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Understanding Markov Chains
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Markov Chain

/ State space

* Sequence of random variables {X;}},, X; € S with joint distribution

Transition probability

=

N
P(XllXZJ '--)XN) — P(Xl) P(Xilxi—l)

/ =2

Initial distribution

Automatically true if we use

» Simplifications: (for our analysis) / computers (e.g. 32 bit floats)

* Discrete state space: S = {1, 2, ..., K}

* Homogeneous Chain: P(X; = l|X;_; = m) = Ty,
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Example: Markov Chain

0.05
0.95 0.8

T

e Simple weather model: dry (D) or rainy (R) hour

e Condition in next hour? X1 Q

» State space S = {D, R} -~

 Stochastic: P(X¢4+1|X¢) 0.2
* Depends only on current condition X;

* Draw samples from chain:
DDDDDDDDRRRRRRRRRRRDDDDDDDDDDD

* Initial: Xo = D DDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
* Evolution: P(X¢411X¢) DDDDDDDDDRDD. . .

* Long-term Behavior
* Does it converge? Average probability of rain?
e Dynamics? How quickly will it converge?
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Discrete Homogeneous Markov Chain

Formally linear algebra:

* Distribution (vector):

_P(Xl- _ 1)_
P(X;): pi = 5
P(X; = K))
* Transition probability (transition matrix):
P(l — 1) ces P(l «— K)
PXG|Xiy): T=| 5
P(K<1) - PKe<K)

Tim = P(L <« m) = P(X; = l|X;_, =m)



UNIVERSITAT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2018 | BASEL

Evolution of the Initial Distribution

e Evolution of P(X;) — P(X>):

PX,=1) = z P(l « m)P(X; =m)

meS
P =1Tpq
* Evolution of n steps:
Pn+1 =T"py

* |s there a stable distribution p*? (steady-state)

. . A stable distribution is an
p =Tp eigenvector of T with
eigenvalue A =1
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Steady-State Distribution: p*

* |t exists:

e T subject to normalization constraint: left eigenvector to eigenvalue 1

ZTlm=1 1 .. 1T=[1 .. 1]
l

* T has eigenvalue A = 1 (left-/right eigenvalues are the same)
e Steady-state distribution as corresponding right eigenvector
Tp” =p
* Does any arbitrary initial distribution evolve to p*?
e Convergence?

* Unigueness?
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* Additional requirement for T: (T™);,,, > 0 forn > N,

The chain is called irreducible and aperiodic (implies ergodic)
* All states are connected using at most N, steps

e Return intervals to a certain state are irregular

e Perron-Frobenius theorem for positive matrices:
 PF1: A; = 1isasimple eigenvalue with 1d eigenspace (uniqueness)

* PF2: A, = lisdominant, all |[4;] < 1, i # 1 (convergence)

e p* is a stable attractor, called equilibrium distribution
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Convergence

* Time evolution of arbitrary distribution p,

Pn = T"Po
e Expand pg in Eigen basis of T
Te; = iiei: Al <A =1, |l = [Ak4a]
Po = z Ci€;
i

K
Tpo = z cidie;

"k

T"po = z Ci/l?ei = c,e; + Ajc e, + /126'333 + ...

i

10
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Convergence (ll)

K
T"po = z ciAie; = cieq + A5cye, + Afczes + -

~ n* n
n>1) ~p +12C232 ceq =p’

* We have convergence:

Normalizations:
T"py—>p” lesll =1
Yipi =1

* Rate of convergence:
pn — DIl = Iz c2€20l = [2;]"|ca]

11
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Example: Weather Dynamics

Rain forecast for stable versus mixed weather:

0.95 0.2 < 0 o - 0.85 0.6
stable W, =[ C D mixed W, =
0.05 0.8 U 0.15 0.4

p* = [0-8 ) Long-term average . « 108
0.2 probability of rain: 20% p = 0.2
Eigenvalues: 1, 0.75 oe - xed wester rany | | Eigenvalues: 1, 0.25
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Markov Chain: First Results

* Aperiodic and irreducible chains are ergodic:
(every state reachable after > N steps, irregular return time)

« Convergence towards a unique equilibrium distribution p*

 Equilibrium distribution p*

* Eigenvector of T with eigenvalue A = 1:

* Rate of convergence:

Exponential decay with second largest eigenvalue o |1, |"

Only useful if we can design chain with desired equilibrium distribution!

13
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Detailed Balance

» Special property of some Markov chains

Distribution p satisfies detailed balance if the total flow of probability between every pair of states is equal,
(we have a local equilibrium):

P(l « m)p(m) = P(m « Dp(l)

* Detailed balance implies: p is the equilibrium distribution

(Tp), = z TymPm = Z Toub1 = Py
m m

e Most MCMC methods construct chains which satisfies detailed balance.

14
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The Metropolis-Hastings Algorithm

MCMC to draw samples from an arbitrary distribution

16
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ldea of Metropolis Hastings algorithm

e Design a Markov Chain, which satisfies the detailed balance condition

Tyg(x" < x)P(x) = Tyu(x < x")P(x')

e Ergodicity ensures that chain converges to this distribution



UNIVERSITAT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2018 | BASEL

Attempt 1: A simple algorithm

Initialize with sample x

Generate next sample, with current sample x
1. Draw asample x’ from Q (x'|x) (“proposal”)

2.  Emit current state x as sample

It’s @ Markov chain

Need to choose Q for every P to satisfy detailed balance

Q(x" « x)P(x) = Q(x « x")P(x')
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Attempt 2: More general solution

Initialize with sample x

* Generate next sample, with current sample x
1. Draw asample x’ from Q(x'|x) (“proposal”)
2. With probability a(x,x") emit x’ as new sample

3. With probability 1 — a(x,x") emit x as new sample

It’s @ Markov chain

Decouples Q from P through acceptance rule a

* How to choose a?
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What is the acceptance function a?

Typ(x" < x)P(x) = Tyy(x < x")P(x")
a(x'|x)Q(x'[x)P(x) = alx|x)Q(x|x)P(x’)
CaseA:x" =x
* Detailed balance trivially satisfied for every a(x’,x)
Case B:x" + x

* We have the following requirement

a(x'|x) _ Qxlx)P(x')
a(cl¥) ~ QGTOP()
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What is the acceptance function a?

Requirement: Choose a(x'|x) such that
a(x’|x) _ Qx|x)P(x’)
a(x|x’)  QQx'|x)P(x)

e a(x|x") is probability distribution a(x|x’) <1 and a(x|x’) =0

* Easy to check that:

Q(xlx’)P(X')>

a(x'|x) = min (1, 0 PG

satisfies this property.
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