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Analysis by synthesis

l Comparison

|

\

»
»

Parameters 6 .
Update 6 1 Synthesis @(8) I
i

v

=

Being able to synthesize data means we can understand how it was formed.
— Allows reasoning about unseen parts.
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Analysis by synthesis — Computer vision
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Mathematical Framework: Bayesian inference
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* Principled way of dealing with uncertainty.
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Algorithmic implementation: MCMC
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The course in context
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Pattern theory — The mathematics

PatternTheory

The Stochastic Analysis of Real-World Signals

Pattern Theory

From Representation to Inference

David Mumford * Agnés Desolneux




University of Basel

Pattern theory vs PMM

* Pattern theory is about developing a theory for understanding real-
world signals

* Probabilistic Morphable Models are about using theoretical well
founded concepts to analyse images.

* GPs for modelling
* MCMC for model fitting

* Working software
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Analysis by Synthesis in 5 (simple) steps
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Analysis by synthesis in 5 simple steps

1. Define a parametric model
* a representation of the world

e State of the world is
determined by parameters

0 =(0y,..,6,)
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Analysis by synthesis in 5 simple steps

2. Define a synthesis function ¢ (04, ..., 6,,)
» generates/synthesize the data given the “state of the world”
* @ can be deterministic or stochastic
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Analysis-by-Synthesis in 5 simple steps

3. Define likelihood function:

* Define a probabilistic model p(data|84, ...
compares to the real data

* Includes stochastic factors on the data, such as noise

, 8,,) that models how the synthesized data

Comparison p(data|8y, ..., 6,)
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Bayesian inference

We have: P(datal|f4, ..., 0.,)
We want: P(64, ..., 0, |data)

Bayes rule:

P(D|6)P(6)
P(D)

P(0|D) =

Lets us compute from p(D|60) its “inverse” p(6|D)
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Analysis by synthesis in 5 simple steps

4. Define prior distribution: p(8) = p(64, ..., 6,,)

 Qur believe about the “state of the world”

* Makes it possible to invert mapping p(data|6y, ..., 6,,)

Comparison p(image|6,, ..., 6,) |
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Analysis by synthesis in 5 simple steps

5. Do inference
p(04,...,0,)p(datalb, ..., 6,)

p(data)

p(64,...,0,|data) =

Comparison p(image|@ (84, ..., 0y) |

Purely conceptual formulation:

* |ndependent of algorithmic
implementation

 But usually done iteratively

6,

Update using p(6|Image) 1 Synthesis ¢ (60) T
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Analysis by synthesis in 5 simple steps

5. Possibility 1: Find best (most likely) solution:

p(64,...,0,)p(datalb, ..., 6,)

arg maxp(6, ..., 0, |data) = arg max

Op.Om Oy Or p(data)
A MAP Solution
Local
Most popular approach Maxima. ||
* Usually based on gradient- Il
descent
* May miss good solutions
>
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Analysis by synthesis in 5 simple steps

5. Possibility 2: Find posterior distribution:

p(04,...,0,)p(datalb, ..., 6,,)

04, ...,0,|data) =
p( 1 ’ nl aa) p(data)

Core of this course

* Obtain samples from the
distribution

 Based on Markov Chain
Monte Carlo methods o—eo—0—oo —O
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