graphics and vision 27"

Scala
- Some essential concepts -

Marcel LUthi

Graphics and Vision Research Group
Department of Mathematics and Computer Science
University of Basel

UNIVERSITAT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Programming — an important activity

Data .
Vicualizat Implementing _
isualization Systems Producing
charts
Data
preprocessing
Automation of
Implementing experiments

Algorithms

Exploration of
theory

UNIVERSITAT BASEL
> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

We need good tools

UNIVERSITAT BASEL
> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

A powerful tool

’ Scala

UNIVERSITAT BASEL
> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Scala — a scalable [anguage

e Can start with a one liner
e Can experiment quickly

* Has structures in place to manage complexity in large systems

Examples of huge, stable Systems written in Scala

Linked 7))

UNIVERSITAT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

What enables scalability

* Functional programming (functions compose)
e Object oriented programming (Objects as modules with well defined interfaces)

* Static typing that does not come in the way

Agile, with lightweight syntax

Object-Oriented———— ’ Scala Functional
= scalable

Safe and performant, with strong static tpying

Figure: M. Odersky, Scala — the simple parts

UNIVERSITAT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Aaaaaaagh : Scala is so complex

final override def map]|
bf: CanBuilildFrom[List[A

B, That] (f: A => B) (implicit
], B, That]): That

(4
4

UNIVERSITAT BASEL
> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Goal: Discover the simplicity

Most of Scala is simple (not easy) — After this talk you should see its simplicity.

UNIVERSITAT BASEL

Basic concepts and constructs

UNIVERSITAT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Expressions

> (5 + 3) * 8
> List(l,2,3).toString

> GaussianProcess|[3D, Vector[3D]] (

> DiagonalKernel (GaussianKernel[3D] (10), 3)
>)

* Expressions are program text

* Expression evaluate to values

* Expression have a type

UNIVERSITAT BASEL

Values

> wval result = (5 + 3) * 8

> val numberOneToThreeAsString = List(l,2,3).toString
> val gp = GaussianProcess[3D, Vector[3D]] (

DiagonalKernel (GaussianKernel[3D] (1), 3)

* Expressions can be named using val

UNIVERSITAT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

val result: Int = (5 + 3) * 8
val numberOneToThreeAsString: String = List(l,2,3).toString
val gp: GaussianProcess|[3D, Vector[3D]] =
GaussianProcess|[3D, Vector[3D]] (
DiagonalKernel (GaussianKernel[3D] (1), 3)

e Every expression has a type

* Type is often automatically inferred

UNIVERSITAT BASEL
> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Expression types and values

Value=8 * a
Exists only at runtime

> val a: Int = ?2?2? // user input

> val result: Int = (5 + 3) * a

/

/

Type
Exists only at compile time

UNIVERSITAT BASEL

>
val x = 1 + 1
x + 1

e Sequence of expression

* Last line is result of block => expression

UNIVERSITAT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

* Sequence of expression

 Last line is result of block => expression

UNIVERSITAT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

> println({ val x = 1 + 1
x + 1 })

* Can be placed wherever an expression is required

UNIVERSITAT BASEL
> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Functions

* Expressions that take parameters

Parameter |
(needs type) Expression

(x : Int) => x + 3

UNIVERSITAT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Functions

e Function body can be a block (which is an expression)

UNYMERSITAT BASEL
> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Functions

* Functions are expression, hence values

UNIVERSITAT BASEL
> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Methods

 Similar to functions, but with special syntax

/ Arguments / Expression

def add(x: Int, y: Int): Int=x+y

N\

Return Type

UNIVERSITAT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

e Can be turned to function by adding underscore

def add(x: Int, y: Int): Int = x + vy

val adderfFun = add
adderFun (3, 4)

INIVERSITAT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

class Greeter (prefix: String, suffix: String) {
def greet (name: String): Unit =
println(prefix + name + suffix)

val greeter = new Greeter ("Hello, ", "I!1")
greeter.greet ("Scala developer") // Hello, Scala
developer!

INIVERSITAT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Case Classes

case class Point(x: Int, y: Int)

val p = Point (3,5)

e Super useful

e Ensures proper equality

* |deal to structure data (records)
* Does not need new keyword

INIVERSITAT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

* Asingleton (only one instance exists)

object IdFactory {
private var counter = 0
def create(): Int = {
counter += 1
counter

INIVERSITAT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

* Often associated to a class — called the companion object

class PositiveNumber (num : Int) { // some methods)
object PositiveNumber
val MaxValue : Int = java.lang.Integer.MAX VALUE
val MinValue : Int = 0

INIVERSITAT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

* Types containing certain fields

e Similar to interfaces — but can contain implementations

trait Greeter {
def greet (name: String): Unit

class DefaultGreeter extends Greeter {
override def greet (name: String): Unit

INIVERSITAT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Pattern matching

* Generalizes case statements from other programming languages

expression match
case patternl => expressionl
case pattern?2 => expression?2 // ...

INIVERSITAT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Pattern matching

def matchTest (x: Int): String = x match {
case 1 => "one"
case 2 => "two"
case => "many"

def matchTest (x: Any): Any = x match {
case 1 => "one"
case "two" => 2
case y: Int => "scala.Int"

UNIVERSITAT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Scala - the simple parts

INIVERSITAT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

(almost) Everything is an expression

* Everything can be composed with everything

printlin(if (a == 3) "abc" else '"cde")
val c: Int = s match {
case "abc" => try { userInput } catch { case => 0 }

case => 2

UNIVERSITAT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Everything is an object

* We always interact with any value by
e Calling methods

e Accessing fields

—

+ 3

158 an object
15 a method

15 an arqgument
.1+ (2)

~ N+

UNIVERSITAT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Groups

* Everything can be grouped and nested

e Static scoping — uniform

def foo() : Unit = {
case class KeyValue(key : String, value : Int)
val list = List(KeyValue("A", 3), KeyValue("B", 2))
—_— (A " }

def keyIsA (kv : KeyValue) : Boolean = { kv.key ==
list.count (keyIsA)

Allows naming of things. Leads to more clear code.

UNIVERSITAT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Aggregate (Collections)

* Collections aggregate data
* Transform, don’t update

e Uniform -> Learn once, use everywhere

* Essence of functional programming

val people =

List("bob martin", "john doe", "william tell")
people.map (name => name.toUpperCase)
people.filter (name => name.startsWith ("b"))
people.flatMap (name => name.split(" "))

UNIVERSITAT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Not your father’s for loops

* For loops are syntactic sugar

* The following 2 expressions are the same

numbers.map (number => number * 2)

for (number <- numbers) yield number * 2

UNIVERSITAT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Not your father’s for loops

 For loops are syntactic sugar

* The following 2 expressions are the same

numbers.filter (number => number % 2 == 0)
for (number <- numbers 1f (number % 2) == 0)

yield number

UNIVERSITAT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Not your father’s for loops

 For loops are syntactic sugar

* The following 2 expressions are the same

numbers.flatMap (number =>(number until number + 2))

for (number <- numbers;
numberSeq <- number until number + 2)

yield numberSeq

INIVERSITAT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Not your father’s for loops

* Makes writing complex things look easy

for (1 <= 0 until 10;

J <= 0 until 10;

if (1 + 3) = 7)
yield (1 , 7)

UNIVERSITAT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Algebraic Data Types

* AisaBorC

* Are called sum types

trait A
case class B() extends A
case class C() extends A

UNIVERSITAT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Algebraic Data Types

* Products are modelled with case classes
e AandB

* Are called product types

case class B ()
case class C ()
case class A(b : B, ¢ : C)

INIVERSITAT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Example: Algebraic Data Types

trait Expression
case class Plus(a : Int, b : Int) extends Expression
case class Minus(a : Int, b : Int) extends Expression

UNIVERSITAT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

* Sum types are destructed by pattern matching

val expr : Expression = 2?2277
val res : Int = expr match {
case Plus(a, b) => a + Db
case Minus(a, b) => a - Db

UNIVERSITAT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Parametric types (not that simple)

* Sometimes a single type is not enough

trait IntList {
def head : Int
def tail : IntlList
def push(a : Int) : Unit
def isEmpty : Boolean

UNIVERSITAT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Parametric types (not that simple)

* Scala’s type system is very rich

* Among other things, it supports parametric types

trait List[A] {
def head : A
def tail : List[A]
def add(a : A) : Unit
def isEmpty : Boolean

UNIVERSITAT BASEL
> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Parametric types (not that simple)

* Also methods can have parametric types

* Called parametric polymorpr??f Means
forall A

def reverselist[A] (1l : List[A]) : List[A] = {

// implementation holds for all types A
PAPAP

UNIVERSITAT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Type classes

UNIVERSITAT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Type Classes

* What can we do when we need to know something about the type

def sumElementsOfStack[A] (s : Stack[A]): A = {
// cannot sum type A !

UNIVERSITAT BASEL
> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Type Classes

* Solution: Define the right capability and pass an object

trait SupportsAdding[A] {
def zero : A
def plus(a : A, b : A) : A

def sumElementsOfStack[A] (s : Stack[A]) (adder : SupportsAddingl[A]) : A =
{

var sum : A = adder.zero
while (s.isEmpty) {
val element = s.pop
sum = adder.plus (sum, element)

Sum

UNIVERSITAT BASEL
> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Type Classes

object StringAdder extends SupportsAdding[String] {
override def zero: String = ""
override def plus(a: String, b: String): Sti

} Problem: Still ugly!

val s : Stack[String] = ?22??
sumElementsOfStack(s) (StringAdder)

* We can then define class that supports adding for any type we want

UNIVERSITAT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

* Solution: Implicit arguments

* The compiler checks if it finds an object somewhere in scope
* The Scope in which the method is called
 Companion Object of SupportsAdding
* Companion Object of type A (String in this case)

def sumElementsOfStack[A] (s : Stack[A])
(implicit adder : SupportsAddingl[A]) : A =
{ /// implementation goes here }

val s : Stack[String] = ??7?
sumbklementsOfStack (s)

UNIVERSITAT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Case study in Scalismo

Building your own Gaussian Process

