graphics and vision gravis

1

Probabilistic Fitting

Marcel Lüthi,

University of Basel

Slides based on presentation by Sandro Schönborn

Outline

• Bayesian inference

• Fitting using Markov Chain Monte Carlo

• Exercise: MCMC in Scalismo

• Fitting 3D Landmarks

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

Bayesian inference

Probabilities: What are they?

Four possible interpretations:

- 1. Long-term frequencies
 - Relative frequency of an event over time
- 2. Physical tendencies (propensities)
 - Arguments about a physical situation (causes of relative frequencies)
- 3. Degree of belief (Bayesian probabilities)
 - Subjective beliefs about events/hypothesis/facts
- 4. (Logic)
 - Degree of logical support for a particular hypothesis

Bayesian probabilities for image analysis

- Bayesian probabilities make sense where frequentists interpretations are not applicable!
 - No amount of repetition makes image sharp.
 - Uncertainty is not due to random effect, but because of bad telescope.
 - Still possible to use Bayesian inference.
 - Uncertainty summarizes our ignorance.

Gallileo's view on Saturn

Image credit: McElrath, Statistical Rethinking: Figure 1.12

Degree of belief: An example

• Dentist example: *Does the patient have a cavity?*

P(cavity) = 0.1

P(cavity|toothache) = 0.8

P(cavity|toothache, gum problems) = 0.4

But the patient either has a cavity or does not

- There is no 80% cavity!
- Having a cavity should not depend on whether the patient has a toothache or gum problems

All these statements do not contradict each other, they summarize *the dentist's knowledge* about the patient

Uncertainty: Bayesian Probability

- Bayesian probabilities rely on a *subjective* perspective:
 - Probabilities express our *current knowledge*.
 - Can *change* when we learn or see more
 - More data -> more *certain* about our result.

Subjectivity: There is no single, real underlying distribution. A probability distribution expresses our knowledge – It is different in different situations and for different observers since they have different knowledge.

- Subjective != Arbitrary
- Given belief, conclusions follow by laws of probability calculus

Two important rules

Probabilistic model: joint distribution of points

 $P(x_1, x_2)$

Marginal

Distribution of certain points only

$$P(x_1) = \sum_{x_2} P(x_1, x_2)$$

Conditional

Distribution of points conditioned on *known* values of others

$$P(x_1|x_2) = \frac{P(x_1, x_2)}{P(x_2)}$$

Product rule: $P(x_1, x_2) = p(x_1|x_2)p(x_2)$

Marginalization

- Models contain irrelevant/hidden variables e.g. points on chin when nose is queried
- Marginalize over hidden variables (H)

$$P(X) = \sum_{H} P(X, H)$$

Belief Updates

Model Face distribution

Prior belief

Observation Concrete points *Possibly uncertain*

More knowledge

Posterior Face distribution *consistent with observation*

Posterior belief

Certain Observation

- Observations are *known* values
- Distribution of X after observing x₁,..., x_N:

 $P(X|x_1 \dots x_N)$

• Conditional probability $P(X|x_1 \dots x_N) = \frac{P(X, x_1, \dots, x_N)}{P(x_1, \dots, x_N)}$

Towards Bayesian Inference

• Update belief about X by observing x_1, \dots, x_N

 $P(X) \to P(X|x_1 \dots x_N)$

• Factorize joint distribution

$$P(X, x_1, \dots, x_N) = P(x_1, \dots, x_N | X) P(X)$$

• Rewrite conditional distribution

$$P(X|x_1...x_N) = \frac{P(X, x_1, ..., x_N)}{P(x_1, ..., x_N)} = \frac{P(x_1, ..., x_N | X) P(X)}{P(x_1, ..., x_N)}$$

• General: Query (Q) and Evidence (E)

$$P(Q|E) = \frac{P(Q, E)}{P(E)} = \frac{P(E|Q)P(Q)}{P(E)}$$

Uncertain Observation

• Observations with *uncertainty*

Model needs to describe how observations are distributed

with joint distribution P(Q, E)

- Still conditional probability But joint distribution is more complex
- Joint distribution factorized

P(Q, E) = P(E|Q)P(Q)

- Likelihood P(E|Q)
- Prior *P*(*Q*)

Likelihood

Joint Likelihood Prior P(Q, E) = P(E|Q)P(Q)

- *Likelihood x prior:* factorization is more flexible than full joint
 - Prior: distribution of core model *without observation*
 - Likelihood: describes how observations are distributed

Bayesian Inference

• Conditional/Bayes rule: method to update *beliefs*

• Each observation updates our belief (changes knowledge!)

 $P(Q) \rightarrow P(Q|E) \rightarrow P(Q|E,F) \rightarrow P(Q|E,F,G) \rightarrow \cdots$

- Bayesian Inference: How beliefs *evolve* with observation
- Recursive: Posterior becomes prior of next inference step

General Bayesian Inference

- Observation of *additional* variables
 - Common case, e.g. image intensities, surrogate measures (size, ...)
 - Coupled to core model via likelihood factorization
- General Bayesian inference case:
 - Distribution of data *D* (formerly Evidence)
 - Parameters θ (formerly Query)

$$P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)} = \frac{P(D|\theta)P(\theta)}{\int P(D|\theta)P(\theta)d\theta}$$

 $P(\theta|D) \propto P(D|\theta)P(\theta)$

Checkpoint: Bayesian Inference

- Why is the Bayesian interpretation better suited for image analysis than a frequentist approach?
- Why is it often easier to specify a prior and a likelihood function, than the joint distribution?
- Bayesian inference can be applied recursively. Can you give an example (from the course) where we use the posterior again as a prior?
- Priors are subjective. Can we ever say one prior is better than another?
- Is it conceivable that two individuals assign mutually exclusive priors to the same situation
 - Can they ever converge to the same conclusion?

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

Fitting using Markov Chain Monte Carlo

Posterior distribution

Approximate Bayesian Inference

Variational methods

Sampling methods

• Numeric approximations through simulation

Sampling Methods

- Simulate a distribution p through random samples x_i
- Evaluate expectations

$$E[f(x)] = \int f(x)p(x)dx$$

$$E[f(x)] \approx \hat{f} = \frac{1}{N} \sum_{i}^{N} f(x_{i}), \qquad x_{i} \sim p(x)$$

$$V[\hat{f}] \sim O\left(\frac{1}{N}\right)$$

This is difficult!

- "Independent" of dimensionality
- More samples increase accuracy

Sampling from a Distribution

- Easy for standard distributions ... is it?
 - Uniform
 - Gaussian
- How to sample from more complex distributions?
 - Beta, Exponential, Chi square, Gamma, ...
 - Posteriors are very often not in a "nice" standard text book form
- Sadly, only very few distributions are easy to sample from
 - We need to sample from an unknown posterior with only unnormalized, expensive point-wise evaluation ⊗
- General Samplers?
 - Yes! Rejection, Importance, MCMC

Random.nextDouble() Random.nextGaussian()

Markov Chain Monte Carlo

• Markov Chain Monte Carlo Methods (MCMC)

Design a *Markov Chain* such that samples x obey the target distribution p Concept: *"Use an already existing sample to produce the next one"*

- Very powerful general sampling methods
 - Many successful practical applications
 - Proven: developed in the 1950/1970ies (Metropolis/Hastings)
 - Direct mapping of computing power to approximation accuracy
- Algorithms (buzz words):
 - Metropolis/-Hastings, Gibbs, Slice Sampling

UNIVERSITÄT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

The Metropolis Algorithm

Requirements:

- Proposal distribution $Q(\mathbf{x}'|\mathbf{x})$ must generate samples, symmetric
- Target distribution $P(\mathbf{x})$ with point-wise evaluation

Result:

- Stream of samples approximately from P(x)
- Initialize with sample $oldsymbol{x}$
- Generate next sample, with current sample $oldsymbol{x}$
 - 1. Draw a sample \mathbf{x}' from $Q(\mathbf{x}'|\mathbf{x})$ ("proposal")
 - 2. With probability $\alpha = \min\left\{\frac{P(x')}{P(x)}, 1\right\}$ accept x' as new state x
 - 3. Emit current state \boldsymbol{x} as sample

Example: 2D Gaussian

• Target:

$$P(\mathbf{x}) = \frac{1}{2\pi\sqrt{|\Sigma|}} e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T \Sigma^{-1}(\mathbf{x}-\boldsymbol{\mu})}$$

• Proposal:

$$Q(\mathbf{x}'|\mathbf{x}) = \mathcal{N}(\mathbf{x}'|\mathbf{x}, \sigma^2 I_2)$$

2D Gaussian: Different Proposals

The Metropolis-Hastings Algorithm

- Initialize with sample $oldsymbol{x}$
- Generate next sample, with current sample $oldsymbol{x}$
 - 1. Draw a sample \mathbf{x}' from $Q(\mathbf{x}'|\mathbf{x})$ ("proposal")

2. With probability
$$\alpha = \min\left\{\frac{P(x')}{P(x)}\frac{Q(x|x')}{Q(x'|x)}, 1\right\}$$
 accept x' as new state x

- 3. Emit current state \boldsymbol{x} as sample
- Generalization of Metropolis algorithm to asymmetric Proposal distribution

 $Q(\mathbf{x}'|\mathbf{x}) \neq Q(\mathbf{x}|\mathbf{x}')$ $Q(\mathbf{x}'|\mathbf{x}) > 0 \Leftrightarrow Q(\mathbf{x}|\mathbf{x}') > 0$

Properties

- Approximation: Samples $x_1, x_2, ...$ approximate P(x)Unbiased but correlated (not *i.i.d.*)
- Normalization: P(x) does not need to be normalized Algorithm only considers ratios P(x')/P(x)
- Dependent Proposals: Q(x'|x) depends on current sample x Algorithm adapts to target with simple 1-step memory

Metropolis - Hastings: Limitations

• Highly correlated targets

Proposal should match target to avoid too many rejections

- Serial correlation
 - Results from rejection and too small stepping
 - Subsampling

Propose-and-Verify Algorithm

- Metropolis algorithm formalizes: *propose-and-verify*
- Steps are completely independent.

Propose Draw a sample x' from Q(x'|x)

Verify

With probability
$$\alpha = \min\left\{\frac{P(x')}{P(x)}\frac{Q(x|x')}{Q(x'|x)}, 1\right\}$$
 accept x' as new sample

MH as Propose and Verify

- Decouples the steps of finding the solution from validating a solution
- Natural to integrate uncertain proposals Q (e.g. automatically detected landmarks, ...)
- Possibility to include "local optimization" (e.g. a ASM or AAM updates, gradient step, ...) as proposal
 - Requires slight extension of the MH algorithm to avoid biased posterior.

Anything more "informed" than random walk should improve convergence.

Checkpoint: MCMC

- Why is it important in our model fitting problem, that the MH-algorithm can work with unnormalized distributions?
- Compare a classical (gradient-based) optimization algorithm to the MH-algorithm. How can the MH-Algorithm avoid getting stuck in local optima?
- What can you say about the samples coming from the MH-Algorithm
- Explain why choosing the proposals is very important for a good performance of the algorithm.

Exercise: MCMC in Scalismo

Type into the codepane:

goto("http://shapemodelling.cs.unibas.ch/exercises/Exercise15.html")

Scalismo 0.16: Check examples in https://github.com/unibas-gravis/pmm2018

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

Fitting 3D Landmarks

3D Alignment with Shape and Pose

3D Fitting Example

3D Fitting Setup

- 3D face model
- Arbitrary rigid transformation Pose, Positioning in space
- Observations
 - Observed positions l_T^1, \ldots, l_T^n
 - Correspondence: l_R^1, \dots, l_R^n
- Goal: Find Posterior Distribution

 $P(\theta | l_T^1, \dots, l_T^n) \propto p(l_T^1, \dots, l_T^R | \theta) P(\theta)$

Parameters

$$\theta = (\alpha, \varphi, \psi, \vartheta, t)$$

Shape transformation

$$\varphi_s[\alpha] = \mu(x) + \sum_{i=1}^r \alpha_i \sqrt{\lambda_i} \Phi_i(x)$$

Rigid transformation

- 3 angles (pitch, yaw, roll) $arphi, \psi, artheta$
- Translation $t = (t_x, t_y, t_z)$

 $\varphi_R[\varphi,\psi,\vartheta,t] = R_\vartheta R_\psi R_\varphi(x) + t$

Full transformation $\varphi[\theta](x) = (\varphi_R \circ \varphi_S)[\theta](x)$

Proposals

• Choose simple Gaussian random walk proposals (Metropolis)

 $"Q(\theta'|\theta) = N(\theta'|\theta, \Sigma_{\theta})"$

- Normal *perturbations* of current state
- Block-wise to account for different parameter types
 - Shape $N(\boldsymbol{\alpha}'|\boldsymbol{\alpha},\sigma_S^2 I_{m \times m})$
 - Rotation $N(\varphi'|\varphi,\sigma_{\varphi}^2), N(\psi'|\psi,\sigma_{\psi}^2), N(\vartheta'|\vartheta,\sigma_{\vartheta}^2)$
 - Translation $N(t'|t, \sigma_t^2 I_{3\times 3})$
- Large mixture distributions as proposals
 - Choose proposal Q_i with probability c_i

$$Q(\theta'|\theta) = \sum c_i Q_i(\theta'|\theta)$$

3DMM Landmarks Likelihood

Simple models: Independent Gaussians

Observation of L landmark locations l_T^i in image

• Single *landmark position* model:

$$p(l_T | \theta, l_R) = N(\varphi[\theta](l_R), I_{3 \times 3}\sigma^2)$$

• *Independent* model (conditional independence):

$$p(l_T^1, \dots, l_T^n | \theta) = \prod_{i=1}^L p_i(l_T^i | \theta)$$

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

3D Fit to Landmarks

- Influence of landmarks uncertainty on final posterior?
 - $\sigma_{\rm LM} = 1 {\rm mm}$
 - $\sigma_{\rm LM} = 4 {\rm mm}$
 - $\sigma_{\rm LM} = 10 {\rm mm}$
- Only 4 landmark observations:
 - Expect only weak shape impact
 - Should still constrain pose
- Uncertain LM should be looser

Posterior: Pose & Shape, 4mm

 $\begin{aligned} \hat{\mu}_{yaw} &= 0.511 & \hat{\mu}_{t_x} &= -1 \text{ mm} & \hat{\mu}_{\alpha_1} &= 0.4 \\ \hat{\sigma}_{yaw} &= 0.073 \text{ (4°)} & \hat{\sigma}_{t_x} &= 4 \text{ mm} & \hat{\sigma}_{\alpha_1} &= 0.6 \\ \end{aligned}$ (Estimation from samples)

Posterior: Pose & Shape, 4mm

Posterior values (log, unnormalized!)

Posterior: Pose & Shape, 1mm

$$\hat{\mu}_{yaw} = 0.50 \qquad \hat{\mu}_{t_x} = -2 \text{ mm} \qquad \hat{\mu}_{\alpha_1} = 1.5 \\ \hat{\sigma}_{yaw} = 0.041 (2.4^\circ) \qquad \hat{\sigma}_{t_x} = 0.8 \text{ mm} \qquad \hat{\sigma}_{\alpha_1} = 0.35$$

Posterior: Pose & Shape, 10mm

$$\hat{\mu}_{yaw} = 0.49 \qquad \hat{\mu}_{t_x} = -5 \text{ mm} \qquad \hat{\mu}_{\alpha_1} = 0 \\ \hat{\sigma}_{yaw} = 0.11 (7^\circ) \qquad \hat{\sigma}_{t_x} = 10 \text{ mm} \qquad \hat{\sigma}_{\alpha_1} = 0.6$$

Summary: MCMC for 3D Fitting

- Probabilistic inference for fitting probabilistic models
 - Bayesian inference: posterior distribution
- Probabilistic inference is often intractable
 - Use *approximate* inference methods
- MCMC methods provide a powerful sampling framework
 - Metropolis-Hastings algorithm
 - Propose update step
 - Verify and accept with probability
- Samples converge to true distribution: More about this next time!