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Kernels everywhere

Integral and differential equations
• Aronszajn, Nachman. "Theory of reproducing kernels." Transactions of the American mathematical 

society (1950): 337-404.

Numerical analysis, Approximation and Interpolation theory
• Wahba, Grace. Spline models for observational data. Vol. 59. Siam, 1990.
• Schaback, Robert, and Holger Wendland. "Kernel techniques: From machine learning to meshless 

methods." Acta Numerica 15 (2006): 543-639.
• Hennig, Philipp, and Osborn, Michael: Probabilistic numerics

• Geostatistics (Gaussian processes)
• Stein, Michael L. Interpolation of spatial data: some theory for kriging. Springer Science & Business 

Media, 1999.
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Kernels everywhere

• Learning Theory  / Machine learning
• Vapnik, Vladimir. Statistical learning theory. Vol. 1. New York: Wiley, 1998.

• Hofmann, Thomas, Bernhard Schölkopf, and Alexander J. Smola. "Kernel methods in 
machine learning." The annals of statistics (2008): 1171-1220.

• Shape modelling / Image analysis
• Grenander, Ulf, and Michael I. Miller. "Computational anatomy: An emerging discipline." 

Quarterly of applied mathematics 56.4 (1998): 617-694.

• Younes, Laurent: Shapes and diffeomorphisms, Springer 2010 
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What do they have in common?

• Solution space has a rich structure 
to be able to:
• Predict unseen values

• Deal with noisy or incomplete data

• Capture a pattern

• Kernels ideally suited to define 
such structure
• The resulting space of functions is 

mathematically “nice”.
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Back to basics: Scalar-valued GPs

Vector-valued (this course)

• Samples u are deformation 
fields: 

𝑢:𝒳 → ℝ𝑑

Scalar-valued (more common)

• Samples f are real-valued 
functions

𝑓 ∶ 𝒳 → ℝ
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Scalar-valued Gaussian processes

Vector-valued (this course)

𝑢 ∼ 𝐺𝑃 Ԧ𝜇, 𝒌
Ԧ𝜇:𝒳 → ℝ𝑑

𝒌:𝒳 ×𝒳 → ℝ𝑑×𝑑

Scalar-valued (more common)

𝑓 ∼ 𝐺𝑃 𝜇, 𝑘
𝜇:𝒳 → ℝ
𝑘:𝒳 × 𝒳 → ℝ
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A connection 

Matrix-valued kernels can be reinterpreted as scalar-valued kernels:

Matrix valued kernel: 𝒌:𝒳 ×𝒳 → ℝ𝒅×𝒅

Scalar valued kernel: 𝑘:𝒳 × 1. . 𝑑 × 𝒳 × 1. . 𝑑 → ℝ

Bijection: Define
𝑘( 𝑥, 𝑖 , 𝑥′, 𝑗 = 𝒌 𝑥′, 𝑥′ 𝑖,𝑗
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Vector/scalar valued kernel matrices
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𝑲 =

𝑘11 𝑥1, 𝑥1 𝑘12 𝑥1, 𝑥1
𝑘21 𝑥1, 𝑥1 𝑘22 𝑥1, 𝑥1

…
𝑘11 𝑥1, 𝑥𝑛 𝑘12 𝑥1, 𝑥𝑛
𝑘21 𝑥1, 𝑥𝑛 𝑘22 𝑥1, 𝑥𝑛

⋮ ⋮
𝑘11 𝑥𝑛, 𝑥1 𝑘12 𝑥𝑛, 𝑥1
𝑘21 𝑥𝑛, 𝑥1 𝑘22 𝑥𝑛, 𝑥1

…
𝑘11 𝑥𝑛, 𝑥𝑛 𝑘12 𝑥𝑛, 𝑥𝑛
𝑘21 𝑥𝑛, 𝑥𝑛 𝑘22 𝑥𝑛, 𝑥𝑛

𝐾 =

𝑘 (𝑥1, 1), (𝑥1, 1) 𝑘 (𝑥1, 1), (𝑥1, 2)

𝑘 𝑥1, 2 , (𝑥1, 1) 𝑘 𝑥1, 2 , (𝑥1, 2)
…

𝑘 (𝑥1, 1), (𝑥𝑛, 1) 𝑘 (𝑥1, 1), (𝑥𝑛, 2)

𝑘 𝑥1, 2 , (𝑥𝑛, 1) 𝑘 𝑥1, 2 , (𝑥𝑛, 2)

⋮ ⋮
𝑘 (𝑥𝑛, 1), (𝑥1, 1) 𝑘 (𝑥𝑛, 1), (𝑥1, 2)

𝑘 𝑥𝑛, 2 , (𝑥1, 1) 𝑘 𝑥𝑛, 2 , (𝑥1, 2)
…

𝑘 (𝑥𝑛, 1), (𝑥𝑛, 1) 𝑘 (𝑥𝑛, 1), (𝑥𝑛, 2)

𝑘 𝑥𝑛, 2 , (𝑥𝑛, 1) 𝑘 𝑥𝑛, 2 , (𝑥𝑛, 2)
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A connection 

Matrix-valued kernels can be reinterpreted as scalar-valued kernels:

Matrix valued kernel: 𝒌:𝒳 ×𝒳 → ℝ𝒅×𝒅

Scalar valued kernel: 𝑘:𝒳 × 1. . 𝑑 × 𝒳 × 1. . 𝑑 → ℝ

Bijection: Define
𝑘( 𝑥, 𝑖 , 𝑥′, 𝑗 = 𝒌 𝑥′, 𝑥′ 𝑖,𝑗

All the theory developed for the scalar-valued GPs holds also for vector-valued GPs!
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The sampling space
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The space of samples

Sampling from 𝐺𝑃 𝜇, 𝑘 is done using the corresponding normal 
distribution  𝑁( Ԧ𝜇, K)

Algorithm (slightly inefficient)

1. Do an SVD: K = 𝑈𝐷2𝑈𝑇

2. Draw a normal vector 𝛼 ∼ 𝑁 0, 𝐼𝑛×𝑛
3. Compute Ԧ𝜇 + 𝑈𝐷𝛼
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The space of samples

• From K = 𝑈𝐷2𝑈𝑇(using that 𝑈𝑇𝑈 = 𝐼) we have that
K𝑈𝐷−1 = 𝑈𝐷

• A sample 
𝑠 = Ԧ𝜇 + 𝑈𝐷𝛼 = Ԧ𝜇 + K𝑈𝐷−1𝛼

corresponds to linear combinations of the columns of K.
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• K is symmetric → rows/columns can be used interchangeably 
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Example: Squared exponential
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σ = 1

𝑘 𝑥, 𝑥′ = exp −
𝑥 − 𝑥′ 2

𝜎2
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Example: Squared exponential
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𝑘 𝑥, 𝑥′ = exp −
𝑥 − 𝑥′ 2

𝜎2

σ = 3
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Multi-scale signals

• k x, x′ = exp − 𝑥 −
𝑥′

1

2

+ 0.1 exp − 𝑥 −
𝑥′

0.1

2
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Periodic kernels

• Define 𝑢 𝑥 =
cos 𝑥
sin(𝑥)

• 𝑘 𝑥, 𝑥′ = exp(−‖(𝑢 𝑥 − 𝑢 𝑥′ ‖2= exp(−4 sin2
‖𝑥 −𝑥′‖

𝜎2
)
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Symmetric kernels

• Enforce that f(x) = f(-x)

• 𝑘 𝑥, 𝑥′ = 𝑘 −𝑥, 𝑥′ + 𝑘(𝑥, 𝑥′)
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Changepoint kernels

• 𝑘 𝑥, 𝑥′ = 𝑠 𝑥 𝑘1 𝑥, 𝑥′ 𝑠 𝑥′ + (1 − 𝑠 𝑥 )𝑘2(𝑥, 𝑥
′)(1 − 𝑠 𝑥′ )

• s 𝑥 =
1

1+exp( −𝑥)
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f x = x

19

Combining existing functions

𝑘 𝑥, 𝑥′ = 𝑓 𝑥 𝑓 𝑥′
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Combining existing functions

𝑘 𝑥, 𝑥′ = 𝑓 𝑥 𝑓 𝑥′

f x = sin(x)
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{f1 x = x, f2 x = sin(x)}
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𝑘 𝑥, 𝑥′ =

𝑖

𝑓𝑖 𝑥 𝑓𝑖(𝑥
′)

Combining existing functions
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Reproducing Kernel Hilbert Space

• Define the space of functions

𝐻 = {𝑓|𝑓 𝑥 =

𝑖=1

𝑁

𝛼𝑖𝑘 𝑥, 𝑥𝑖 , 𝑛 ∈ ℕ, 𝑥𝑖 ∈ 𝑋, 𝛼𝑖 ∈ ℝ}

For  𝑓 𝑥 = σ𝑖 𝛼𝑖𝑘 𝑥𝑖 , 𝑥 and 𝑔 𝑥 = σ𝑗 𝛼𝑗
′𝑘(𝑥𝑗, 𝑥) we define  the 

inner product

𝑓, 𝑔 𝑘 =

𝑖,𝑗

𝛼𝑖𝛼𝑗
′𝑘(𝑥𝑖 , 𝑥𝑗)

The space H called a Reproducing Kernel Hilbert Space (RKHS).
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Two differnet basis for the RKHS

• Kernel basis • Eigenbasis (KL-Basis)

𝑘 𝑥, 𝑥′ = exp −
𝑥 − 𝑥′ 2
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Gaussian process regression
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Gaussian process regression

• Given :
Observations: {(𝑥1, 𝑦1), … , 𝑥𝑛, 𝑦𝑛 }

• Goal:
compute p(𝑦∗|𝑥∗, 𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑛)

25𝑥1 𝑥2 𝑥𝑛𝑥∗

𝑦∗
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Gaussian process regression

• Solution given by posterior process 𝐺𝑃 𝜇𝑝, 𝑘𝑝 with  

𝜇𝑝(𝑥∗) = 𝐾 𝑥∗, 𝑋 𝐾 𝑋, 𝑋 + 𝜎2𝐼 −1𝑦

𝑘𝑝 𝑥∗, 𝑥∗′ = 𝑘 𝑥∗, 𝑥∗′ − 𝐾 𝑥∗, 𝑋 𝐾 𝑋, 𝑋 + 𝜎2𝐼 −1𝐾 𝑋, 𝑥∗
′

• We can sample from the posterior.
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Examples
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Examples

28

Gaussian kernel (𝜎 = 1)
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Examples
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Gaussian kernel (𝜎 = 5)
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Examples

30

Periodic kernel 
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Examples
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Changepoint kernel
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Examples

32

Symmetric kernel 
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Examples

33

Linear kernel
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Observations about the solution

• The covariance is independent of the value at the training points
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𝑘𝑝 𝑥∗, 𝑥∗′ = 𝑘 𝑥∗, 𝑥∗′ − 𝐾 𝑥∗, 𝑋 𝐾 𝑋, 𝑋 + 𝜎2𝐼 −1𝐾 𝑋, 𝑥∗
′
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Kernels and associated structures
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An enlightening paper
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