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Kernels everywhere

Integral and differential equations

* Aronszajn, Nachman. "Theory of reproducing kernels." Transactions of the American mathematical
society (1950): 337-404.

Numerical analysis, Approximation and Interpolation theory
* Wahba, Grace. Spline models for observational data. Vol. 59. Siam, 1990.

* Schaback, Robert, and Holger Wendland. "Kernel techniques: From machine learning to meshless
methods." Acta Numerica 15 (2006): 543-639.

* Hennig, Philipp, and Osborn, Michael: Probabilistic numerics

» Geostatistics (Gaussian processes)

. ﬁ;eic?, Mligggel L. Interpolation of spatial data: some theory for kriging. Springer Science & Business
edia, :
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Kernels everywhere

* Learning Theory / Machine learning

* Vapnik, Vladimir. Statistical learning theory. Vol. 1. New York: Wiley, 1998.

* Hofmann, Thomas, Bernhard Scholkopf, and Alexander J. Smola. "Kernel methods in
machine learning." The annals of statistics (2008): 1171-1220.

* Shape modelling / Image analysis

* Grenander, Ulf, and Michael I. Miller. "Computational anatomy: An emerging discipline."
Quarterly of applied mathematics 56.4 (1998): 617-694.

* Younes, Laurent: Shapes and diffeomorphisms, Springer 2010
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What do they have in common?

* Solution space has a rich structure [ ML }
to be able to:

* Predict unseen values

* Deal with noisy or incomplete data { Image analysis } { Statistics }
* Capture a pattern

e Kernels ideally suited to define N
such structure [ S o H Numerics j

* The resulting space of functions is
mathematically “nice”.




Back to basics: Scalar-valued GPs

Scalar-valued (more common)
e Samples f are real-valued

Vector-valued (this course)

e Samples u are deformation
functions
f: X >R

fields:
u: X - R4
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Scalar-valued Gaussian processes

Scalar-valued (more common)

Vector-valued (this course)
u ~ GP(i, k) f ~GP(uk)
fd: X - R4 wX >R
k: X x X —» R** k: X xX >R
25 4 a
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A tion

Matrix-valued kernels can be reinterpreted as scalar-valued kernels:

Matrix valued kernel: k: X x X — R%*d
Scalar valued kernel: k: X’ X (1..d) X X X (1..d) » R

Bijection: Define

k((x, D), ((x", ) = k(x',x");
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Vector/scalar valued kernel matrices

kq1(x1,%1)  kqp(xq,x1) ki1(x1, %) kia(xq,x5)
ko1 (xq,x1)  kop(xy,x1) 7 koy(xg,xp)  koa(xq, xp)
K = : :
ki1(en,x1)  kqa(xp, x1) ki1(on, X)) Ky (xp, x5)
ko1, x1)  koo(xp,x1) 7 koy(xp,xp) koo (xn, xp)
k((xp 1), (x4, 1)) k((xl» 1), (x4, 2)) k((xL 1), (xq, 1)) k((xl» 1), (xn, 2))
k((xll 2)1 (x1; 1)) k((xli 2)1 (xl; 2)) k((xlf 2)1 (xn: 1)) k((xll 2): (xn: 2))
K = . :

(D, D) k(D) 02) k(G D, D)) k(G 1), G 2))
k((xn,2), (x1, 1)) k((xn,2),(x1,2)) 7 k(0 2), (20, 1)) k((xn, 2), (30, 2))
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A tion

Matrix-valued kernels can be reinterpreted as scalar-valued kernels:

Matrix valued kernel: k: X x X — R%*d
Scalar valued kernel: k: X’ X (1..d) X X X (1..d) » R

Bijection: Define

k((x, D), ((x", ) = k(x',x");

All the theory developed for the scalar-valued GPs holds also for vector-valued GPs!
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The sampling space
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The space of samples

Sampling from GP(u, k) is done using the corresponding normal
distribution N (i, K)

Algorithm (slightly inefficient)

1. DoanSVD: K = UD?UT

2. Draw a normal vector @ ~ N(O, I,,«,)
3. Compute i + UD«

11
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The space of samples

* From K = UD?U" (using that UTU = I) we have that
KUD~' = UD

* A sample
s=u+UDa=p+KUD 'a
corresponds to linear combinations of the columns of K.

 Kis symmetric —» rows/columns can be used interchangeably

12
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Example: Squared exponential

o2

— |2
k(x,x’) = exp (_ ”X X “ >

o=1

0 100 200 300 400 500 600 700 800 900 1000 3o
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Example: Squared exponential

— ]2
k(x,x’) = exp (_ ”X X “ )
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Multi le si |

X

* k(x,x") = exp| — Hx -y

|_.

0 100 260 360 460 560 600 760 860 960 1000
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* Define u(x) = (COS(X))

sin(x)

 k(x,x') = exp(= Il (u(x) — ux)|[2 = exp(~4sin? (L=21))

o2
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Symmetric kernels

* Enforce that f(x) = f(-x)
e k(x,x") =k(—x,x") + k(x,x")

17
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Changepoint kernels

* k(x,x") = s(x)ky(x,x")s(x") + (1 —s(x))k(x, x")(1 — s(x"))

*s(x) = :

1+exp( —x)

18
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Combining existing functions

k(x,x") = f)f (x')

19
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Combining existing functions

k(x,x") = f)f (x')

f(x) = sin(x)

20
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Combining existing functions

kGx) = ) fiGOfix)

{fi(x) = x,f,(x) = sin(x)}

21
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Reproducing Kernel Hilbert Space

* Define the space of functions
N
H={f|f(x)=2aik(x,xi), n €N, x; € X,a; € R}
i=1
For f(x) = X;a;k(x;,x) and g(x) = %; ajk(x]-, x) we define the
inner product
(f' g)k — 2 aia]{k(xi'xj)

L,J

The space H called a Reproducing Kernel Hilbert Space (RKHS).
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Two differnet basis for the RKHS

x —x'||?
k(X,X’) = exp (_ ” 5 ” )

* Kernel basis * Eigenbasis (KL-Basis)

Sample columns from covariance matrix Leading eigenvectors
3
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(Gaussian process regression
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(Gaussian process regression

* Given:
Observations: {(x1,¥1), ..., (X7, Y1)}

* Goal:
COmpUte p(y*lx*) xl; ---;xn: :V1: ---»yn)
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(Gaussian process regression

* Solution given by posterior process GP(up, kp) with
() = K (e, DK X, X) + 0211y

kp (X, x.") = k(x,,x.") — K(x, ) [KX, X) + o*I] 'K (X, x1)

* We can sample from the posterior.

26
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Examples

Gaussian kernel (o = 1)
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Gaussian kernel (o = 5)
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Examples

Periodic kernel
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Examples

Changepoint kernel

31
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Examples

Symmetric kernel
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Linear kernel
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Observations about the solution

kp (o, x) = k(x,x,) — Ko, X)[KX, X) + oI K (X, x0)

* The covariance is independent of the value at the training points

38
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Kernels and associated structures



UNIVERSITAT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

An enlightening paper
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Kernels, regularization and differential equations

Florian Steinke*, Bernhard Scholkopf

Max-Planck-Institute for Biological Cybernetics, Spemannstr. 38, 72076 Tiibingen, Germany

ARTICLE INFO ABSTRACT
Article history: Many common machine learning methods such as support vector machines or Gaussian process infer-
Received 18 March 2008 ence make use of positive definite kernels, reproducing kernel Hilbert spaces, Gaussian processes, and
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regularization operators. In this work these objects are presented in a general, unifying framework and
Accepted 5 June 2008

interrelations are highlighted.
With this in mind we then show how linear stochastic differential equation models can be incorporated

Keywords: naturally into the kernel framework. And vice versa, many kernel machines can be interpreted in terms

Positive definite kernel of differential equations. We focus especially on ordinary differential equations, also known as dynamical

Differential equation systems, and it is shown that standard kernel inference algorithms are equivalent to Kalman filter meth-

Gaussian process ods based on such models.

Reproducing kernel Hilbert space In order not to cloud qualitative insights with heavy mathematical machinery, we restrict ourselves to
finite domains, implying that differential equations are treated via their corresponding finite difference
equations.
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