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Bayesian inference

Fitting using Markov Chain Monte Carlo

Exercise: MCMC in Scalismo

Fitting 3D Landmarks
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Bayesian inference
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Probabilities: What are they?

Four possible interpretations:

1. Long-term frequencies
* Relative frequency of an event over time

2. Physical tendencies (propensities)
* Arguments about a physical situation (causes of relative frequencies)

3. Degree of belief (Bayesian probabilities)
* Subjective beliefs about events/hypothesis/facts

4. (Logic)

* Degree of logical support for a particular hypothesis
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Bayesian probabilities for image analysis

* Bayesian probabilities make sense Gallileo’s view on Saturn
where frequentists interpretations are
not applicable!

* No amount of repetition makes image
sharp.

* Uncertainty is not due to random
effect, but because of bad
telescope.

 Still possible to use Bayesian inference. image crecit: McElrath,Statistical Rethinking: Figure 1.12

* Uncertainty summarizes our

lgnorance.
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Degree of belief: An example

* Dentist example: Does the patient have a cavity?

P(cavity) = 0.1
P(cavity|toothache) = 0.8

P(cavity|toothache, gum problems) = 0.4

But the patient either has a cavity or does not
* Thereis no 80% cavity!
* Having a cavity should not depend on whether the patient has a toothache or gum problems

All these statements do not contradict each other, they summarize the dentist’s knowledge about the patient

AIMA: Russell & Norvig, Artificial Intelligence. A Modern Approach, 3 edition,
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Uncertainty: Bayesian Probability

e Bayesian probabilities rely on a subjective perspective:
* Probabilities express our current knowledge.
e Can change when we learn or see more
* More data -> more certain about our result.

Subjectivity: There is no single, real underlying distribution. A probability distribution expresses our
knowledge — It is different in different situations and for different observers since they have different
knowledge.

e Subjective |= Arbitrary
* Given belief, conclusions follow by laws of probability calculus
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Two important rules

Probabilistic model: joint distribution of points

P(xl'XZ)
Marginal Conditional
Distribution of certain points only Distribution of points conditioned on known
values of others
P(xl) = Zp(xl, xz) P(xli xZ)
P(x{|xy) = —/———
= ( 1| 2) P(xz)

U

Product rule: P(xq,x,) = p(xq|x)p(x5)
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ot ;

Marginalization

 Models contain irrelevant/hidden variables

e.g. points on chin when nose is queried

* Marginalize over hidden variables (H)

P(X) = zp(x, H)
H
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Belief Updates

Model Observation Posterior
Face distribution Concrete points Face distribution
Possibly uncertain consistent with observation

Prior belief More knowledge Posterior belief
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Certain Observation

e Observations are known values
 Distribution of X after observing

X1y s XN

P(X|x: ...xn)

e Conditional probability
P(X,x., ..., xy)

P(Cc, ., xy)

P(X|x1 .XN) —_
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Towards Bayesian Inference

* Update belief about X by

P(X) - P(X| )

e Factorize joint distribution
P(X, ) = P( |X)P(X)

e Rewrite conditional distribution

_ P, ) P( | X)P(X)

[ R 7 GRS R 7 GO
* General: Query (Q) and
polr) < P@D _ PEIOP@

P(E)  P(B)
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Uncertain Observation

* Observations with uncertainty

Model needs to describe how observations are
distributed

with joint distribution P(Q, E)

e Still conditional probability

But joint distribution is more complex
e Joint distribution factorized
P(Q,E) = P(E|Q)P(Q)

* Likelihood P(E|Q)
* Prior P(Q)
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Joint Likelihood Prior
P(Q,E) = P(E|Q)P(Q)

* Likelihood x prior: factorization is more flexible than full joint
 Prior: distribution of core model without observation

e Likelihood: describes how observations are distributed



UNIVERSITAT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2018 | BASEL

Bayesian Inference

e Conditional/Bayes rule: method to update beliefs

Likelihood Prior

Posterior P(E P
P(QIF) = S

Marginal Likelihood

* Each observation updates our belief (changes knowledge!)

P(Q) -» P(Q|E) » P(QIE,F) » P(Q|E,F,G) - -~

e Bayesian Inference: How beliefs evolve with observation

* Recursive: Posterior becomes prior of next inference step
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General Bayesian Inference

* Observation of additional variables
« Common case, e.g. image intensities, surrogate measures (size, ...)

* Coupled to core model via likelihood factorization

e General Bayesian inference case:
e Distribution of data D (formerly Evidence)

e Parameters 6 (formerly Query)
P(D|6)P(6) B P(D|6)P(6)

P(D) [ P(D|O)P(O)dO

P(O|D) =

P(0|D) « P(D|6)P(6)
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Checkpoint: Bayesian Inference

* Why is the Bayesian interpretation better suited for image analysis than a frequentist
approach?

* Why is it often easier to specify a prior and a likelihood function, than the joint
distribution?

* Bayesian inference can be applied recursively. Can you give an example (from the course)
where we use the posterior again as a prior?

* Priors are subjective. Can we ever say one prior is better than another?

* |s it conceivable that two individuals assign mutually exclusive priors to the same situation

e Can they ever converge to the same conclusion?

20
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Fitting using Markov Chain Monte Carlo
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Posterior distribution

MAP Solution
a* = arg max p(6)p(image|O)

Local Maxima

We need
approximate
inference!

Posterior Distribution

p(8)p(image|6)
p(image)

/f g
Infeasible to compute:
p(image)= [ p(8)p(image|6 )do

p(B]image) =
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Approximate Bayesian Inference

Variational methods Sampling methods

 Function approximation q(6) * Numeric approximations through simulation
argmax KL(q(6)[p(61D))

Ap \ Ap

KL: Kullback-
Leibler divergence
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Sampling Methods

* Simulate a distribution p through random samples x;

* Evaluate expectations

FIFO) = [ F@pCod

1 N
FIFG] ~ f =5 ) fGx),
vifl~o(3)

* “Independent” of dimensionality
* More samples increase accuracy

24
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Sampling from a Distribution

Easy for standard distributions ... is it?

e Uniform Random.nextDouble ()
e (Gaussian Random.nextGaussian ()

How to sample from more complex distributions?
* Beta, Exponential, Chi square, Gamma, ...
* Posteriors are very often not in a “nice” standard text book form

» Sadly, only very few distributions are easy to sample from

* We need to sample from an unknown posterior with only
unnormalized, expensive point-wise evaluation @

* General Samplers?
* Yes! —Rejection, Importance, MCMC

25
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Markov Chain Monte Carlo

* Markov Chain Monte Carlo Methods (MCMC)
Design a Markov Chain such that samples x obey the target distribution p

Concept: “Use an already existing sample to produce the next one”

* Very powerful general sampling methods
* Many successful practical applications
* Proven: developed in the 1950/1970ies (Metropolis/Hastings)

* Direct mapping of computing power to approximation accuracy

e Algorithms (buzz words):
* Metropolis/-Hastings, Gibbs, Slice Sampling

26
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The Metropolis Algorithm

Requirements:

* Proposal distribution Q (x'|x) — must generate samples, symmetric
 Target distribution P(x) — with point-wise evaluation

Result:

 Stream of samples approximately from P(x)

* Initialize with sample x

e Generate next sample, with current sample x
1. Draw asample x’ from Q(x'|x) (“proposal”)

!/
2.  With probability « = min {I;((J;)) ) 1} accept x’ as new state x

3.  Emit current state x as sample

28
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Example: 2D Gaussian

1 1 NTsy—1(a_
* Target: P(x) = e 2 I (x—m)
214/ | Z|
. ! _ !/ 2
* Proposal:  Q(x'|x) =N (x'|x,0°],) «— Random walk
Target Sampled Estimate o
_[15 - _[1.56 .
“= s #1168
s _[125 075 s _[109 0.63
0.75 1.25 0.63 1.07 :

29
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2D Gaussian: Different Proposals

30
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The Metropolis-Hastings Algorithm

* |nitialize with sample x

e Generate next sample, with current sample x
1. Draw asample x’ from Q(x'|x) (“proposal”)

. . . P(x') Q(x|x,) } ’
2. With probability a = mln{P(x) Ik 1t accept x' as new state x

3.  Emit current state x as sample

* Generalization of Metropolis algorithm to asymmetric Proposal distribution

Q(x'|x) # Q(x[x')
Q(x'|x) >0 Q(x|x") >0

31



UNIVERSITAT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2018 | BASEL

* Approximation: Samples x4, x5, ... approximate P(x)

Unbiased but correlated (not i.i.d.)

* Normalization: P(x) does not need to be normalized
Algorithm only considers ratios P(x") /P (x)

* Dependent Proposals: Q(x'|x) depends on current sample x

Algorithm adapts to target with simple 1-step memory
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Metropolis - Hastings: Limitations

* Highly correlated targets e Serial correlation
Proposal should match target to e Results from rejection
avoid too many rejections and too small stepping

e Subsampling

250

200 ]{

[
w
o

AC decay length
[
(=)
(=)

50

Bishop. PRML, Springer,

2006

1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20
Standard Deviation of Proposal

33
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Propose-and-Verity Algorithm

* Metropolis algorithm formalizes: propose-and-verify

» Steps are completely independent.

Propose
Draw a sample x’ from Q (x'|x)

Verify

With probability &« = min {P(x ) Q(xlx') 1} accept x’ as new sample

P(x) Q(x'|x)’

34
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MH as Propose and Verify

 Decouples the steps of finding the solution from validating a solution

* Natural to integrate uncertain proposals Q
(e.g. automatically detected landmarks, ...)

e Possibility to include “local optimization” (e.g. a ASM or AAM
updates, gradient step, ...) as proposal

* Requires slight extension of the MH algorithm to avoid biased
posterior.

Anything more “informed” than random walk should improve convergence.
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Checkpoint: MCMC
o :

Why is it important in our model fitting problem, that the MH-algorithm can work with
unnormalized distributions?

Compare a classical (gradient-based) optimization algorithm to the MH-algorithm. How
can the MH-Algorithm avoid getting stuck in local optima?

What can you say about the samples coming from the MH-Algorithm

Explain why choosing the proposals is very important for a good performance of the
algorithm.,
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Exercise: MCMC in Scalismo

Parametric Registration with Gaussian Processes
in Scalismo

Image transforms and reverse mapping

As wa

Type into the codepane:
goto(“http://shapemodelling.cs.unibas.ch/exercises/Exercisel5.html”)

Scalismo 0.16: Check examplesin https://github.com/unibas-gravis/pmm2018
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Fitting 3D Landmarks

3D Alignment with Shape and Pose

38
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3D Fitting Example

right.eye.corner_outer left.eye.corner_outer

right.lips.corner left.lips.corner

v

39
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e 3D face model Parameters
* Arbitrary rigid transformation 0 =(a,¢199,1)
Pose, Positioning in space Shape transformation
r
* Observations
pola] = u(0) + ) anfZei(x)
* Observed positions I3, ..., [ =
° .71 n
Correspondence: g, ..., lg Rigid transformation
* Goal: Find Posterior Distribution * 3 angles (pitch, yaw, roll) @, 9,9
PO\, ...,I}) < p(}, ..., I1R16)P(6) * Translation t = (ty, ty, t;)

orle, ¥, 9,t] = RgRyR,(x) +t

Full transformation
@[0]1(x) = (pre @s)[0](x)

40
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* Choose simple Gaussian random walk proposals (Metropolis)
'Q(6'16) = N(6]6,Z4)"
* Normal perturbations of current state

* Block-wise to account for different parameter types

« Shape N(d'|a, 0¢ s m )
* Rotation N(<,0'|<,0,0£), N(¢’|¢:01/2)):N(19'|19'05)
* Translation N(t'|t,0fI5x3 )

e Large mixture distributions as proposals

* Choose proposal Q; with probability ¢;

Q(O']6) = X.c;Q;(08'|6)

41
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3DMM Landmarks Likelihood

Simple models: Independent Gaussians

Observation of L landmark locations I% in image

* Single landmark position model:

p(lr6,1z) = N(¢|0]R), I3><302)

* Independent model (conditional independence):

L
p(h, .. 510) = | |mi(th16)
i=1

42
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3D Fit to Landmarks

* Influence of landmarks uncertainty on
final posterior?

* oM — Imm
* oM = 4mm
* oy = 10mm
* Only 4 landmark observations:

* Expect only weak shape impact

e Should still constrain pose

 Uncertain LM should be looser

43
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Posterior: Pose & Shape, 4mm

Ayaw = 0.511 A, = —1mm g, = 0.4
Byaw = 0.073 (4°) Gy, =4 mm Gq, = 0.6

(Estimation from samples)
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Posterior: Pose & Shape, 4mm

R Gnuplot & =

5 : : : : dmm REJ +
i i a i a -‘i_mm ACC —

-255

-2E0

-265

—270

-27a

-280

-280

8797.28, -245,06%

Posterior values (log, unnormalized!)

45
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Posterior: Pose & Shape, 1mm

fyaw = 0.50 fit, = —2 mm
Oyaw = 0.041 (2.4°) 6y, = 0.8 mm
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Posterior: Pose & Shape, 10mm

N

fyaw = 0.49 flt, = —> mm Hay =

Oyaw = 0.11 (7°) 0y, = 10 mm Oq, = 0.6
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Summary: MCMC for 3D Fitting

Probabilistic inference for fitting probabilistic models
e Bayesian inference: posterior distribution

Probabilistic inference is often intractable
* Use approximate inference methods

MCMC methods provide a powerful sampling framework
* Metropolis-Hastings algorithm
* Propose update step
* Verify and accept with probability

Samples converge to true distribution: More about this next time!

48



