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Analysis by synthesis

Parameters 𝜃

Comparison

Update 𝜃 Synthesis 𝜑(𝜃)

Being able to synthesize data means we can understand how it was formed. 
− Allows reasoning about unseen parts.
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Analysis by synthesis – Computer vision

Parameters 𝜃

Comparison

Update 𝜃 Synthesis 𝜑(𝜃)

Computer graphics
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Mathematical Framework: Bayesian inference

• Principled way of dealing with uncertainty.

Parameters 𝜃

Comparison: 𝑝 data 𝜃)

Update using 𝑝(𝜃|data) Synthesis 𝜑(𝜃)

Prior 𝑝(𝜃)
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Algorithmic implementation: MCMC

Parameters 𝜃

Comparison: 𝑝 data 𝜃)

Sample from 𝑝(𝜃|data) Synthesis 𝜑(𝜃)

Prior 𝑝(𝜃)

Posterior distribution over parameters
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Pattern theory – The mathematics
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Pattern theory vs PMM

• Pattern theory is about developing a theory for understanding real-
world signals

• Probabilistic Morphable Models are about using theoretical well 
founded concepts to analyse images. 

• GPs for modelling

• MCMC for model fitting

• Working software
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Analysis by Synthesis in 5 (simple) steps
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Analysis by synthesis in 5 simple steps

1. Define a parametric model 

• a representation of the world

• State of the world is 
determined by parameters 
𝜃 = (𝜃1, … , 𝜃𝑛)
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𝜃𝑛

𝜃1

…
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Analysis by synthesis in 5 simple steps

2. Define a synthesis function 𝜑 𝜃1, … , 𝜃𝑛

• generates/synthesize the data given the “state of the world”

• 𝜑 can be deterministic or stochastic
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𝜑(𝜃1, … , 𝜃𝑛)

𝜃𝑛

𝜃1

…
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3. Define likelihood function:

• Define a probabilistic model 𝑝 data 𝜃1, … , 𝜃𝑛 that models how the synthesized data 
compares to the real data

• Includes stochastic factors on the data, such as noise

Comparison   𝑝(data|𝜃1, … , 𝜃𝑛)

𝜑(𝜃1, … , 𝜃𝑛)

𝜃𝑛

𝜃1

…

Analysis-by-Synthesis in 5 simple steps
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Bayesian inference

We have: 𝑃 𝑑𝑎𝑡𝑎|𝜃1, … , 𝜃𝑛

We want: 𝑃 𝜃1, … , 𝜃𝑛|𝑑𝑎𝑡𝑎

Bayes rule:

𝑃 𝜃|𝐷 =
𝑃 𝐷|𝜃 𝑃 𝜃

𝑃 𝐷

Lets us compute from 𝑝 𝐷 𝜃 its “inverse” 𝑝(𝜃|𝐷)



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

University of Basel

Analysis by synthesis in 5 simple steps

4. Define prior distribution: 𝑝 𝜃 = 𝑝(𝜃1, … , 𝜃𝑛)

• Our believe about the “state of the world”

• Makes it possible to invert mapping 𝑝(data|𝜃1, … , 𝜃𝑛)

Comparison   𝑝(image|𝜃1, … , 𝜃𝑛)

𝜑(𝜃1, … , 𝜃𝑛)

𝜃𝑛

𝜃1

…

𝑝 𝜃
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Purely conceptual formulation: 
• Independent of algorithmic 

implementation
• But usually done iteratively

Analysis by synthesis in 5 simple steps

5. Do inference

𝑝 𝜃1, … , 𝜃𝑛 data =
𝑝 𝜃1, … , 𝜃𝑛 𝑝 data 𝜃1, … , 𝜃𝑛

𝑝 data
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Comparison   𝑝(image|𝜑(𝜃1, … , 𝜃𝑛)

𝜑(𝜃1, … , 𝜃𝑛)

𝜃𝑛

𝜃1

…

Update using 𝑝(𝜃|Image) Synthesis 𝜑(𝜃)
Parameters 𝜃
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Analysis by synthesis in 5 simple steps

5. Possibility 1: Find best (most likely) solution:

arg max
𝜃1,…,𝜃𝑛

𝑝 𝜃1, … , 𝜃𝑛 data = arg max
𝜃1,…,𝜃𝑛

𝑝 𝜃1, … , 𝜃𝑛 𝑝 data 𝜃1, … , 𝜃𝑛

𝑝 data
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Most popular approach
• Usually based on gradient-

descent
• May miss good solutions

MAP Solution

Local 
Maxima
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Analysis by synthesis in 5 simple steps

5. Possibility 2: Find posterior distribution:

𝑝 𝜃1, … , 𝜃𝑛 data =
𝑝 𝜃1, … , 𝜃𝑛 𝑝 data 𝜃1, … , 𝜃𝑛

𝑝 data
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Core of this course
• Obtain samples from the 

distribution
• Based on Markov Chain 

Monte Carlo methods


