Summer school on Probabilistic Morphable Models

Basel, 25. June – 29. June

graphics and vision gravis

Probabilistic Shape Modelling - Analysis by Synthesis -

Marcel Lüthi

Graphics and Vision Research Group Department of Mathematics and Computer Science University of Basel

Probabilistic Morphable Models

Probabilistic Morphable Models

Programme

	Morning (09:00 – 12:00)	Afternoon (13:30 – 17:00)
Monday	 Analysis by Synthesis Non-rigid registration Excercise: Registration in Scalismo 	 Spotlight presentations Course project - Setup 17:00 - Welcome reception
Tuesday	 Bayesian inference Markov Chain Monte Carlo – An algorithmic introduction Exercises: MCMC Fitting in Scalismo 	Course project
Wednesday	Introduction to Computer Graphics2D Face image analysis using MCMC	Course project
Thursday	 Face image analysis – a look back Understanding MCMC 	Course project
Friday	Some Advanced topicsProject presentation	Social event

Outline: First lecture

- Analysis by synthesis
 - The conceptual framework we follow in this course

- Computer vision verse medical image analysis
 - Some commonalities and differences of the two fields

- Analysis by Synthesis in 5 (simple) steps
 - One way how to implement the analysis by synthesis principle.

Conceptual Basis: Analysis by synthesis

- If we are able to synthesize an image, we can explain it.
 - We can explain unseen parts and reason about them

Conceptual Basis: Analysis by synthesis

Mathematical Framework: Bayesian inference

• Principled way of dealing with uncertainty.

The course in context

Pattern theory vs PMM

- Pattern theory is about developing a theory for understanding realworld signals
- Probabilistic Morphable Models are about **using** theoretical well founded concepts to analyse images.
 - GPs for modelling
 - MCMC for model fitting
 - Working software

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

Medical image analysis vs. Computer vision

Images: Medical Image Analysis vs Computer Vision

Source: OneYoungWorld.com

Goal: Measure and visualize the unseen

- Acquired with specific purpose
 - Controlled measurement
 - Done by experts
- Calibrated, specialized devices

Source: www.siemens.com

• Images live in a coordinate system (units: mm)

Values measure properties of the patient's tissue

- Usually scalar-valued
- Often calibrated
- CT Example: -1000 HU -> Air 3000 HU -> cortical bone

Images in computer vision

Goal: Capture what we see in a realistic way

- Perspective projection from 3D object to 2D image
 - Many parts are occluded

Images in computer vision

- Can be done by anybody
 - Acquisition device usually unknown
 - Uncontrolled background, lighting, ...
- No clear scale
 - What is the camera distance?
- No natural coordinate system
 - Unit usually pixel

Source: twitter.com

Images in computer vision

- l(i,j)=(10,128, 2)
- Pixels represent RGB values
- Values are measurement of light
 - Reproduce what the human eye would see
- Exact RGB value depends strongly on lighting conditions
 - Shadows
 - Ambient vs diffuse light

Images: Medical Image analysis vs Computer Vision

Medical image

- Controlled measurement
- Values have (often) clear interpretation
- Explicit setup to visualize unseen
- Coordinate system with clear scale

Computer vision

- Uncontrolled snapshot
- Values are mixture of different (unknown factors)
- Many occlusion due to perspective
- Scale unknown

Many complications of computer vision arise in different form also in a medical setting.

Structure in images

 Not t the ir Our mission:

 H n
 Model this structure
 Needs only few parameters
 Needs only few parameters
 Explain image by finding appropriate parameters that reflect objects / laws / processes

36

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

Analysis by Synthesis in 5 (simple) steps

1. Define a parametric model

- a representation of the world
- State of the world is determined by parameters $\theta = (\theta_1, \dots, \theta_n)$

2. Define a synthesis function $\varphi(\theta_1, \dots, \theta_n)$

- generates/synthesize the data given the "state of the world"
- φ can be deterministic or stochastic

3. Define likelihood function:

- Define a probabilistic model $p(image|\theta_1, ..., \theta_n)$ that models how the synthesized data compares to the real data
- Includes stochastic factors on the data, such as noise

Bayesian inference

We have: $P(image | \theta_1, ..., \theta_n)$ We want: $P(\theta_1, ..., \theta_n | image)$

- 4. Define prior distribution: $p(\theta) = p(\theta_1, ..., \theta_n)$
 - Our believe about the "state of the world"
- Makes it possible to invert mapping $p(\text{image}|\theta_1, \dots, \theta_n)$

5. Do inference

$$p(\theta_1, \dots, \theta_n | \text{image}) = \frac{p(\theta_1, \dots, \theta_n)p(\text{image}|\theta_1, \dots, \theta_n)}{p(\text{image})}$$

Purely conceptual formulation:

- Independent of algorithmic implementation
- But usually done iteratively

5. Possibility 1: Find best (most likely) solution:

5. Possibility 2: Find posterior distribution:

$$p(\theta_1, \dots, \theta_n | \text{image}) = \frac{p(\theta_1, \dots, \theta_n) p(\text{image} | \theta_1, \dots, \theta_n)}{p(\text{image})}$$

Core of this course

- Obtain samples from the distribution
- Based on Markov Chain Monte Carlo methods

First example: Image registration

