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Outline

• Non-rigid registration: The basic formulation

• Exercise: Parametric registration in Scalismo

• Advanced Priors

• Likelihood functions

• Exercise: ASMs in Scalismo

• Optimization
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Ω

The registration problem

3

Reference: 

𝐼𝑅: Ω → ℝ

Target: 

𝐼𝑇: Ω → ℝ

𝜑:Ω → Ω

𝑥

𝜑(𝑥)
Ω
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Why is it important?

• Do automatic measurements

• Compare shapes

• Statistics

• Build statistical models

• Transfer labels and annotations

• Atlas based segmentation

Ω

𝜑:Ω → Ω

Ω

Maybe the most important problem in computer vision and medical image analysis
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Registration as analysis by synthesis

Parameters 𝜃

Comparison: 𝑝 𝐼𝑇 𝜃, 𝐼𝑅)

Update using 𝑝(𝜃|𝐼𝑇 , 𝐼𝑅) Synthesis 𝜑[𝜃]

Prior 𝜑[𝜃] ∼ 𝑝(𝜃)
𝐼𝑇 𝐼𝑅 ∘ 𝜑[𝜃]
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The registration problem

Mapping 𝜑[𝜃∗] is trade-off that
• how well does the mapping explain the target image 

(likelihood function)
• matches the prior assumptions (prior distribution)

Probabilistic formulation
𝜃∗ = argmax

𝜃
𝑝 𝜃 𝐼𝑇 , 𝐼𝑅 = argmax

𝜃
𝑝 𝜃 𝑝(𝐼𝑇|𝜃, 𝐼𝑅)
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Ω

The registration problem

Ω

𝜑[𝜃]

𝜃∗ = argmax
𝜃

𝑝 𝜃 𝐼𝑇 , 𝐼𝑅 = argmax
𝜃

𝑝 𝜃 𝑝(𝐼𝑇|𝜃, 𝐼𝑅)
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Ω

The registration problem

Ω

𝜃∗ = argmax
𝜃

𝑝 𝜃 𝐼𝑇 , 𝐼𝑅 = argmax
𝜃

𝑝 𝜃 𝑝(𝐼𝑇|𝜃, 𝐼𝑅)

𝜑[𝜃]
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Ω

The registration problem

Ω

𝜑[𝜃]

𝜃∗ = argmax
𝜃

𝑝 𝜃 𝐼𝑇 , 𝐼𝑅 = argmax
𝜃

𝑝 𝜃 𝑝(𝐼𝑇|𝜃, 𝐼𝑅)
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The registration problem

Main questions:
• How do we represent the mapping?
• How do we define the prior?
• What is the likelihood function?
• How can we solve the optimization problem?

Probabilistic formulation
𝜑∗ = argmax

𝜑
𝑝 𝜑 𝐼𝑇 , 𝐼𝑅 = argmax

𝜑
𝑝 𝜑 𝑝(𝐼𝑇|𝜑, 𝐼𝑅)
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Representation of the mapping 𝜑
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Representation of the mapping 𝜑
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Representation of the mapping 𝜑

Assumption: 
Images are rigidly aligned

• Mapping can be represented as a 
displacement vector field:

𝜑 𝑥 = 𝑥 + 𝑢 𝑥
𝑢 ∶ Ω → ℝ𝑑

𝑥
u(𝑥)
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Representation of the mapping 𝜑

Assumption: 
Images are rigidly aligned

• Mapping can be represented as a 
displacement vector field:

𝜑 𝑥 = 𝑥 + 𝑢 𝑥
𝑢 ∶ Ω → ℝ𝑑

Observation:
Knowledge of 𝑢 and 𝐼𝑅 allows us to 
synthesize target image 𝐼𝑇
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Registration as analysis by synthesis

Parameters 𝜃

Comparison: 𝑝 𝐼𝑇 𝜃, 𝐼𝑅)

Update using 𝑝(𝜃|𝐼𝑇 , 𝐼𝑅) Synthesis 𝜑[𝜃]

Prior 𝜑[𝜃] ∼ 𝑝(𝜃)
𝐼𝑇 𝐼𝑅 ∘ 𝜑[𝜃]
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Priors

Define the Gaussian process 
𝑢 ∼ 𝐺𝑃 𝜇, 𝑘

with mean function

𝜇: Ω → ℝ2

and covariance function

𝑘: Ω × Ω → ℝ2×2 .
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Zero mean:

𝜇 𝑥 =
0
0

Squared exponential covariance function (Gaussian kernel)

𝑘 𝑥, 𝑥′ =

s1exp −
𝑥 − 𝑥′ 2

𝜎1
2 0

0 s2exp −
𝑥 − 𝑥′ 2

𝜎2
2

Example prior: Smooth 2D deformations
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𝑠1 = 𝑠2 small,     𝜎1 = 𝜎2 large

Example prior: Smooth 2D deformations
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𝑠1 = 𝑠2 small,     𝜎1 = 𝜎2 small

Example prior: Smooth 2D deformations
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𝑠1 = 𝑠2 large,     𝜎1 = 𝜎2 large

Example prior: Smooth 2D deformations
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• We have a finite, parametric representation of the process.
• We know the pdf for a deformation 𝑢

𝑝 𝑢[𝛼] = 𝑝 𝛼 =ෑ

𝑖=1

𝑟
1

2𝜋
exp(−𝛼𝑖

2/2) =
1

𝑍
exp(−

1

2
𝛼 2)

Represent 𝐺𝑃(𝜇, 𝑘) using only the first 𝑟 components of its KL-Expansion

𝑢 = 𝜇 +෍

𝑖=1

𝑟

𝛼𝑖 𝜆𝑖 𝜙𝑖 , 𝛼𝑖 ∼ 𝑁(0, 1)

Parametric representation of Gaussian process
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Registration as analysis by synthesis

Parameters 𝜃

Comparison: 𝑝 𝐼𝑇 𝜃, 𝐼𝑅)

Update using 𝑝(𝜃|𝐼𝑇 , 𝐼𝑅) Synthesis 𝜑[𝜃]

Prior 𝜑[𝜃] ∼ 𝑝(𝜃)
𝐼𝑇 𝐼𝑅 ∘ 𝜑[𝜃]
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Likelihood function: Image registration

Assumptions: 

• Corresponding points have the same image intensity (up to i.i.d. noise)

𝑥

𝜑[𝜃](𝑥)𝐼𝑅 𝐼𝑇

𝑝 𝐼𝑇(𝜑[𝜃](𝑥)) 𝐼𝑅 , 𝜃, 𝑥 ∼ 𝑁 𝐼𝑅 𝑥 , 𝜎2

Images are similar when the intensities match
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Likelihood function: Image registration

𝑥

𝜑[𝜃](𝑥)𝐼𝑅 𝐼𝑇

𝑝 𝐼𝑇 𝐼𝑅, 𝜃 =ෑ

𝑥∈Ω

𝑝 𝐼𝑇(𝜑[𝜃](𝑥)) 𝐼𝑅 , 𝜃, 𝑥 =ෑ

𝑥∈Ω

1

𝑍
exp −

(𝐼𝑇 𝜑 𝑥 − 𝐼𝑅 𝑥 ) 2

𝜎2

Images are similar when the intensities match

Assumptions: 

• Corresponding points have the same image intensity (up to i.i.d. noise)

Image term outside 
mapping function.

Makes problem
really difficult
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Registration as analysis by synthesis

Parameters 𝜃

Comparison: 𝑝 𝐼𝑇 𝜃, 𝐼𝑅)

Update using 𝑝(𝜃|𝐼𝑇 , 𝐼𝑅) Synthesis 𝜑[𝜃]

Prior 𝜑[𝜃] ∼ 𝑝(𝜃)
𝐼𝑇 𝐼𝑅 ∘ 𝜑[𝜃]
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Registration problem

𝛼∗ =
𝜃∗ = argmax

𝜃
𝑝 𝜑 𝜃 𝑝(𝐼𝑇|𝜑[𝜃], 𝐼𝑅)

= argmax
𝜃

1

𝑍1
exp −

1

2
𝜃 2

1

𝑍2
ෑ

𝑥

exp −
𝐼𝑇 𝜑 𝜃 𝑥 − 𝐼𝑅(𝑥))

2

𝜎2

• Parametric problem, since: 

𝜑[𝜃](𝑥) = 𝑥 + 𝜇(𝑥) +෍

𝑖=1

𝑟

𝜃𝑖 𝜆𝑖 𝜙𝑖(𝑥)

• Can be optimized using gradient descent
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Variational formulation

𝛼∗ =argmax
𝜃

1

𝑍1
exp −

1

2
𝜃 2

1

𝑍2
ෑ

𝑥

exp −
𝐼𝑇 𝜑 𝜃 𝑥 − 𝐼𝑅(𝑥))

2

𝜎2

argmax
𝜃

ln
1

𝑍1
exp −

1

2
𝜃 2 + ln

1

𝑍2
ෑ

𝑥

exp −
𝐼𝑇 𝜑 𝜃 𝑥 − 𝐼𝑅(𝑥))

2

𝜎2

= argmax
𝜃

ln
1

𝑍1
−
1

2
𝜃 2 + ln

1

𝑍2
− ෍

𝑥∈Ω

𝐼𝑇 𝜑 𝜃 𝑥 − 𝐼𝑅(𝑥))
2

𝜎2

= argmin
𝜃

෍

𝑥∈Ω

𝐼𝑇 𝜑 𝜃 𝑥 − 𝐼𝑅(𝑥))
2

𝜎2
+
𝜆

2
𝜃 2

Image metric
Regularizer
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The registration problem

Probabilistic formulation
𝜃∗ = argmin

𝜃
− ln 𝑝 𝐼𝑇 𝐼𝑅 , 𝜑 𝜃 − ln 𝑝 𝜑 𝜃

Variational formulation
𝜃∗ = argmin

𝜃
𝐷 𝐼𝑇 , 𝐼𝑅 , 𝜑[𝜃] + 𝜆𝑅[𝜑 𝜃 ]
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Exercise: Registration in Scalismo

Type into the codepane:   
goto(“http://shapemodelling.cs.unibas.ch/exercises/Exercise14.html”)

Scalismo 0.16:  Check examples in https://github.com/unibas-gravis/pmm2018
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A selection of Gaussian process priors
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Why are priors interesting?

𝜃

𝜃∗ = argmax
𝜃

𝑝 𝜑 𝜃 𝑝(𝐼𝑇|𝐼𝑅, 𝜑[𝜃])
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Why are priors interesting?

𝜃∗ = argmax
𝜃

𝑝 𝜑 𝜃 𝑝(𝐼𝑇|𝐼𝑅, 𝜑[𝜃])

𝜃
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Models of smooth deformations

• Typical assumption:

• Deformation field is smooth

• GP approach

• Choose smooth kernel functions

𝑘 𝑥, 𝑥′ = 𝑠 exp(−
𝑥 − 𝑥′ 2

𝜎2
)

• Regularization operators

• Penalize large derivatives

ℛ 𝑢 = 𝑅𝑢 2 = ෍

𝑖=0

𝑛

𝛼𝑖 𝐷𝑖𝑢
2
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Connection between regularizer and kernel

Discrete setting: Finite difference operators

Regularizer: ℛ ො𝑢 = ෡𝐷ො𝑢
2

෡𝐷ො𝑢 =

−2 1
1 −2 1

1 −2
0

1
1

0
−2 1
1 −2 1

⋱

𝑢(𝑥1)
𝑢(𝑥2)

𝑢(𝑥3)
𝑢(𝑥4)
𝑢(𝑥5)
⋮

Steinke, Florian, and Bernhard Schölkopf. "Kernels, regularization and differential equations." Pattern Recognition
41.11 (2008): 3271-3286.

𝑢(𝑥1)

𝑢(𝑥𝑖)

𝑥1 𝑥𝑖
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Connection between regularizer and kernel

p ොu = exp(−
1

2
ℛ ො𝑢 ) = exp(−

1

2
෡𝐷ො𝑢

2
)

= exp(−
1

2
෡𝐷ො𝑢

𝑇
(෡𝐷 ො𝑢) = exp(−

1

2
ො𝑢𝑇 ෡𝐷𝑇 ෡𝐷ො𝑢 )

෡𝐷𝑇 ෡𝐷 = 𝐾−1

• D specifies the “inverse” covariance matrix
• Can compute K from:

෡𝐷𝑇෡𝐷𝐾 = 𝐼
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Green’s functions and covariance functions

ℛ 𝑢 = 𝑅𝑢 2 =෍

𝑖=0

𝑛

𝛼𝑖 𝐷𝑖𝑢
2

Corresponding covariance function for GP is the Greens function G:

𝑅∗𝑅𝐺 𝑥, 𝑦 = 𝛿(𝑥 − 𝑦)

• We can define Gaussian processes, which mimic typical regularization operators.

T. Poggio and F. Girosi; Networks for Approximation and Learning, Proceedings of the IEEE, 1990
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Example: Gaussian kernel

𝑘 𝑥, 𝑥′ = exp(−
𝑥 − 𝑥′ 2

𝜎2
)

ℛ 𝑢 = 𝑅𝑢 2 = ෍

𝑖=0

∞
𝜎2𝑖

𝑖! 2𝑖
𝐷𝑖𝑢

2

• Non-zero functions are penalized 

• pushes functions to zero away from data

Yuille, A. and Grzywacz M. A mathematical analysis of the motion coherence theory. International Journal of Computer 
vision
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Example: Exponential kernel (1D case)

𝑘 𝑥, 𝑥′ =
1

2𝛼
exp(−𝛼 𝑥 − 𝑥′ )

ℛ 𝑢 = 𝑅𝑢 2 = 𝛼2𝑢 + 𝐷1𝑢
2

Rasmussen, Carl Edward, and Christopher KI Williams. Gaussian processes for machine learning. Vol. 1. Cambridge: MIT 
press, 2006.
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Matérn class of kernels

𝑘 𝑥, 𝑥′ = 𝑠
21−𝜈

Γ 𝜈
2 2𝜈

𝑥 − 𝑥′

𝜌

𝜈

𝐾𝑣( 2𝜈
𝑥 − 𝑥′

𝜌
)

• Γ is the Γ function, 𝑘𝜈 the modified Bessel function and 𝜈, 𝜌 are parameters

• Process 𝑢~𝐺𝑃 0, 𝑘 is  𝜈 − 1 times m.s. differentiable

• Special cases:

• 𝜈 =
1

2
: 𝑘 𝑥, 𝑥′ = 𝑠 exp(−

𝑥−𝑥′

𝜌
)

• 𝜈 =
3

2
: k x, x′ = 𝑠(1 +

3 𝑥−𝑥′

𝜌
) exp(−

3 𝑥−𝑥′

𝜌
)

• 𝜈 → ∞ Gaussian kernel
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Thin-plate splines

• Minimizes the bending energy of a metal sheet 
𝑅 𝑢 = 𝛻𝑇𝛻𝑢 2

• Corresponding covariance function

𝑘 𝑥, 𝑥′ =
1

12
2 𝑥 − 𝑥′ 3 − 3𝑅( 𝑥 − 𝑥′ 2 + 𝑅3

where 𝑅 = max
𝑥,𝑥′∈Ω

‖𝑥 − 𝑥′‖

Rohr, Karl, et al. "Landmark-based elastic registration using approximating thin-plate splines." IEEE Transactions on 
medical imaging 20.6 (2001): 526-534.
Williams, Oliver and Fitzgibbon Andrew, “Gaussian process implicit surfaces”



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2018 | BASEL

B-Splines

• We can build a covariance function from B-Spline basis functions 𝛽
(𝑠 is a scaling constant)

𝑘 𝑥, 𝑦 = ෍

𝑘∈ℤ𝑑

𝛽 𝑠𝑥 − 𝑘 𝛽 𝑠𝑦 − 𝑘

• Corresponding deformation model often called “free form deformations”

• Rueckert, Daniel, et al. "Nonrigid registration using free-form deformations: application to breast MR images." 
IEEE transactions on medical imaging 18.8 (1999): 712-721.

• Klein, Stefan, et al. "Elastix: a toolbox for intensity-based medical image registration." IEEE transactions on 
medical imaging 29.1 (2010): 196-205.



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2018 | BASEL

Many standard models for registration can be formulated using Gaussian processes

• Yields probabilistic interpretation

• We can sample and visualize deformation fields 

• Can use them as building blocks for more complicated priors
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1. 𝑘 𝑥, 𝑥′ = 𝑓 𝑥 𝑓 𝑥’ 𝑇 , 𝑓: 𝑋 → ℝ𝑑

2. 𝑘 𝑥, 𝑥′ = 𝛼𝑘1 𝑥, 𝑥′ , 𝛼 ∈ ℝ+ (scaling)

3. k 𝑥, 𝑥′ = 𝐵𝑇𝑘1 𝑥, 𝑥′ 𝐵, B ∈ ℝ𝑟×𝑑 (lifting)

4. 𝑘 𝑥, 𝑥′ = 𝑘1 𝑥, 𝑥′ + 𝑘2 𝑥, 𝑥′ (or relationship)

5. 𝑘 𝑥, 𝑥′ = 𝑘1 𝑥, 𝑥′ ⋅ 𝑘2(𝑥, 𝑥
′) (and relationship)

Constructing s.p.d. kernels
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Multi-scale kernels

Add kernels that act on different scales:

𝑘 𝑥, 𝑥′ =෍

𝑖=0

𝑛

෍

𝑘∈ℤ𝑑

𝛽 2−𝑖𝑥 − 𝑘 𝛽 2−𝑖𝑥′ − 𝑘

• Wavelet like multiscale representation

Opfer, Roland. "Multiscale kernels." 
Advances in computational mathematics 25.4 (2006): 357-380.
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Multi-scale kernel
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Anisotropic priors

Scale deformations differently in each direction

k 𝑥, 𝑥′ = 𝑅𝑇 𝑠1 0

0 𝑠2
𝑘 𝑥, 𝑥′

𝑠1 0

0 𝑠2
𝑅

• R is a rotation matrix

• 𝑘 is scalar valued

• 𝑠1, s2 scaling factors



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2018 | BASEL

Anisotropic priors
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Spatially-varying priors

Use different models for different regions

𝑘 𝑥, 𝑥′ = 𝜒 𝑥 𝜒 𝑥′ 𝑘1 𝑥, 𝑥′

+ 1 − 𝜒 𝑥 (1 − 𝜒 𝑥′ ) 𝑘2(𝑥, 𝑥
′)

χ 𝑥 = ቊ
1 if 𝑥 ∈ thumb region
0 otherwise

𝜒 𝑥 = 1

𝜒 𝑥 = 0

Freiman, Moti, Stephan D. Voss, and Simon K. Warfield. "Demons registration with local affine adaptive regularization: 
application to registration of abdominal structures." Biomedical Imaging: From Nano to Macro, 2011 IEEE 
International Symposium on. IEEE, 2011.
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Spatially-varying priors
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Statistical deformation models

Estimate mean and covariance function from data:

𝜇 𝑥 = 𝑢 𝑥 =
1

𝑛
෍
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𝑛

𝑢𝑖 (𝑥)

𝑘𝑆𝑀 𝑥, 𝑥′ =
1

𝑛 − 1
෍

𝑖

𝑛

(𝑢𝑖 𝑥 − 𝑢(𝑥)) 𝑢𝑖 𝑥′ − 𝑢(𝑥′)
𝑇

𝑢1 ∶ Ω → ℝ2 𝑢2 ∶ Ω → ℝ2

…

𝑢𝑛 ∶ Ω → ℝ2
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Example 5: Statistical deformation models
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A selection of likelihood functions
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Landmark likelihood

For one landmark pair (𝑙𝑅 , 𝑙𝑇): 

𝑝 𝑙𝑇 𝜃, 𝑙𝑅 = 𝑁 𝜑 𝜃 𝑙𝑅 , 𝐼2𝑥2𝜎
2

For many landmarks 
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1 , 𝑙𝑇
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𝑛, 𝑙𝑇
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Landmark likelihood: Some remarks

• Classical problem in registration

• Needs either many landmark points or good structure of prior to achieve good results

Rohr, Karl, et al. "Landmark-based elastic registration using approximating thin-plate splines." IEEE Transactions on 
medical imaging 20.6 (2001): 526-534.
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Given:
• Gaussian process: 𝑢 ∼ 𝐺𝑃(𝜇, 𝑘)

• Observations: {(𝑙𝑖
𝑅 , ෤𝑢𝑖), 𝑖 = 1 ,… , 𝑛}

Assume:
෤𝑢𝑖 = 𝑢 𝑙𝑖 + 𝜖 with 𝜖 ∼ 𝑁(0, 𝜎2𝐼2×2).

Goal:
• Find posterior distribution 

𝑢 | 𝑙1
𝑅 , … , 𝑙𝑛

𝑅 , ෤𝑢1, … , ෤𝑢𝑛

𝑢𝑛

Landmark registration using GP Regression

𝑢1
𝑙𝑅
1

𝑙𝑅
𝑛
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𝜇𝑝(𝑥) = 𝜇 𝑥 + 𝐾 𝑥, 𝑌 (𝐾 𝑌, 𝑌 + 𝜎2𝐼2𝑛×2𝑛 )
−1 ෥𝒖 − 𝜇(𝑌)

𝑘𝑝 𝑥, 𝑥′ = 𝑘 𝑥, 𝑥′ − 𝐾 𝑥, 𝑌 (𝐾 𝑌, 𝑌 + 𝜎2𝐼2𝑛×2𝑛 )
−1𝐾(𝑌, 𝑥′)

The posterior 
𝑢 |𝑙1

𝑅 , … , 𝑙𝑛
𝑅 , ෤𝑢1, … , 𝑛

is a Gaussian process 
𝐺𝑃 𝜇𝑝, 𝑘𝑝

Its parameters are known analytically.

Gaussian process regression
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Landmark registration using GP Regression
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Hybrid registration

• Combine landmark registration with intensity:

1. Use Gaussian process regression to obtain posterior from 𝐺𝑃(𝜇, 𝑘) from landmarks

2. Use 𝐺𝑃(𝜇𝑝, 𝑘𝑝) as new prior model for registration

• Simple solution to otherwise difficult problem

Wörz, Stefan, and Karl Rohr. "Hybrid spline-based elastic image registration using analytic solutions of the 
navier equation." Bildverarbeitung für die Medizin 2007. Springer Berlin Heidelberg, 2007. 151-155.

Lu, Huanxiang, Philippe C. Cattin, and Mauricio Reyes. "A hybrid multimodal non-rigid registration of MR 
images based on diffeomorphic demons." Engineering in Medicine and Biology Society (EMBC), 2010 Annual 
International Conference of the IEEE. IEEE, 2010.
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Likelihood function: Image registration

Assumptions: 

• Corresponding points have the same image intensity (up to i.i.d. noise)

𝑥

𝜑[𝜃](𝑥)𝐼𝑅 𝐼𝑇

𝑝 𝐼𝑇(𝜑[𝜃](𝑥)) 𝐼𝑅 , 𝜃, 𝑥 ∼ 𝑁 𝐼𝑅 𝑥 , 𝜎2

Images are similar when the intensities match
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Likelihood function: Image registration

𝑥

𝜑[𝜃](𝑥)𝐼𝑅 𝐼𝑇

𝑝 𝐼𝑇 𝐼𝑅, 𝜃 =ෑ

𝑥∈Ω

𝑝 𝐼𝑇(𝜑[𝜃](𝑥)) 𝐼𝑅 , 𝜃, 𝑥 =ෑ

𝑥∈Ω

1

𝑍
exp −

(𝐼𝑇 𝜑 𝑥 − 𝐼𝑅 𝑥 ) 2

𝜎2

Images are similar when the intensities match

Assumptions: 

• Corresponding points have the same image intensity (up to i.i.d. noise)

Image term outside 
mapping function.

Makes problem
really difficult
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Image vs. Landmark registration

• Landmark registration is easy

• All components are Gaussian

• Closed form solution using Gaussian process regression

• Image registration is hard

• Image destroys Gaussian assumption

• Likelihood function is not Gaussian

• Problem with many local minima
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What about surface registration?

Reference (surface): 
Γ𝑅

Γ𝑅
Γ𝑇

𝜑

Target (surface): 
Γ𝑇
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A trick: Implicit definition of a surface

• Any surface Γ can be represented as 
the zero level set of a level set 
function Φ

Γ = 𝑥 Φ 𝑥 = 0}

• Popular choice is the signed distance 
function defined as 
𝐷Γ 𝑥 = CPΓ(𝑥) − 𝑥
with
CPΓ(𝑥) = argmin

𝑥′∈Γ
‖𝑥 − 𝑥′‖

𝐷Γ 𝑥 = −30

𝐷Γ 𝑥 = −15

𝐷Γ 𝑥 = 0

𝐷Γ 𝑥 = 15

𝐷Γ 𝑥 = 30

𝐷Γ 𝑥 = 45



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2018 | BASEL

Reference 𝐷𝑅: Ω𝑅 → ℝ Target 𝐷𝑇 ∶ Ω𝑇 → ℝ

Likelihood function: Surface registration

• We define the distance functions and use image to image likelihoods
𝑝 𝐷𝑇 𝜑[𝜃](𝑥) 𝜃, 𝐷𝑅 , 𝑥 ∼ 𝑁 𝐷𝑅𝜑[𝜃](𝑥), 𝜎

2

• Most likely solution will map points on the zero level-sets to each other
• Noise parameter 𝜎2 has geometric interpretation (variance of distance between the mapped 

points)

𝑥

𝜑[𝜃](𝑥)
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𝜌1

𝑥1

Likelihood function: Active shape models

• ASMs model each profile 𝜌(𝑥𝑖) as a normal 
distribution  

𝑝 𝜌(𝑥𝑖) = 𝑁(𝜇𝑖 , Σ𝑖)

• Single profile point 𝑥𝑖:
𝑝 𝜌(𝜑[𝜃](𝑥𝑖))|𝜃, 𝑥𝑖 = 𝑁(𝜇𝑖 , Σ𝑖)

• Image likelihood:

𝑝 𝜌(𝜑[𝜃](𝑥))|𝜃, Γ𝑅 =ෑ

𝑖

𝑁(𝜇𝑖 , Σ𝑖)

Extracts profile
(feature)  from image

Shape is well matched if environment around profile points is likeli under trained model.
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Exercise: Active Shape Models in Scalismo

Type into the codepane:   
goto(“http://shapemodelling.cs.unibas.ch/exercises/Exercise16.html”)

Scalismo 0.16:  Check examples in https://github.com/unibas-gravis/pmm2018
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Summary: Modelling

• GPs provide probabilistic interpretation to classic registration models 
• Can visualize assumptions 

• New ways to combine priors to individual applications.

• Modelling of prior is separate from likelihood
• Any GP model can be combined with any likelihood function

• Flexible framework to tailor model and algorithm to 
needs of applications
• No increase in complexity

• Modelling and model fitting are separated
• Gradient based methods are important, but not the only method
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Optimization
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The optimization problem

• The final problem is a difficult
optimization problem

• Possibly many local minima

• Non-linearity due to image term

• Not possible to avoid it

• Flexible models makes things worse

𝜃∗ = argmax
𝜃

𝑝 𝜑 𝜃 𝑝(𝐼𝑇|𝐼𝑅 ∘ 𝜑[𝜃])

𝜃
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Local minima

• Rigid Transformation
• Minima due to structure of object

Possible approach: Multi-resolution

• Non-rigid Transformation
• Minima appear/dissappear when shape changes

Possible approach: Multi-scale models, 
regularization
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Multi resolution

Idea: Solve optimzation problem for a sequence of smoothed out objects.
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Implementation

• Smooth the input shapes

• For images, achieved by Gaussian blurring

72

Almost no local minima
No-details

Many local minima
All-details

Initial registration Final registration
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Multi-scale / Regularization

Idea: Solve optimzation problem for a sequence of increasingly detailed deformations

Only large, smooth deformations
Large regularization value

Allow detailed deformations
Almost no regularization

Initial registration Final registration
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Doing the registration

Strategies:

• Gradient-based registration

• Compute gradient and use local optimization methods

• Quasi-Newton schemes , SGD, …

• Gradient free registration

• Use global optimization method directly on cost function

• Examples: Simulated annealing, Particle Swarm, …

• ICP-based methods

• Assume correspondence and solve in each iteration analytic problem

• Examples: Non-rigid ICP, Active Shape models, CPD
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Model-fitting using Markov Chain Monte Carlo

• Can obtain full posterior distribution 
using the Metropolis Hastings 
algorithm

• Needs only point-wise evaluation of 
unnormlized posterior

• Leads to principled way to integrate 
unreliable bottom up methods

• Automatically detected landmarks

MAP Solution
𝜑∗ = argmax

𝜑
𝑝 𝜑 𝐼𝑇 , 𝐼𝑅

𝑝 𝜑 𝐼𝑇 , 𝐼𝑅) =
𝑝 𝜑[𝛼] 𝑝 𝐼𝑇 𝐼𝑅 , 𝜑[𝛼]

𝑁(𝐼𝑇)

More on this tomorrow!


