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Outline

• Bayesian inference

• Fitting using Markov Chain Monte Carlo

• Exercise: MCMC in Scalismo

• Fitting 3D Landmarks
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Bayesian inference
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Probabilities: What are they?

Four possible interpretations:

1. Long-term frequencies
• Relative frequency of an event over time

2. Physical tendencies (propensities)
• Arguments about a physical situation (causes of relative frequencies)

3. Degree of belief (Bayesian probabilities)
• Subjective beliefs about events/hypothesis/facts

4. (Logic)
• Degree of logical support for a particular hypothesis
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Bayesian probabilities for image analysis

• Bayesian probabilities make sense 
where frequentists interpretations are
not applicable!

Gallileo’s view on Saturn

• No amount of repetition makes image
sharp.
• Uncertainty is not due to random

effect, but because of bad
telescope.

• Still possible to use Bayesian inference.
• Uncertainty summarizes our

ignorance. 

Image credit: McElrath, Statistical Rethinking: Figure 1.12
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Degree of belief: An example

• Dentist example: Does the patient have a cavity?

But the patient either has a cavity or does not
• There is no 80% cavity!
• Having a cavity should not depend on whether the patient has a toothache or gum problems

All these statements do not contradict each other, they summarize the dentist’s knowledge about the patient
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𝑃 cavity = 0.1

𝑃 cavity toothache) = 0.8

𝑃 cavity toothache, gum problems) = 0.4

AIMA: Russell & Norvig, Artificial Intelligence. A Modern Approach, 3rd edition, 
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Uncertainty: Bayesian Probability

• Bayesian probabilities rely on a subjective perspective:
• Probabilities express our current knowledge. 

• Can change when we learn or see more

• More data -> more certain about our result.

• Subjective != Arbitrary

• Given belief, conclusions follow by laws of probability calculus

7

Subjectivity: There is no single, real underlying distribution. A probability distribution expresses our
knowledge – It is different in different situations and for different observers since they have different
knowledge.
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Two important rules

Marginal

Distribution of certain points only

Conditional

Distribution of points conditioned on known
values of others

Probabilistic model: joint distribution of points

𝑃 𝑥1|𝑥2 =
𝑃 𝑥1, 𝑥2
𝑃 𝑥2

𝑃 𝑥1 =

𝑥2

𝑃(𝑥1, 𝑥2)

𝑃 𝑥1, 𝑥2

Product rule: 𝑃 𝑥1, 𝑥2 = 𝑝 𝑥1 𝑥2 𝑝(𝑥2)
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Marginalization

• Models contain irrelevant/hidden variables

e.g. points on chin when nose is queried

• Marginalize over hidden variables (𝐻)

𝑃(𝑋) =

𝐻

𝑃(𝑋, 𝐻)
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Belief Updates

Model
Face distribution

Observation
Concrete points

Possibly uncertain

Posterior
Face distribution 

consistent with observation

Prior belief More knowledge Posterior belief



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2018 | BASEL

Certain Observation

• Observations are known values

• Distribution of 𝑋 after observing
𝑥1, … , 𝑥𝑁:

𝑃 𝑋|𝑥1…𝑥𝑁

• Conditional probability

𝑃 𝑋|𝑥1…𝑥𝑁 =
𝑃 𝑋, 𝑥1, … , 𝑥𝑁
𝑃 𝑥1, … , 𝑥𝑁
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Towards Bayesian Inference

• Update belief about 𝑋 by observing 𝑥1, … , 𝑥𝑁

𝑃 𝑋 → 𝑃 𝑋 𝑥1…𝑥𝑁

• Factorize joint distribution

𝑃 𝑋, 𝑥1, … , 𝑥𝑁 = 𝑃 𝑥1, … , 𝑥𝑁|𝑋 𝑃 𝑋

• Rewrite conditional distribution

𝑃 𝑋|𝑥1…𝑥𝑁 =
𝑃 𝑋, 𝑥1, … , 𝑥𝑁
𝑃 𝑥1, … , 𝑥𝑁

=
𝑃 𝑥1, … , 𝑥𝑁|𝑋 𝑃 𝑋

𝑃 𝑥1, … , 𝑥𝑁

• General: Query (𝑄) and Evidence (𝐸)

𝑃 𝑄|𝐸 =
𝑃 𝑄, 𝐸

𝑃 𝐸
=
𝑃 𝐸|𝑄 𝑃 𝑄

𝑃 𝐸
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Uncertain Observation

• Observations with uncertainty

Model needs to describe how observations are 
distributed

with joint distribution 𝑃 𝑄, 𝐸

• Still conditional probability

But joint distribution is more complex

• Joint distribution factorized

𝑃 𝑄, 𝐸 = 𝑃 𝐸|𝑄 𝑃 𝑄

• Likelihood 𝑃 𝐸|𝑄

• Prior 𝑃 𝑄
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Likelihood

𝑃 𝑄, 𝐸 = 𝑃 𝐸|𝑄 𝑃 𝑄

• Likelihood x prior: factorization is more flexible than full joint

• Prior: distribution of core model without observation

• Likelihood: describes how observations are distributed

PriorLikelihoodJoint
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Bayesian Inference

• Conditional/Bayes rule: method to update beliefs

𝑃 𝑄|𝐸 =
𝑃 𝐸|𝑄 𝑃 𝑄

𝑃 𝐸

• Each observation updates our belief (changes knowledge!)

𝑃 𝑄 → 𝑃 𝑄 𝐸 → 𝑃 𝑄 𝐸, 𝐹 → 𝑃 𝑄 𝐸, 𝐹, 𝐺 → ⋯

• Bayesian Inference: How beliefs evolve with observation

• Recursive: Posterior becomes prior of next inference step

PriorLikelihood
Posterior

Marginal Likelihood
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General Bayesian Inference

• Observation of additional variables

• Common case, e.g. image intensities, surrogate measures (size, …)

• Coupled to core model via likelihood factorization

• General Bayesian inference case: 

• Distribution of data 𝐷 (formerly Evidence)

• Parameters 𝜃 (formerly Query)

𝑃 𝜃|𝐷 =
𝑃 𝐷|𝜃 𝑃 𝜃

𝑃 𝐷
=

𝑃 𝐷|𝜃 𝑃 𝜃

∫ 𝑃 𝐷|𝜃 𝑃 𝜃 𝑑𝜃

𝑃 𝜃|𝐷 ∝ 𝑃 𝐷|𝜃 𝑃 𝜃
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Checkpoint: Bayesian Inference

• Why is the Bayesian interpretation better suited for image analysis than a frequentist 
approach?

• Why is it often easier to specify a prior and a likelihood function, than the joint 
distribution?

• Bayesian inference can be applied recursively. Can you give an example (from the course) 
where we use the posterior again as a prior?

• Priors are subjective. Can we ever say one prior is better than another?

• Is it conceivable that two individuals assign mutually exclusive priors to the same situation

• Can they ever converge to the same conclusion?

20
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Fitting using Markov Chain Monte Carlo
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Posterior distribution

Posterior Distribution 

𝑝(θ|image) =
𝑝 𝜃 𝑝(image|𝜃)

𝑝 image

MAP Solution
𝛼∗ = argmax

𝜃
𝑝 𝜃 𝑝(image|𝜃)

Local Maxima

We need 
approximate 
inference!

Infeasible to compute: 

p(image)= ∫ 𝑝 𝜃 𝑝 image 𝜃 𝑑𝜃
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Variational methods

• Function approximation 𝑞(𝜃)
argmax

𝑞
KL(𝑞(𝜃)|𝑝(𝜃|𝐷))

Sampling methods

• Numeric approximations through simulation

Approximate Bayesian Inference

KL: Kullback-
Leibler divergence
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• Simulate a distribution 𝑝 through random samples 𝑥𝑖

• Evaluate expectations

𝐸 𝑓 𝑥 = න𝑓 𝑥 𝑝 𝑥 𝑑𝑥

𝐸 𝑓 𝑥 ≈ መ𝑓 =
1

𝑁


𝑖

𝑁

𝑓 𝑥𝑖 , 𝑥𝑖 ~ 𝑝 𝑥

𝑉 መ𝑓 ~ 𝑂
1

𝑁

Sampling Methods

• “Independent” of dimensionality
• More samples increase accuracy

This is difficult!

24
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Sampling from a Distribution

• Easy for standard distributions … is it?
• Uniform

• Gaussian

• How to sample from more complex distributions?
• Beta, Exponential, Chi square, Gamma, …

• Posteriors are very often not in a “nice” standard text book form

• Sadly, only very few distributions are easy to sample from
• We need to sample from an unknown posterior with only 

unnormalized, expensive point-wise evaluation 

• General Samplers?
• Yes! – Rejection, Importance, MCMC

25

Random.nextDouble()

Random.nextGaussian()
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Markov Chain Monte Carlo

• Markov Chain Monte Carlo Methods (MCMC)

Design a Markov Chain such that samples 𝑥 obey the target distribution 𝑝

Concept: “Use an already existing sample to produce the next one”

• Very powerful general sampling methods

• Many successful practical applications

• Proven: developed in the 1950/1970ies (Metropolis/Hastings)

• Direct mapping of computing power to approximation accuracy

• Algorithms (buzz words):

• Metropolis/-Hastings, Gibbs, Slice Sampling

26
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The Metropolis Algorithm

• Initialize with sample 𝒙

• Generate next sample, with current sample 𝒙
1. Draw a sample 𝒙′ from 𝑄(𝒙′|𝒙) (“proposal”)

2. With probability 𝛼 = min
𝑃 𝒙′

𝑃 𝒙
, 1 accept 𝒙′ as new state 𝒙

3. Emit current state 𝒙 as sample

28

Requirements:

• Proposal distribution 𝑄(𝒙′|𝒙) – must generate samples, symmetric

• Target distribution 𝑃 𝒙 – with point-wise evaluation

Result:

• Stream of samples approximately from 𝑃 𝒙
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Example: 2D Gaussian

• Target: 𝑃 𝒙 =
1

2𝜋 Σ
𝑒−

1

2
𝒙−𝝁 𝑇Σ−1(𝒙−𝝁)

• Proposal: 𝑄 𝒙′ 𝒙 = 𝒩(𝒙′|𝒙, 𝜎2𝐼2)

29

Random walk

Ƹ𝜇 =
1.56
1.68

Σ =
1.09 0.63
0.63 1.07

𝜇 =
1.5
1.5

Σ =
1.25 0.75
0.75 1.25

Sampled EstimateTarget
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2D Gaussian: Different Proposals

30

𝜎 = 0.2 𝜎 = 1.0
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The Metropolis-Hastings Algorithm

• Initialize with sample 𝒙

• Generate next sample, with current sample 𝒙
1. Draw a sample 𝒙′ from 𝑄(𝒙′|𝒙) (“proposal”)

2. With probability 𝛼 = min
𝑃 𝑥′

𝑃 𝑥

𝑄 𝑥|𝑥′

𝑄 𝑥′|𝑥
, 1 accept 𝒙′ as new state 𝒙

3. Emit current state 𝒙 as sample

31

• Generalization of Metropolis algorithm to asymmetric Proposal distribution

𝑄 𝒙′ 𝒙 ≠ 𝑄 𝒙 𝒙′

𝑄 𝒙′ 𝒙 > 0 ⇔ 𝑄 𝒙 𝒙′ > 0
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Properties

• Approximation: Samples 𝑥1, 𝑥2, … approximate 𝑃(𝑥)

Unbiased but correlated (not i.i.d.)

• Normalization: 𝑃(𝑥) does not need to be normalized

Algorithm only considers ratios 𝑃(𝑥′)/𝑃(𝑥)

• Dependent Proposals: 𝑄 𝑥′ 𝑥 depends on current sample 𝑥

Algorithm adapts to target with simple 1-step memory
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Metropolis - Hastings: Limitations

• Highly correlated targets

Proposal should match target to 
avoid too many rejections

• Serial correlation

• Results from rejection 
and too small stepping

• Subsampling

33

Bishop. PRML, Springer, 
2006
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• Metropolis algorithm formalizes: propose-and-verify

• Steps are completely independent.

Propose
Draw a sample 𝑥′ from 𝑄(𝑥′|𝑥)

Verify

With probability 𝛼 = min
𝑃 𝑥′

𝑃 𝑥

𝑄 𝑥|𝑥′

𝑄 𝑥′|𝑥
, 1 accept 𝒙′ as new sample 

Propose-and-Verify Algorithm

34
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MH as Propose and Verify

• Decouples the steps of finding the solution from validating a solution

• Natural to integrate uncertain proposals Q 
(e.g. automatically detected landmarks, ...)

• Possibility to include “local optimization” (e.g. a ASM or AAM 
updates, gradient step, …) as proposal

• Requires slight extension of the MH algorithm to avoid biased 
posterior.

Anything more “informed” than random walk should improve convergence.
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Checkpoint: MCMC

• Why is it important in our model fitting problem, that the MH-algorithm can work with
unnormalized distributions?

• Compare a classical (gradient-based) optimization algorithm to the MH-algorithm. How
can the MH-Algorithm avoid getting stuck in local optima?

• What can you say about the samples coming from the MH-Algorithm

• Explain why choosing the proposals is very important for a good performance of the
algorithm. 
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Exercise: MCMC in Scalismo

Type into the codepane:   
goto(“http://shapemodelling.cs.unibas.ch/exercises/Exercise15.html”)

Scalismo 0.16:  Check examples in https://github.com/unibas-gravis/pmm2018
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Fitting 3D Landmarks
3D Alignment with Shape and Pose

38
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3D Fitting Example

39

right.eye.corner_outer left.eye.corner_outer

right.lips.corner left.lips.corner
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3D Fitting Setup

• 3D face model

• Arbitrary rigid transformation

Pose, Positioning in space

• Observations

• Observed positions 𝑙𝑇
1 , … , 𝑙𝑇

𝑛

• Correspondence: 𝑙𝑅
1 , … , 𝑙𝑅

𝑛

• Goal: Find Posterior Distribution

𝑃 𝜃 𝑙𝑇
1 , … , 𝑙𝑇

𝑛 ∝ 𝑝 𝑙𝑇
1 , … , 𝑙𝑇

𝑅|𝜃 𝑃(𝜃)

Parameters

𝜃 = (𝛼, 𝜑, 𝜓, 𝜗, 𝑡)

Shape transformation

𝜑𝑠 𝛼 = 𝜇 𝑥 +

𝑖=1

𝑟

𝛼𝑖 𝜆𝑖𝛷𝑖(𝑥)

Rigid transformation

• 3 angles (pitch, yaw, roll) 𝜑,𝜓, 𝜗

• Translation 𝑡 = (𝑡𝑥, 𝑡𝑦 , 𝑡𝑧)

𝜑𝑅 𝜑,𝜓, 𝜗, 𝑡 = 𝑅𝜗𝑅𝜓𝑅𝜑 𝒙 + 𝑡

Full transformation
𝜑 𝜃 (𝑥) = (𝜑𝑅∘ 𝜑𝑆)[𝜃](𝑥)

40
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Proposals

• Choose simple Gaussian random walk proposals (Metropolis)

"𝑄 𝜃′|𝜃 = 𝑁(𝜃′|𝜃, Σ𝜃)"
• Normal perturbations of current state

• Block-wise to account for different parameter types

• Shape 𝑁(𝜶′|𝜶, 𝜎𝑆
2𝐼𝑚×𝑚 )

• Rotation 𝑁 𝜑′ 𝜑, 𝜎𝜑
2 , 𝑁 𝜓′ 𝜓, 𝜎𝜓

2 , 𝑁 𝜗′ 𝜗, 𝜎𝜗
2

• Translation 𝑁 𝒕′ 𝒕, 𝜎𝑡
2𝐼3×3

• Large mixture distributions as proposals

• Choose proposal 𝑄𝑖 with probability 𝑐𝑖

𝑄 𝜃′|𝜃 = ∑𝑐𝑖𝑄𝑖(𝜃
′|𝜃)

41



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2018 | BASEL

3DMM Landmarks Likelihood

Simple models: Independent Gaussians

Observation of 𝐿 landmark locations 𝑙𝑇
𝑖 in image

• Single landmark position model:

𝑝 𝑙𝑇 𝜃, 𝑙𝑅 = 𝑁 𝜑 𝜃 𝑙𝑅 , 𝐼3×3𝜎
2

• Independent model (conditional independence): 

𝑝 𝑙𝑇
1 , … , 𝑙𝑇

𝑛|𝜃 =ෑ

𝑖=1

𝐿

𝑝𝑖 𝑙𝑇
𝑖 |𝜃

42
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3D Fit to Landmarks

• Influence of landmarks uncertainty on 
final posterior?

• 𝜎LM = 1mm

• 𝜎LM = 4mm

• 𝜎LM = 10mm

• Only 4 landmark observations:

• Expect only weak shape impact

• Should still constrain pose

• Uncertain LM should be looser

43
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Posterior: Pose & Shape, 4mm

44

Ƹ𝜇yaw = 0.511

ො𝜎yaw = 0.073 (4°)

Ƹ𝜇tx = −1mm

ො𝜎tx = 4 mm

Ƹ𝜇𝛼1 = 0.4

ො𝜎𝛼1 = 0.6

(Estimation from samples)
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Posterior: Pose & Shape, 4mm

45

Posterior values (log, unnormalized!)
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Posterior: Pose & Shape, 1mm
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Ƹ𝜇yaw = 0.50

ො𝜎yaw = 0.041 (2.4°)

Ƹ𝜇tx = −2mm

ො𝜎tx = 0.8 mm

Ƹ𝜇𝛼1 = 1.5

ො𝜎𝛼1 = 0.35
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Posterior: Pose & Shape, 10mm
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Ƹ𝜇yaw = 0.49

ො𝜎yaw = 0.11 (7°)

Ƹ𝜇tx = −5mm

ො𝜎tx = 10 mm

Ƹ𝜇𝛼1 = 0

ො𝜎𝛼1 = 0.6
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Summary: MCMC for 3D Fitting

• Probabilistic inference for fitting probabilistic models
• Bayesian inference: posterior distribution

• Probabilistic inference is often intractable
• Use approximate inference methods

• MCMC methods provide a powerful sampling framework
• Metropolis-Hastings algorithm

• Propose update step

• Verify and accept with probability

• Samples converge to true distribution: More about this next time!
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