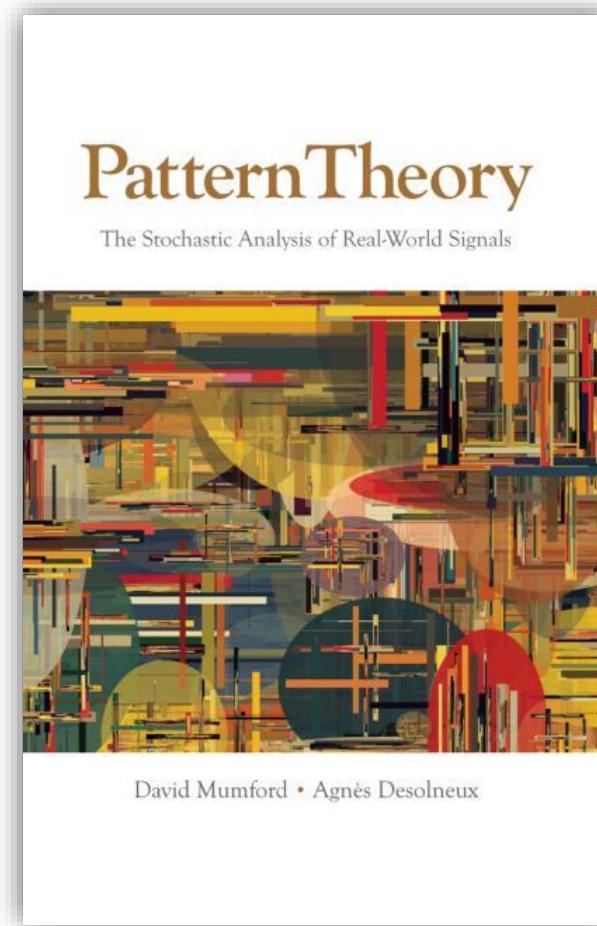
Research at
Gravis

Music

Speech

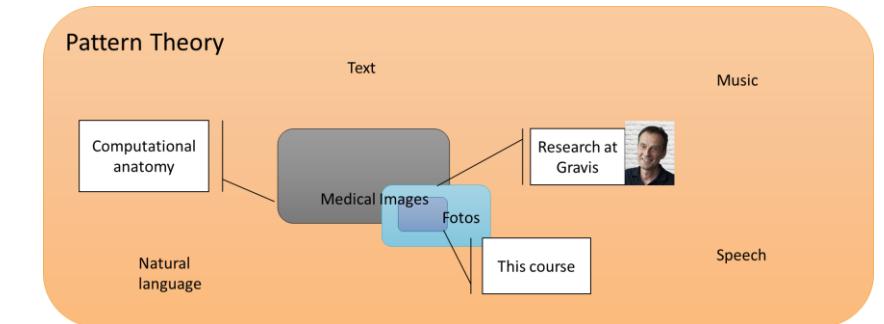
Text

Pattern theory – The mathematics



Pattern theory vs PMM

- Pattern theory is about **developing** a theory for understanding real-world signals
- Probabilistic Morphable Models are about **using** theoretical well founded concepts to analyse images.
 - GPs for modelling
 - MCMC for model fitting
 - Working software

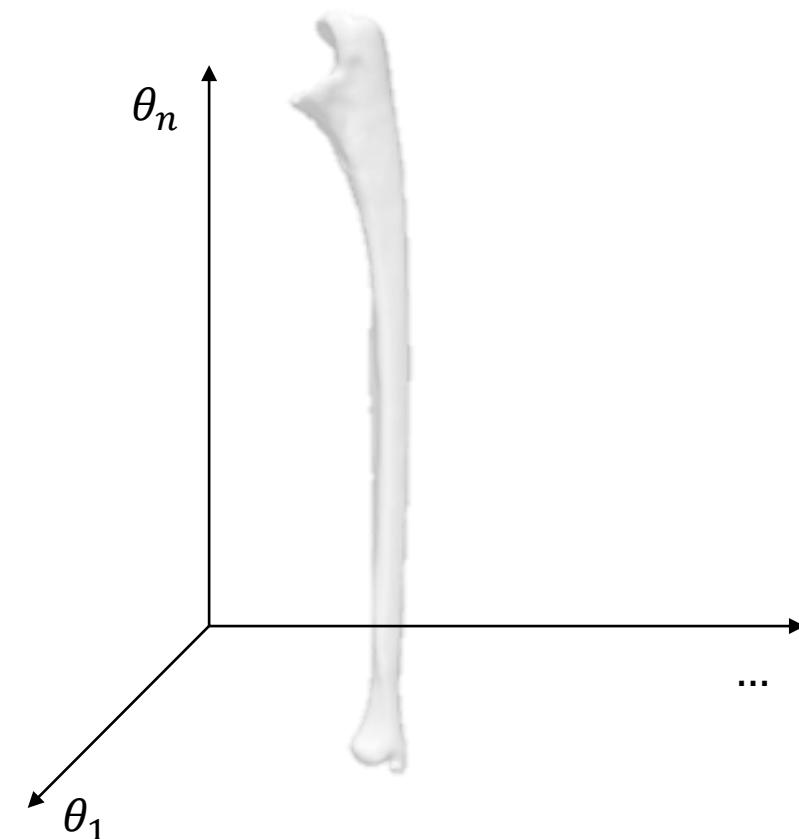


Analysis by Synthesis in 5 (simple) steps

Analysis by synthesis in 5 simple steps

1. Define a parametric model

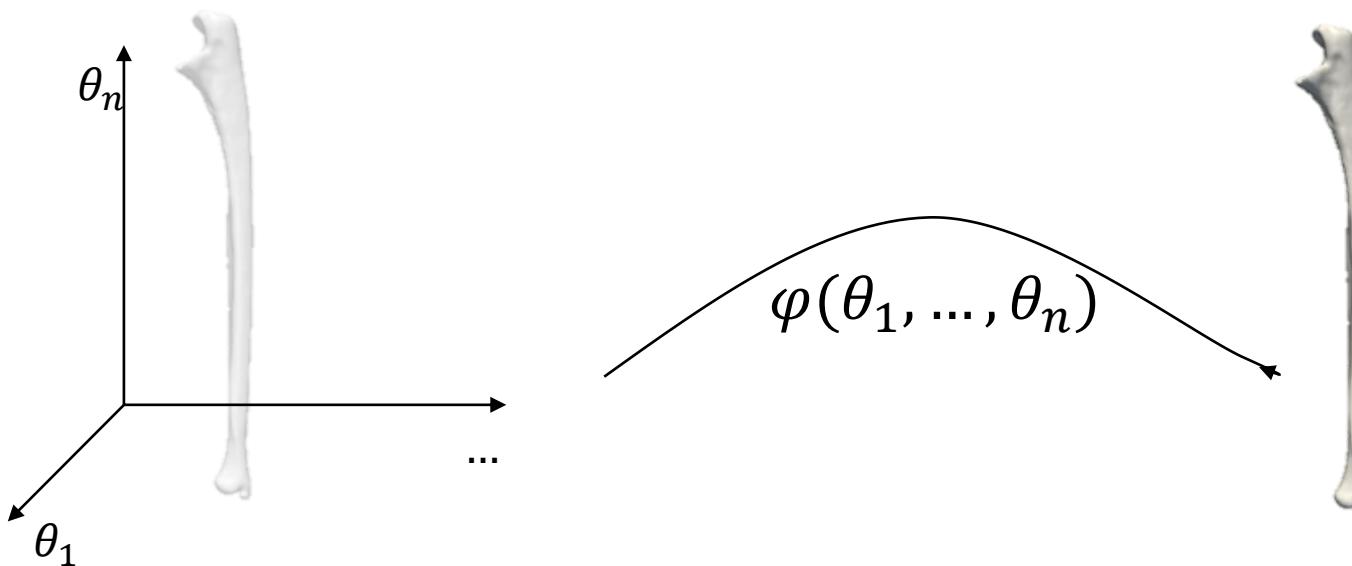
- a representation of the world
- State of the world is determined by parameters

$$\theta = (\theta_1, \dots, \theta_n)$$


Analysis by synthesis in 5 simple steps

2. Define a synthesis function $\varphi(\theta_1, \dots, \theta_n)$

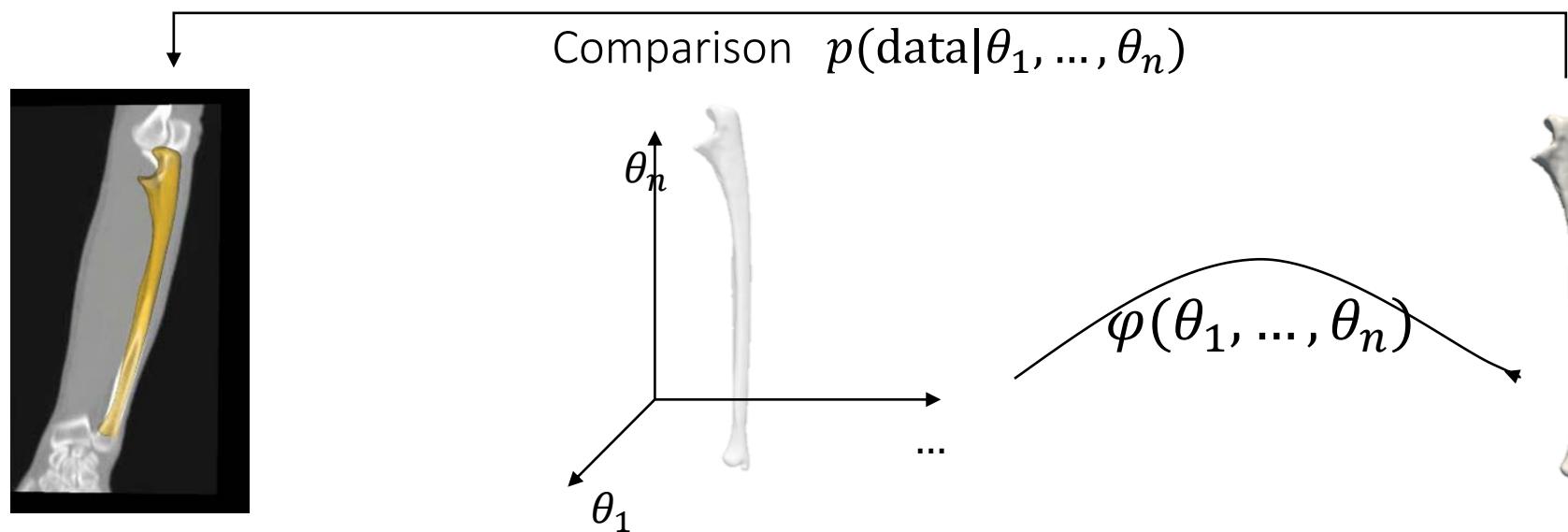
- **generates/synthesize** the data given the “state of the world”
- φ can be deterministic or stochastic



Analysis-by-Synthesis in 5 simple steps

3. Define likelihood function:

- Define a probabilistic model $p(\text{data}|\theta_1, \dots, \theta_n)$ that models how the synthesized data compares to the real data
- Includes stochastic factors on the data, such as noise



Bayesian inference

We have: $P(\text{data}|\theta_1, \dots, \theta_n)$

We want: $P(\theta_1, \dots, \theta_n|\text{data})$

Bayes rule:

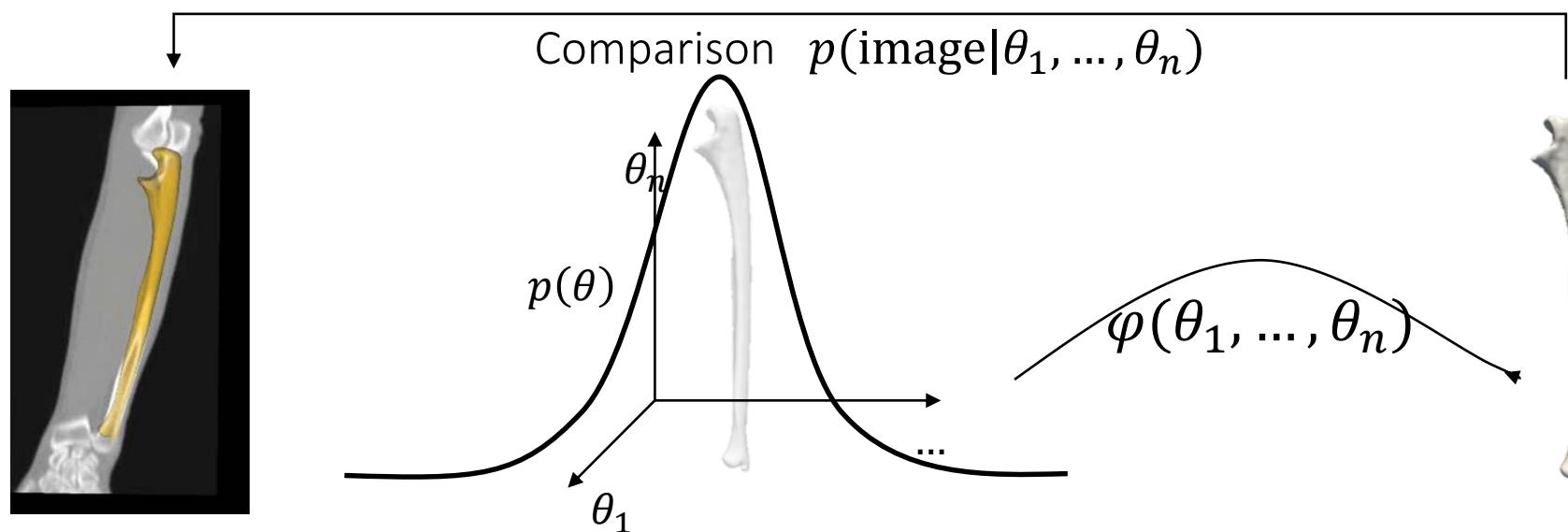
$$P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)}$$

Lets us compute from $p(D|\theta)$ its “inverse” $p(\theta|D)$

Analysis by synthesis in 5 simple steps

4. Define prior distribution: $p(\theta) = p(\theta_1, \dots, \theta_n)$

- Our belief about the “state of the world”
- Makes it possible to invert mapping $p(\text{data}|\theta_1, \dots, \theta_n)$



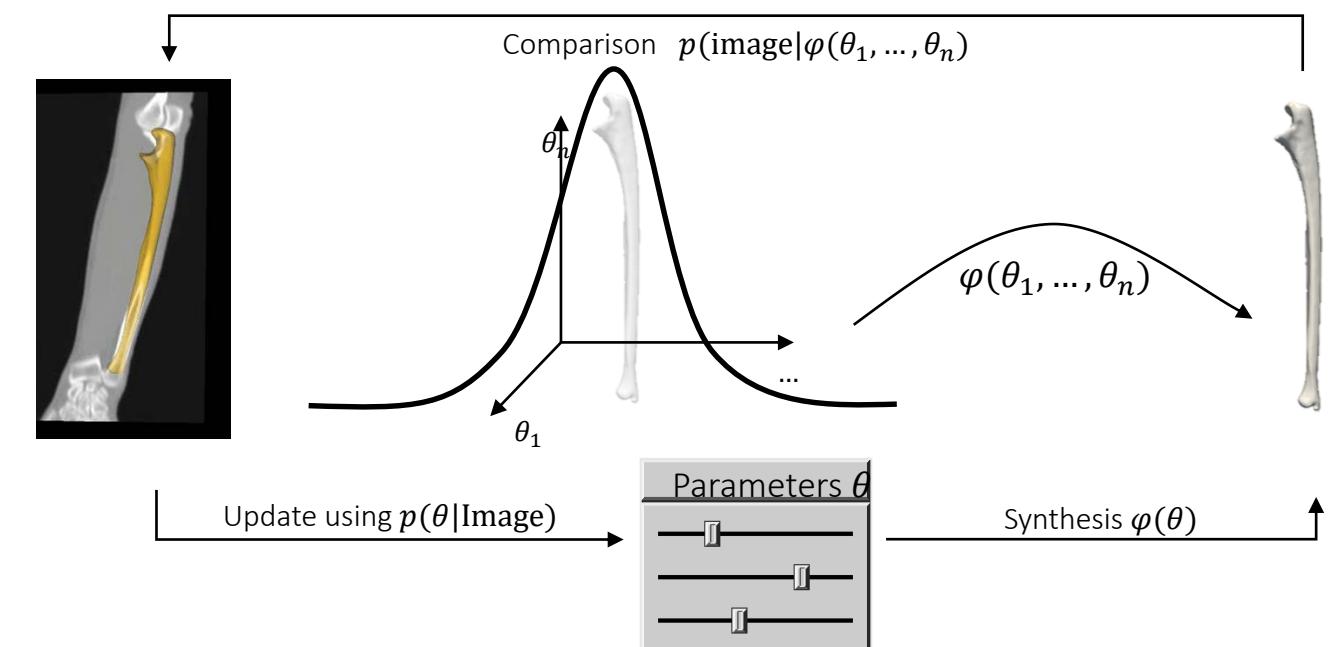
Analysis by synthesis in 5 simple steps

5. Do inference

$$p(\theta_1, \dots, \theta_n | \text{data}) = \frac{p(\theta_1, \dots, \theta_n) p(\text{data} | \theta_1, \dots, \theta_n)}{p(\text{data})}$$

Purely conceptual formulation:

- Independent of algorithmic implementation
- But usually done iteratively



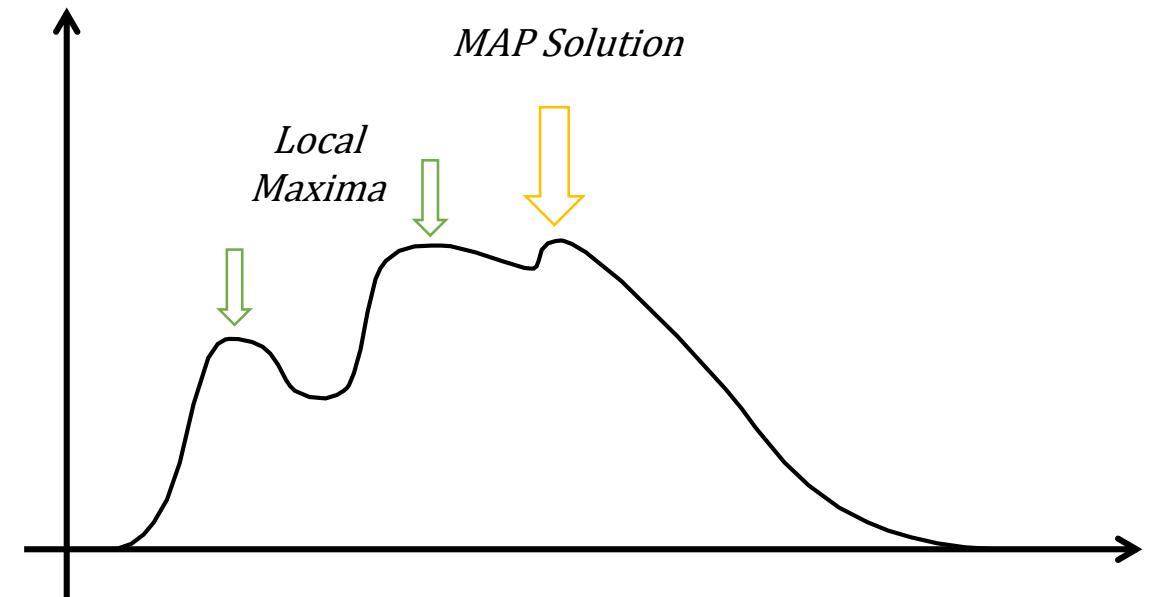
Analysis by synthesis in 5 simple steps

5. Possibility 1: Find best (most likely) solution:

$$\arg \max_{\theta_1, \dots, \theta_n} p(\theta_1, \dots, \theta_n | \text{data}) = \arg \max_{\theta_1, \dots, \theta_n} \frac{p(\theta_1, \dots, \theta_n) p(\text{data} | \theta_1, \dots, \theta_n)}{p(\text{data})}$$

Most popular approach

- Usually based on gradient-descent
- May miss good solutions



Analysis by synthesis in 5 simple steps

5. Possibility 2: Find posterior distribution:

$$p(\theta_1, \dots, \theta_n | \text{data}) = \frac{p(\theta_1, \dots, \theta_n) p(\text{data} | \theta_1, \dots, \theta_n)}{p(\text{data})}$$

Core of this course

- Obtain samples from the distribution
- Based on Markov Chain Monte Carlo methods

