

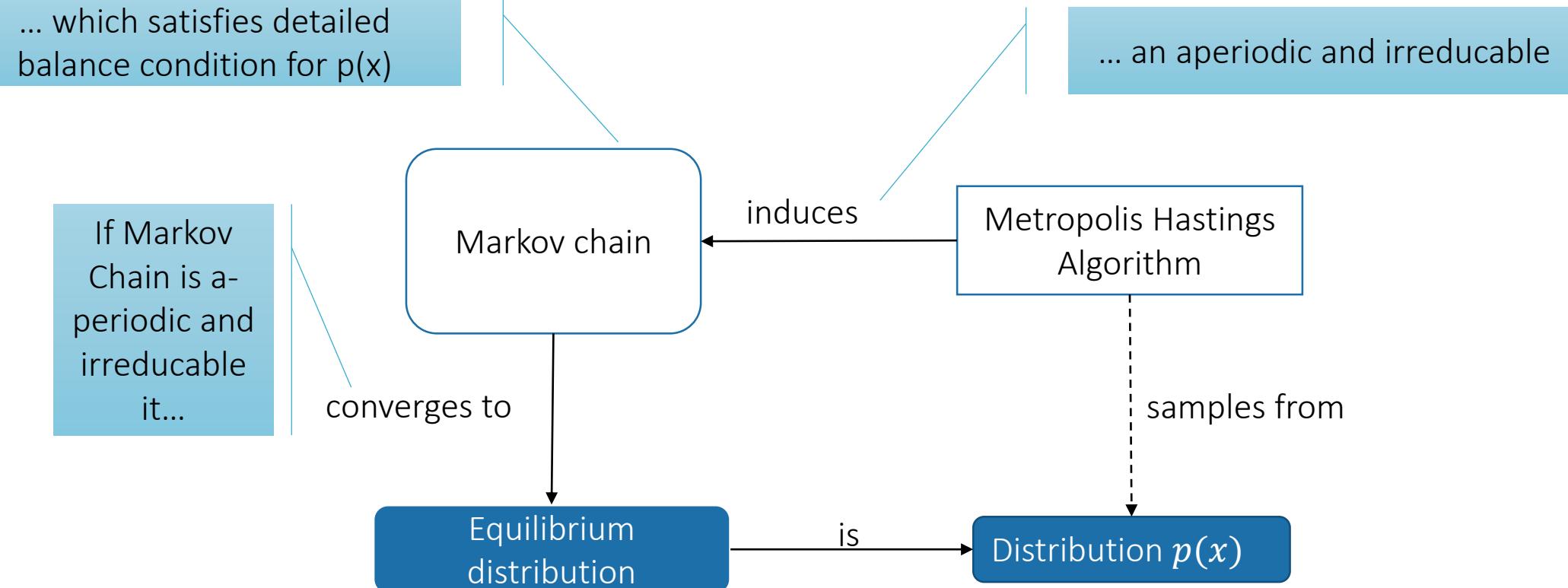
Understanding MCMC

Marcel Lüthi,

University of Basel

Slides based on presentation by Sandro Schönborn

The big picture



Understanding Markov Chains

Markov Chain

- Sequence of random variables $\{X_i\}_{i=1}^N$, $X_i \in S$ with joint distribution

$$P(X_1, X_2, \dots, X_N) = P(X_1) \prod_{i=2}^N P(X_i | X_{i-1})$$

State space

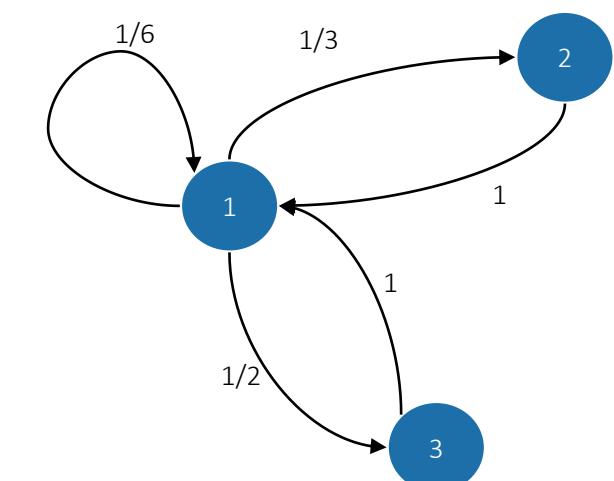
Transition probability

Initial distribution

Automatically true if we use computers (e.g. 32 bit floats)

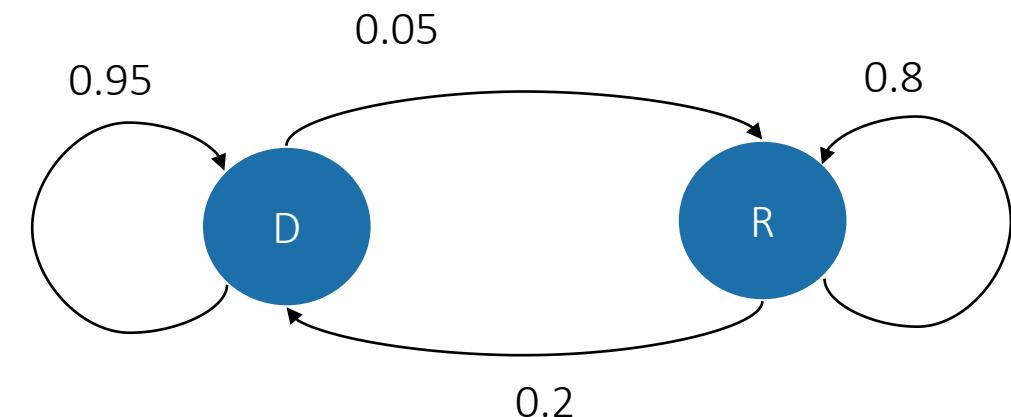
- Simplifications: (for our analysis)

- Discrete state space: $S = \{1, 2, \dots, K\}$
- Homogeneous Chain: $P(X_i = l | X_{i-1} = m) = T_{lm}$



Example: Markov Chain

- Simple weather model: *dry* (D) or *rainy* (R) hour
 - Condition in next hour? X_{t+1}
 - State space $S = \{D, R\}$
 - Stochastic: $P(X_{t+1}|X_t)$
 - Depends only on *current* condition X_t
- Draw samples from chain:
 - Initial: $X_0 = D$
 - Evolution: $P(X_{t+1}|X_t)$
- Long-term Behavior
 - Does it converge? *Average* probability of rain?
 - Dynamics? How *quickly* will it converge?



*DDDDDDDDRRRRRRRRRRDDDDDDDDDD
DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
DDDDDDDDDDRDD...*

Discrete Homogeneous Markov Chain

Formally linear algebra:

- Distribution (vector):

$$P(X_i): \mathbf{p}_i = \begin{bmatrix} P(X_i = 1) \\ \vdots \\ P(X_i = K) \end{bmatrix}$$

- Transition probability (transition matrix):

$$P(X_i|X_{i-1}): T = \begin{bmatrix} P(1 \leftarrow 1) & \cdots & P(1 \leftarrow K) \\ \vdots & \ddots & \vdots \\ P(K \leftarrow 1) & \cdots & P(K \leftarrow K) \end{bmatrix}$$

$$T_{lm} = P(l \leftarrow m) = P(X_i = l | X_{i-1} = m)$$

Evolution of the Initial Distribution

- Evolution of $P(X_1) \rightarrow P(X_2)$:

$$P(X_2 = l) = \sum_{m \in S} P(l \leftarrow m)P(X_1 = m)$$
$$\mathbf{p}_2 = T\mathbf{p}_1$$

- Evolution of n steps:

$$\mathbf{p}_{n+1} = T^n \mathbf{p}_1$$

- Is there a *stable* distribution \mathbf{p}^* ? (steady-state)

$$\mathbf{p}^* = T\mathbf{p}^*$$

A stable distribution is an *eigenvector* of T with eigenvalue $\lambda = 1$

Steady-State Distribution: \mathbf{p}^*

- It exists:
 - T subject to normalization constraint: *left* eigenvector to eigenvalue 1
$$\sum_l T_{lm} = 1 \Leftrightarrow [1 \dots 1]T = [1 \dots 1]$$
 - T has eigenvalue $\lambda = 1$ (*left-/right* eigenvalues are the same)
 - Steady-state distribution as corresponding *right* eigenvector
$$T\mathbf{p}^* = \mathbf{p}^*$$
- Does *any* arbitrary initial distribution *evolve* to \mathbf{p}^* ?
 - Convergence?
 - Uniqueness?

Equilibrium Distribution: \mathbf{p}^*

- Additional requirement for T : $(T^n)_{lm} > 0$ for $n > N_0$
The chain is called *irreducible* and *aperiodic* (implies *ergodic*)
 - All states are connected using at most N_0 steps
 - Return intervals to a certain state are irregular
- *Perron-Frobenius* theorem for positive matrices:
 - PF1: $\lambda_1 = 1$ is a simple eigenvalue with 1d eigenspace (*uniqueness*)
 - PF2: $\lambda_1 = 1$ is dominant, all $|\lambda_i| < 1$, $i \neq 1$ (*convergence*)
- \mathbf{p}^* is a stable attractor, called *equilibrium distribution*

$$T\mathbf{p}^* = \mathbf{p}^*$$

Convergence

- Time evolution of arbitrary distribution \mathbf{p}_0

$$\mathbf{p}_n = T^n \mathbf{p}_0$$

- Expand \mathbf{p}_0 in Eigen basis of T :

$$T\mathbf{e}_i = \lambda_i \mathbf{e}_i, \quad |\lambda_i| < \lambda_1 = 1, \quad |\lambda_k| \geq |\lambda_{k+1}|$$

$$\mathbf{p}_0 = \sum_i^K c_i \mathbf{e}_i$$

$$T\mathbf{p}_0 = \sum_i^K c_i \lambda_i \mathbf{e}_i$$

$$T^n \mathbf{p}_0 = \sum_i^K c_i \lambda_i^n \mathbf{e}_i = c_1 \mathbf{e}_1 + \lambda_2^n c_2 \mathbf{e}_2 + \lambda_3^n c_3 \mathbf{e}_3 + \dots$$

Convergence (II)

$$T^n \mathbf{p}_0 = \sum_i^K c_i \lambda_i^n \mathbf{e}_i = c_1 \mathbf{e}_1 + \lambda_2^n c_2 \mathbf{e}_2 + \lambda_3^n c_3 \mathbf{e}_3 + \dots$$

(n \gg 1) $\approx \mathbf{p}^* + \lambda_2^n c_2 \mathbf{e}_2$

- We have *convergence*:

$$T^n \mathbf{p}_0 \xrightarrow{n \rightarrow \infty} \mathbf{p}^*$$

- *Rate* of convergence:

$$\|\mathbf{p}_n - \mathbf{p}^*\| \approx \|\lambda_2^n c_2 \mathbf{e}_2\| = |\lambda_2|^n |c_2|$$

$c_1 \mathbf{e}_1 = \mathbf{p}^*$

↑

Normalizations:
 $\|\mathbf{e}_1\| = 1$
 $\sum_i p_i^* = 1$

Example: Weather Dynamics

Rain forecast for stable versus mixed weather:

$$\text{stable } W_s = \begin{bmatrix} 0.95 & 0.2 \\ 0.05 & 0.8 \end{bmatrix}$$

mixed

$$W_m = \begin{bmatrix} 0.85 & 0.6 \\ 0.15 & 0.4 \end{bmatrix}$$

$$\mathbf{p}^* = \begin{bmatrix} 0.8 \\ 0.2 \end{bmatrix}$$

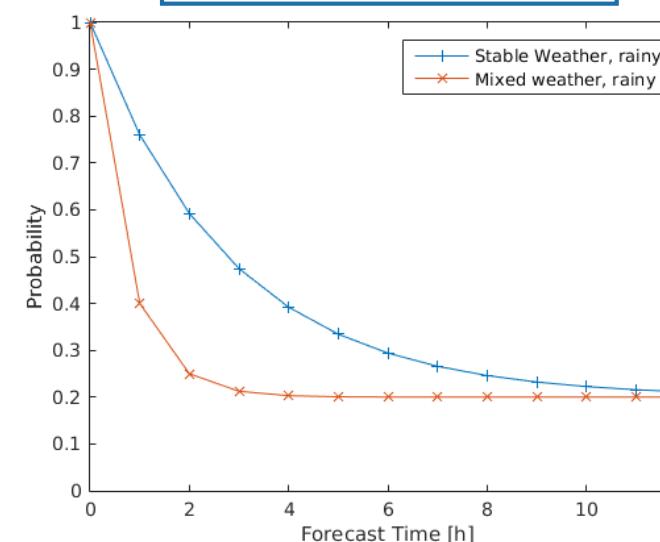
Long-term average
probability of rain: 20%

$$\mathbf{p}^* = \begin{bmatrix} 0.8 \\ 0.2 \end{bmatrix}$$

Eigenvalues: 1, 0.75

Rainy now, next hours?

*RRRRDDDDDDDDDDDD
DDDDDDDDDDDDDD...*



Eigenvalues: 1, 0.25

Rainy now, next hours?

*DDDDDDDDDDDDDDDD
RDDDRDDDDDDDD...*

Markov Chain: First Results

- *Aperiodic and irreducible* chains are *ergodic*:
(every state reachable after $> N$ steps, irregular return time)
 - Convergence towards a unique *equilibrium distribution* \mathbf{p}^*
- Equilibrium distribution \mathbf{p}^*
 - Eigenvector of T with eigenvalue $\lambda = 1$:

$$T\mathbf{p}^* = \mathbf{p}^*$$

- Rate of convergence:

Exponential decay with second largest eigenvalue $\propto |\lambda_2|^n$

Only useful if we can design chain with desired equilibrium distribution!

Detailed Balance

- Special property of some Markov chains

Distribution p satisfies *detailed balance* if the total flow of probability between every pair of states is equal, (we have a local equilibrium):

$$P(l \leftarrow m)p(m) = P(m \leftarrow l)p(l)$$

- Detailed balance implies: p is the equilibrium distribution

$$(T\mathbf{p})_l = \sum_m T_{lm}p_m = \sum_m T_{ml}p_l = p_l$$

- Most MCMC methods construct chains which satisfies detailed balance.

The Metropolis-Hastings Algorithm

MCMC to draw samples from an arbitrary distribution

Idea of Metropolis Hastings algorithm

- Design a Markov Chain, which satisfies the detailed balance condition

$$T_{MH}(x' \leftarrow x)P(x) = T_{MH}(x \leftarrow x')P(x')$$

- *Ergodicity ensures that chain converges to this distribution*

Attempt 1: A simple algorithm

- Initialize with sample \mathbf{x}
- Generate next sample, with current sample \mathbf{x}
 1. Draw a sample \mathbf{x}' from $Q(\mathbf{x}'|\mathbf{x})$ (“proposal”)
 2. Emit current state \mathbf{x} as sample

- It's a Markov chain
- Need to choose Q for every P to satisfy detailed balance

$$Q(x' \leftarrow x)P(x) = Q(x \leftarrow x')P(x')$$

Attempt 2: More general solution

- Initialize with sample \mathbf{x}
- Generate next sample, with current sample \mathbf{x}
 1. Draw a sample \mathbf{x}' from $Q(\mathbf{x}'|\mathbf{x})$ ("proposal")
 2. With *probability* $\alpha(\mathbf{x}, \mathbf{x}')$ emit \mathbf{x}' as new sample
 3. With *probability* $1 - \alpha(\mathbf{x}, \mathbf{x}')$ emit \mathbf{x} as new sample

- It's a Markov chain
- Decouples Q from P through acceptance rule a
 - How to choose a?

What is the acceptance function a ?

$$\begin{aligned} T_{MH}(x' \leftarrow x)P(x) &= T_{MH}(x \leftarrow x')P(x') \\ a(x'|x)Q(x'|x)P(x) &= a(x|x')Q(x|x')P(x') \end{aligned}$$

Case A: $x' = x$

- Detailed balance trivially satisfied for every $a(x',x)$

Case B: $x' \neq x$

- We have the following requirement

$$\frac{a(x'|x)}{a(x|x')} = \frac{Q(x|x')P(x')}{Q(x'|x)P(x)}$$

What is the acceptance function a ?

Requirement: Choose $a(x'|x)$ such that

$$\frac{a(x'|x)}{a(x|x')} = \frac{Q(x|x')P(x')}{Q(x'|x)P(x)}$$

- $a(x|x')$ is probability distribution $a(x|x') \leq 1$ and $a(x|x') \geq 0$
- Easy to check that:

$$a(x'|x) = \min\left(1, \frac{Q(x|x')P(x')}{Q(x'|x)P(x)}\right)$$

satisfies this property.

The big picture

