
> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Scala 
- Some essential concepts -

Marcel Lüthi

Graphics and Vision Research Group
Department of Mathematics and Computer Science

University of Basel



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Programming – an important activity

Data 
preprocessing

Implementing
Algorithms

Automation of
experiments

Producing
charts

Implementing
Systems

Exploration of
theory

…

Data 
Visualization



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

We need good tools



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

A powerful tool



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Scala – a scalable language

• Can start with a one liner

• Can experiment quickly

• Has structures in place to manage complexity in large systems

Examples of huge, stable Systems written in Scala



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

What enables scalability

• Functional programming (functions compose)

• Object oriented programming (Objects as modules with well defined interfaces)

• Static typing that does not come in the way

Figure: M. Odersky, Scala – the simple parts



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Aaaaaaagh : Scala is so complex

final override def map[B, That](f: A => B)(implicit 

bf: CanBuildFrom[List[A], B, That]): That



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Goal: Discover the simplicity

Most of Scala is simple (not easy) – After this talk you should see its simplicity.



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Basic concepts and constructs



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Expressions

• Expressions are program text

• Expression evaluate to values

• Expression have a type

> (5 + 3) * 8

> List(1,2,3).toString

> GaussianProcess[_3D, Vector[_3D]](

> DiagonalKernel(GaussianKernel[_3D](10), 3)

> )



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Values

• Expressions can be named using val

> val result = (5 + 3) * 8

> val numberOneToThreeAsString = List(1,2,3).toString

> val gp = GaussianProcess[_3D, Vector[_3D]] (

DiagonalKernel(GaussianKernel[_3D](1), 3)

)



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Types

• Every expression has a type

• Type is often automatically inferred

val result: Int = (5 + 3) * 8

val numberOneToThreeAsString: String = List(1,2,3).toString

val gp: GaussianProcess[_3D, Vector[_3D]] =

GaussianProcess[_3D, Vector[_3D]](

DiagonalKernel(GaussianKernel[_3D](1), 3)

)



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Expression types and values

> val a: Int = ??? // user input

> val result: Int = (5 + 3) * a

Value = 8 * a 
Exists only at runtime

Type
Exists only at compile time



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Blocks

• Sequence of expression

• Last line is result of block => expression 

> {

val x = 1 + 1

x + 1

}



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Blocks

• Sequence of expression

• Last line is result of block => expression 

> val res = {

val x = 1 + 1

x + 1

}



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Blocks

• Can be placed wherever an expression is required

> println({ val x = 1 + 1

x + 1 })



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Functions

• Expressions that take parameters

(x : Int) => x + 3

Parameter
(needs type) Expression



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Functions

• Function body can be a block (which is an expression)

(x : Int) => {

val y = 1

x + y

}



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Functions

• Functions are expression, hence values

x: Int) => x + 1

val f =(x : Int) => {

val y = 1

x + y

}

f(3) // 4



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Methods

• Similar to functions, but with special syntax

def add(x: Int, y: Int): Int = x + y

Arguments

Return Type 

Expression



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Methods

• Can be turned to function by adding underscore

def add(x: Int, y: Int): Int = x + y 

val adderFun = add _

adderFun(3, 4)



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Classes

class Greeter(prefix: String, suffix: String) {

def greet(name: String): Unit =

println(prefix + name + suffix)

}

val greeter = new Greeter("Hello, ", "!")

greeter.greet("Scala developer") // Hello, Scala 

developer!



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Case Classes

• Super useful
• Ensures proper equality
• Ideal to structure data (records)
• Does not need new keyword 

case class Point(x: Int, y: Int)

val p = Point(3,5)



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Objects

• A singleton (only one instance exists)

object IdFactory {

private var counter = 0

def create(): Int = {

counter += 1

counter

}

}



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Objects

• Often associated to a class – called the companion object

class PositiveNumber(num : Int) { // some methods}

object PositiveNumber {

val MaxValue : Int = java.lang.Integer.MAX_VALUE

val MinValue : Int = 0

}



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Traits

• Types containing certain fields

• Similar to interfaces – but can contain implementations

trait Greeter { 

def greet(name: String): Unit 

}

class DefaultGreeter extends Greeter { 

override def greet(name: String): Unit 

}



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Pattern matching

• Generalizes case statements from other programming languages

expression match { 

case pattern1 => expression1 

case pattern2 => expression2 // ...

}



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Pattern matching

def matchTest(x: Int): String = x match { 

case 1 => "one"

case 2 => "two"

case _ => "many"

} 

def matchTest(x: Any): Any = x match { 

case 1 => "one"

case "two" => 2 

case y: Int => "scala.Int"

} 



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Scala - the simple parts



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

(almost) Everything is an expression

• Everything can be composed with everything

println(if (a == 3) "abc" else "cde")

val c: Int = s match {

case "abc" => try { userInput } catch { case _ => 0 }

case _ => 2

}



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Everything is an object 

• We always interact with any value by

• Calling methods

• Accessing fields

1 + 3

1 is an object

+ is a method

2 is an argument

1.+(2)



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Groups

• Everything can be grouped and nested

• Static scoping – uniform

def foo() : Unit = {

case class KeyValue(key : String, value : Int)

val list = List(KeyValue("A", 3), KeyValue("B", 2))

def keyIsA(kv : KeyValue) : Boolean = { kv.key == "A" }

list.count(keyIsA)

}

Allows naming of things. Leads to more clear code. 



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Aggregate (Collections)

• Collections aggregate data

• Transform, don’t update

• Uniform -> Learn once, use everywhere

• Essence of functional programming

val people = 

List("bob martin", "john doe", "william tell")

people.map(name => name.toUpperCase)

people.filter(name => name.startsWith("b"))

people.flatMap(name => name.split(" "))



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Not your father’s for loops

• For loops are syntactic sugar

• The following 2 expressions are the same

numbers.map(number => number * 2)

for (number <- numbers) yield number * 2



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Not your father’s for loops

• For loops are syntactic sugar

• The following 2 expressions are the same

numbers.filter(number => number % 2 == 0)

for (number <- numbers if (number % 2 ) == 0)

yield number



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Not your father’s for loops

• For loops are syntactic sugar

• The following 2 expressions are the same

numbers.flatMap(number =>(number until number + 2))

for (number <- numbers;

numberSeq <- number until number + 2)

yield numberSeq



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Not your father’s for loops

• Makes writing complex things look easy

for (i <- 0 until 10;

j <- 0 until 10;

if (i + j) == 7) 

yield (i , j)



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Algebraic Data Types

• A is a B or C

• Are called sum types

trait A

case class B() extends A

case class C() extends A



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Algebraic Data Types

• Products are modelled with case classes

• A and B

• Are called product types

case class B()

case class C()

case class A(b : B, c : C)



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Example: Algebraic Data Types

trait Expression

case class Plus(a : Int, b : Int) extends Expression

case class Minus(a : Int, b : Int) extends Expression



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Taking things apart

• Sum types are destructed by pattern matching

val expr : Expression = ???

val res : Int = expr match {

case Plus(a, b) => a + b

case Minus(a, b) => a - b

}



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Parametric types (not that simple) 

• Sometimes a single type is not enough

trait IntList {

def head : Int

def tail : IntList

def push(a : Int) : Unit

def isEmpty : Boolean

}



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Parametric types (not that simple)

• Scala’s type system is very rich

• Among other things, it supports parametric types

trait List[A] {

def head : A

def tail : List[A]

def add(a : A) : Unit

def isEmpty : Boolean

}



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Parametric types (not that simple)

• Also methods can have parametric types

• Called parametric polymorphsim

def reverseList[A](l : List[A]) : List[A] = {

// implementation holds for all types A

???

}

Means 
forall A



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Type classes



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Type Classes

• What can we do when we need to know something about the type

def sumElementsOfStack[A](s : Stack[A]): A = {

// cannot sum type A !

}



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Type Classes

• Solution: Define the right capability and pass an object

trait SupportsAdding[A] {

def zero : A

def plus(a : A, b : A) : A

}

def sumElementsOfStack[A](s : Stack[A])(adder : SupportsAdding[A]) : A = 

{

var sum : A = adder.zero

while (s.isEmpty) {

val element = s.pop

sum = adder.plus(sum, element)

}

sum

}



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Type Classes

• We can then define class that supports adding for any type we want

object StringAdder extends SupportsAdding[String] {

override def zero: String = ""

override def plus(a: String, b: String): String = a.concat(b)

}

val s : Stack[String] = ???

sumElementsOfStack(s)(StringAdder)

Problem: Still ugly!



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Implicits

• Solution: Implicit arguments

• The compiler checks if it finds an object somewhere in scope

• The Scope in which the method is called

• Companion Object of SupportsAdding

• Companion Object of type A (String in this case)

def sumElementsOfStack[A](s : Stack[A])

(implicit adder : SupportsAdding[A]) : A = 

{ /// implementation goes here }

val s : Stack[String] = ???

sumElementsOfStack(s)



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Case study in Scalismo
Building your own Gaussian Process


