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Aims of the talk

• Show how Analysis by Synthesis  and 
Gaussian processes lead to a family of 
methods for non-rigid registration

• Provide an understanding of many 
common algorithms in terms of 
Gaussian processes

• Show how to derive new registration 
approaches using GPMMs and MCMC
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Outline

• The registration problem 
• Problem formulation

• Registration as analysis by synthesis 
problem

• An algorithm using Gaussian process 
priors

• Priors for registration
• Spline-based models, Radial basis 

functions

• Multis-scale and Spatially-varying models

• Statistical deformation models

• Likelihood functions 

• Landmark registration

• Image to image registration

• Surface to image registration

• Advancing registration
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Outline

• The registration problem 

• Problem formulation

• Registration as analysis by synthesis 
problem

• An algorithm using Gaussian process 
priors

• Priors for registration

• Spline-based models 

• Radial basis functions

• Statistical deformation models

• Likelihood functions 

• Landmark registration

• Image to image registration

• Surface to image registration

• Some ideas where to go from here

𝑥
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Ω

The registration problem

5

Reference: 

𝐼𝑅: Ω → ℝ

Target: 

𝐼𝑇: Ω → ℝ

𝜑:Ω → Ω

𝑥

𝜑(𝑥)
Ω
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The registration problem

Variational formulation

𝜑∗ = argmin
𝜑

𝐷 𝐼𝑅 , 𝐼𝑇 ∘ 𝜑 + 𝜆𝑅[𝜑]

Mapping 𝜑∗ is trade-off that
• makes the images look similar (for similarity measure 𝐷)
• matches the prior assumptions (encoded by regularizer R)
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Ω
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Ω
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Ω

The registration problem
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Variational formulation

𝜑∗ = argmin
𝜑

𝐷 𝐼𝑅 , 𝐼𝑇 ∘ 𝜑 + 𝜆𝑅[𝜑]

𝜑
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Representation of the mapping 𝜑
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Representation of the mapping 𝜑
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Representation of the mapping 𝜑

Assumption: 
Images are rigidly aligned

• Mapping can be represented as a 
displacement vector field:

𝜑 𝑥 = 𝑥 + 𝑢 𝑥
𝑢 ∶ Ω → ℝ𝑑

𝑥
u(𝑥)
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Representation of the mapping 𝜑

Assumption: 
Images are rigidly aligned

• Mapping can be represented as a 
displacement vector field:

𝜑 𝑥 = 𝑥 + 𝑢 𝑥
𝑢 ∶ Ω → ℝ𝑑

Further assumption:

• 𝜑 is parametric : 
𝜑 𝜃 𝑥 = 𝑥 + 𝑢[𝜃](𝑥)
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Representation of the mapping 𝜑

Mapping:
𝜑 𝜃 𝑥 = 𝑥 + 𝑢[𝜃](𝑥)

Observation:

• Knowledge of 𝜃 and 𝐼𝑅 allows us to 
synthesize target image 𝐼𝑇
• (at least up to intensity differences)
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Registration as analysis by synthesis

Parameters 𝜃

Comparison: 𝑝 𝐼𝑇 𝜃, 𝐼𝑅)

Update using 𝑝(𝜃|𝐼𝑇 , 𝐼𝑅) Synthesis 𝜓(𝜃)

Prior 𝜑[𝜃] ∼ 𝑝(𝜃)
𝐼𝑇 𝐼𝑅 ∘ 𝜑[𝜃]
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Probabilistic formulation of registration

Mapping 𝜃∗ is trade-off that defines a mapping 𝜑[𝜃∗] which
• explains the data well (likelihood function)
• matches the prior assumptions (prior distribution)

MAP solution
𝜃∗ = argmax

𝜃
𝑝 𝜑[𝜃] 𝐼𝑇 , 𝐼𝑅 = argmax

𝜃
𝑝 𝜑 𝜃 𝑝(𝐼𝑇|𝐼𝑅 ∘ 𝜑[𝜃])

Using Bayes rule: 𝑃 𝜑[𝜃]|𝐼𝑇 , 𝐼𝑅 =
𝑃 𝐼𝑇|𝜑[𝜃],𝐼𝑅 𝑃 𝜑[𝜃],𝐼𝑅

𝑃 𝐼𝑇
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Registration problem

𝜑∗ = argmax
𝜃

𝑝 𝜑 𝜃 𝑝(𝐼𝑇|𝐼𝑅 ∘ 𝜑[𝜃])

= argmax
𝜃

ln 𝑝(𝜑 𝜃 ) + ln(𝑝 𝐼𝑇 𝐼𝑅 ∘ 𝜑[𝜃] )

= argmin
𝜃

− ln 𝑝 𝜑 𝜃 − ln(𝑝 𝐼𝑇 𝐼𝑅 ∘ 𝜑[𝜃] )
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The registration problem

Take home message: Registration is model fitting!!!

Probabilistic formulation
𝜃∗ = argmin

𝜃
− ln 𝑝 𝐼𝑇 𝐼𝑅 ∘ 𝜑 𝜃 − ln 𝑝 𝜑 𝜃

Variational formulation
𝜑∗ = argmin

𝜑
𝐷 𝐼𝑇 , 𝐼𝑅 ∘ 𝜑 + 𝜆𝑅[𝜑]
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Gaussian processes

Define the Gaussian process 
𝑢 ∼ 𝐺𝑃 𝜇, 𝑘

with mean function

𝜇: Ω → ℝ2

and covariance function

𝑘: Ω × Ω → ℝ2×2 .
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• We have a finite, parametric representation of the process.
• We know the pdf for a deformation 𝑢

𝑝 𝑢 = 𝑝 𝛼 =ෑ

𝑖=1

𝑟
1

2𝜋
exp(−𝛼𝑖

2/2) =
1

𝑍
exp(−

1

2
𝛼 2)

Represent GP using only the first 𝑟 components of its KL-Expansion

𝑢 = 𝜇 +

𝑖=1

𝑟

𝛼𝑖 𝜆𝑖 𝜙𝑖 , 𝛼𝑖 ∼ 𝑁(0, 1)

Parametric representation of Gaussian process
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Registration problem

𝜑∗ = argmin
𝜃

− ln 𝑝 𝜑 𝜃 − ln 𝑝(𝐼𝑇|𝐼𝑅 ∘ 𝜑[𝜃])

= argmin
𝜃

−ln
1

Z
exp(−

1

2
𝜃 2) − ln(𝑝 𝐼𝑇 𝐼𝑅 ∘ 𝜑[𝜃]

= argmin
𝜃

−ln
1

𝑍
+
1

2
𝜃 2 − ln(𝑝 𝐼𝑇 𝐼𝑅 ∘ 𝜑[𝜃]

= argmin
𝜃

1

2
𝜃 2− ln(𝑝 𝐼𝑇 𝐼𝑅 ∘ 𝜑[𝜃]
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Summary: registration problem

• Variational and probabilistic formulation are closely related
• Prior can be seen as regularizer

• Likelihood term is an image similarity

• For a low-rank Gaussian process prior, the problem becomes parametric since

𝜑[𝜃](𝑥) = 𝑥 + 𝜇(𝑥) +

𝑖=1

𝑟

𝜃𝑖 𝜆𝑖 𝜙𝑖(𝑥)

• Can be optimized using gradient-descent schemes. 

• All the regularization assumptions are encoded in the eigenfunctions 𝜙𝑖

argmin
𝜃

1

2
𝜃 2+ ln(𝑝 𝐼𝑇 𝐼𝑅 ∘ 𝜑[𝜃] )
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Outline

• The registration problem 
• Problem formulation

• Registration as analysis by synthesis 
problem

• An algorithm using Gaussian process 
priors

• Priors for registration
• Spline-based models, Radial basis 

functions

• Multis-scale and Spatially-varying models

• Statistical deformation models

• Likelihood functions 

• Landmark registration

• Image to image registration

• Surface to image registration

• Advancing registration
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Why are priors interesting?

𝜃

𝜃∗ = argmax
𝜃

𝑝 𝜑 𝜃 𝑝(𝐼𝑇|𝐼𝑅 ∘ 𝜑[𝜃])
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Why are priors interesting?

𝜃∗ = argmax
𝜃

𝑝 𝜑 𝜃 𝑝(𝐼𝑇|𝐼𝑅 ∘ 𝜑[𝜃])

𝜃
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ex

Defining a Gaussian process

A Gaussian process 
𝐺𝑃 𝜇, 𝑘

is completely specified by a mean function 𝜇 and covariance function 
(or kernel) 𝑘.

• 𝜇: Ω → ℝ𝑑 defines how the average deformation looks like
• 𝑘: Ω × Ω → ℝ𝑑×𝑑 defines how it can deviate from the mean
• Must be positive semi-definite
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The mean function

• Usual assumption:

𝜇 𝑥 =
𝜇1(𝑥)
⋮

𝜇𝑑(𝑥)
=

0
⋮
0

• The reference shape is an 
average shape.
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𝑘 𝑥, 𝑥′ = 𝑠 exp(−
𝑥 − 𝑥′ 2

𝜎2
)

𝑠 = 1, 𝜎 = 3 𝑠 = 1, 𝜎 = 5 𝑠 = 2, 𝜎 = 3

Scalar-valued Gaussian kernel
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𝑘 𝑥, 𝑥′ =
𝑘(1)(𝑥, 𝑥′) ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑘(𝑑)(𝑥, 𝑥′)

• 𝑘(1), … , 𝑘(𝑑):𝒳 × 𝒳 → ℝ are scalar-valued kernels
• 𝑘 ∶ 𝒳 ×𝒳 → ℝ𝑑×𝑑 becomes a matrix valued kernel. 

Assumption: Each dimension is modelled independently.
• the output-dimensions are uncorrelated.

Diagonal kernel
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𝑘 𝑥, 𝑥′ =

s1exp −
𝑥 − 𝑥′ 2

𝜎1
2 0

0 s2exp −
𝑥 − 𝑥′ 2

𝜎2
2

A model for smooth 2D deformations



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

𝑠1 = 𝑠2 small,     𝜎1 = 𝜎2 large

A model for smooth deformations
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𝑠1 = 𝑠2 small,     𝜎1 = 𝜎2 small

A model for smooth deformations
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𝑠1 = 𝑠2 large,     𝜎1 = 𝜎2 large

A model for smooth deformations
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Matern class of kernels

𝑘 𝑥, 𝑥′ = 𝜎2
21−𝜈

Γ 𝜈
2 2𝜈

𝑥 − 𝑥′

𝜌

𝜈

𝐾𝑣( 2𝜈
𝑥 − 𝑥′

𝜌
)

• Γ is the Γ function, 𝑘𝜈 the modified Bessel function and 𝜈, 𝜌 are parameters

• The derivatives are  𝜈 − 1 times differentiable

• Special cases:

• 𝜈 =
1

2
: 𝑘 𝑥, 𝑥′ = 𝜎2 exp(−

𝑥−𝑥′

𝜌
)

• 𝜈 =
3

2
: k x, x′ = 𝜎2(1 +

3 𝑥−𝑥′

𝜌
) exp(−

3 𝑥−𝑥′

𝜌
)

• 𝜈 → ∞ Gaussian kernel
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Thin-plate splines

• Minimize the bending energy of a metal sheet 

𝑅 𝜑 = 

𝑘=1

𝑑

න
Ω

𝛻𝑇𝛻𝜑𝑘 𝑥
2
𝑑𝑥

• Corresponding covariance function

𝑘 𝑥, 𝑥′ =
1

12
2 𝑥 − 𝑥′ 3 − 3𝑅( 𝑥 − 𝑥′ 2 + 𝑅3

where 𝑅 = max
𝑥,𝑥′∈Ω

‖𝑥 − 𝑥′‖

Rohr, Karl, et al. "Landmark-based elastic registration using approximating thin-plate splines." IEEE Transactions on 
medical imaging 20.6 (2001): 526-534.
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Elastic body splines

• Mechanical model of an elastic body or material

• Solution to the following PDE
𝜇𝛻2𝑢 𝑥 + 𝜇 + 𝜆 𝛻 𝛻 ⋅ 𝑢 𝑥 = 𝑐|𝑥|

• Corresponding (matrix-valued) covariance function (may not be positive definite)
𝑘 𝑥, 𝑥′ = 12 1 − 𝜈 − 1 |𝑥|2𝐼 − 3𝑥𝑥𝑇

where 𝜈 =
𝜆

2(𝜆 + 𝜇)

Kohlrausch, Jan, Karl Rohr, and H. Siegfried Stiehl. "A new class of elastic body splines for nonrigid registration of medical 
images." Journal of Mathematical Imaging and Vision 23.3 (2005): 253-280.
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B-Splines

• Use B-Spline basis function 

𝑘 𝑥, 𝑦 = 

𝑘∈ℤ𝑑

𝛽 𝑠𝑥 − 𝑘 𝛽 𝑠𝑦 − 𝑘

Where 𝑠 is a scaling constant

• Rueckert, Daniel, et al. "Nonrigid registration using free-form deformations: application to breast MR images." 
IEEE transactions on medical imaging 18.8 (1999): 712-721.

• Klein, Stefan, et al. "Elastix: a toolbox for intensity-based medical image registration." IEEE transactions on 
medical imaging 29.1 (2010): 196-205.
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Statistical deformation models

Estimate mean and covariance function from data:

𝜇 𝑥 = 𝑢 𝑥 =
1

𝑛


𝑖−1

𝑛

𝑢𝑖 (𝑥)

𝑘𝑆𝑀 𝑥, 𝑥′ =
1

𝑛 − 1


𝑖

𝑛

(𝑢𝑖 𝑥 − 𝑢(𝑥)) 𝑢𝑖 𝑥′ − 𝑢(𝑥′)
𝑇

𝑢1 ∶ Ω → ℝ2 𝑢2 ∶ Ω → ℝ2

…

𝑢𝑛 ∶ Ω → ℝ2
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Summary: Priors

• Leads to formulation of many standard transformation models in terms of Gaussian 
process

• Improves understanding of methods

• Let’s us switch between “priors”

• Purely conceptual formulation

• No algorithms

• Can sample and visualize deformations

• Invaluable to check assumptions
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Outline

• The registration problem 
• Problem formulation

• Registration as analysis by synthesis 
problem

• An algorithm using Gaussian process 
priors

• Priors for registration
• Spline-based models, Radial basis 

functions

• Multis-scale and Spatially-varying models

• Statistical deformation models

• Likelihood functions 

• Landmark registration

• Image to image registration

• Surface to image registration

• Advancing registration



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Landmark likelihood

For one landmark pair (𝑙𝑅 , 𝑙𝑇): 

𝑝 𝑙𝑇 𝜃, 𝑙𝑅 = 𝑁 𝜑 𝜃 𝑙𝑅 , 𝜎2

For many landmarks 
𝐿 = ((𝑙𝑅

1 , 𝑙𝑇
1), … , (𝑙𝑅

𝑛, 𝑙𝑇
𝑛))

𝑝 𝑙1
𝑇 , … , 𝑙𝑛

𝑇 𝜃, 𝑙𝑅
1 , … , 𝑙𝑅

𝑛

=ෑ

𝑖

𝑁 𝜑 𝜃 𝑙𝑅 , 𝜎2

𝑙1
𝑅

𝑙1
𝑇

𝑙𝑖
𝑅

𝑙𝑖
𝑇
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Given:
• Gaussian process: 𝑢 ∼ 𝐺𝑃(𝜇, 𝑘)

• Observations: {(𝑙𝑖
𝑅 , 𝑢𝑖), 𝑖 = 1 ,… ,𝑚}

Assume:
𝑢 𝑥𝑖 + 𝜖 = 𝑢𝑖 with 𝜖 ∼ 𝑁(0, 𝜎2𝐼2×2).

Goal:
• Find posterior distribution 

𝑢 | 𝑙1
𝑅 , … , 𝑙𝑛

𝑅 , 𝑢1, … , 𝑢𝑚

𝑢2

Landmark likelihood and GP Regression

𝑢1
𝑙𝑅
1

𝑙𝑅
𝑛



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

𝜇𝑝(𝑥) = 𝜇 𝑥 + 𝐾 𝑥, 𝑌 (𝐾 𝑌, 𝑌 + 𝜎2𝐼2𝑚×2𝑚 )−1 𝒖 − 𝜇(𝑌)

𝑘𝑝 𝑥, 𝑥′ = 𝑘 𝑥, 𝑥′ − 𝐾 𝑥, 𝑌 (𝐾 𝑌, 𝑌 + 𝜎2𝐼2𝑚×2𝑚 )−1𝐾(𝑌, 𝑥′)

The posterior 
𝑢 |𝑙1

𝑅 , … , 𝑙𝑛
𝑅 , 𝑢1, … , 𝑢𝑚

is a Gaussian process 
𝐺𝑃 𝜇𝑝, 𝑘𝑝

Its parameters are known analytically.

Gaussian process regression
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Landmark registration
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Landmark likelihood: Some remarks

• Classical problems in registration

• Needs either many landmark points or good structure of prior to achieve good results

Rohr, Karl, et al. "Landmark-based elastic registration using approximating thin-plate splines." IEEE Transactions on 
medical imaging 20.6 (2001): 526-534.
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Image to image registration

• What is a good synthesis function?

Simple choice: Use the warped reference image!

𝐼𝑅 ∘ ℎ𝜃
−1
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Image likelihood (single point)

• Probabilistic model: 𝐼𝑇 ℎ𝜃 𝑥 = 𝐼𝑅 𝑥 + 𝜖, 𝜖 ∼ 𝑁 0, 𝜎2 , 𝑥 ∈ ΩR

• Likelihood for a single point 𝑥:
𝑝 𝐼𝑇 ℎ𝜃(𝑥) 𝜃, 𝐼𝑅 , 𝑥 ∼ 𝑁 𝐼𝑅 𝑥 , 𝜎2

𝐼𝑅: Ω → ℝ 𝐼𝑇: Ω → ℝ

𝐼𝑅(x)

ℎ𝜃
𝐼𝑇(ℎ𝜃(x))
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Image likelihood (full image)

• Assuming that noise is independent at each point:

𝑝 𝐼𝑇 ∘ ℎ𝜃 Ԧ𝜃, 𝐼𝑅 ∼ ෑ

𝑥∈I𝑅

𝑁 𝐼𝑅 𝑥 , 𝜎2

𝑝 𝐼𝑇 ∘ ℎ𝜃 Ԧ𝜃, 𝐼𝑅 =
1

𝑍
ෑ

𝑥∈𝐼𝑅

exp(−
𝐼𝑅 𝑥 − 𝐼𝑇 ℎ𝜃 𝑥

2

𝜎2
)
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The sum of squared distance metric

ln 𝑝 𝐼𝑇 ∘ ℎ𝜃 Ԧ𝜃, 𝐼𝑅 = ln
1

𝑍
ෑ

𝑥∈𝐼𝑅

exp −
𝐼𝑅 𝑥 − 𝐼𝑇 ℎ𝜃 𝑥

2

𝜎2

= −𝑍1 

𝑥∈𝐼𝑅

𝐼𝑅 𝑥 − 𝐼𝑇 ℎ𝜃 𝑥
2

= 𝐷𝑆𝑆𝐷[𝐼𝑅, 𝐼𝑇 , ℎ𝜃]

• The sum of squared differences implements an independence assumption

• The parameter 𝜎2 becomes a weighting constant.
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Likelihood from other metrics

• We can use any standard image metric 𝐷 𝐼𝑅 , 𝐼𝑇, ℎ𝜃 to define a likelihood function:

𝑝 𝐼𝑇 𝜃, 𝐼𝑅 =
1

𝑍
exp−(𝐷 𝐼𝑅 , 𝐼𝑇 , ℎ𝜃 )

• Examples:

• Normalized cross correlations

• Mutual information

• …

• Makes it possible to reformulate any standard registration problem into the analysis by 
synthesis framework. 

• Special case of collective likelihood
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What about surface registration?

Reference (surface): 
Γ𝑅

Γ𝑅
Γ𝑇

ℎ𝜃

Target (surface): 
Γ𝑇
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A trick: Implicit definition of a surface

• Any surface Γ can be represented as 
the zero level set of a level set 
function Φ

Γ = 𝑥 Φ 𝑥 = 0}

• Popular choice is the signed distance 
function defined as 
𝐷Γ 𝑥 = CPΓ(𝑥) − 𝑥
with
CPΓ(𝑥) = argmin

𝑥′∈Γ
‖𝑥 − 𝑥′‖

𝐷Γ 𝑥 = −30

𝐷Γ 𝑥 = −15

𝐷Γ 𝑥 = 0

𝐷Γ 𝑥 = 15

𝐷Γ 𝑥 = 30

𝐷Γ 𝑥 = 45
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Reference 𝐷𝑅: Ω𝑅 → ℝ Target 𝐷𝑇 ∶ Ω𝑇 → ℝ

Surface registration as image registration
• We define the distance functions and use image to image likelihoods

𝑝 𝐷𝑇 ℎ𝜃(𝑥) Ԧ𝜃, 𝐷𝑅 , 𝑥 ∼ 𝑁 𝐷𝑅(𝑥), 𝜎
2

• Most likely solution will map points on the zero level-sets to each other

• Noise parameter 𝜎2 has geometric interpretation (variance of distance between the mapped points)

𝑥

ℎ𝜃(𝑥)
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𝜌1

𝑥1

Active shape models (surface to image registration)

• ASMs model each profile as a normal 
distribution  

𝑝 𝜌𝑖 = 𝑁(𝜇𝑖 , Σ𝑖)

• Single profile point 𝑥𝑖:
𝑝 I𝑇(ℎ𝜃(𝑥𝑖))|𝜃, 𝑥𝑖 = 𝑁(𝜇𝑖 , Σ𝑖)

• Image likelihood:

𝑝 I𝑇(ℎ𝜃(𝑥))|𝜃, Γ𝑅 =ෑ

𝑖

𝑁(𝜇𝑖 , Σ𝑖)
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Summary: Likelihood functions

• Synthesis function is often just a warp of a reference

• Works well if modality and dimensionality is the same

• Leads to very simple systems

• We get probabilistic interpretations of some standard metrics

• Makes assumptions more clear

• If we do not want full interpretation any metric can be turned into a likelihood function
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Outline

• The registration problem 

• Problem formulation

• Registration as analysis by synthesis 
problem

• An algorithm using Gaussian process 
priors

• Priors for registration

• Spline-based models 

• Radial basis functions

• Statistical deformation models

• Likelihood functions 

• Landmark registration

• Image to image registration

• Surface to image registration

• Advancing registration

• More expressive priors

• Hybrid registration

• ASM using the Metropolis Hastings 
algorithm
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1. 𝑘 𝑥, 𝑥′ = 𝑓 𝑥 𝑓 𝑥’ 𝑇 , 𝑓: 𝑋 → ℝ𝑑

2. 𝑘 𝑥, 𝑥′ = 𝛼𝑘 𝑥, 𝑥′ , 𝛼 ∈ ℝ+ (scaling)

3. k 𝑥, 𝑥′ = 𝐵𝑇𝑘 𝑥, 𝑥′ 𝐵, B ∈ ℝ𝑟×𝑑 (lifting)

4. 𝑘 𝑥, 𝑥′ = 𝑘1 𝑥, 𝑥′ + 𝑘2 𝑥, 𝑥′ (or relationship)

5. 𝑘 𝑥, 𝑥′ = 𝑘1 𝑥, 𝑥′ ⋅ 𝑘2(𝑥, 𝑥
′) (and relationship)

6. 𝑘 𝑥, 𝑥′ = 𝑘(𝜙 𝑥 , 𝜙 𝑥′ ) (domain warp)

Constructing s.p.d. kernels
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Multi-scale kernels

Add kernels that act on different scales:

𝑘 𝑥, 𝑥′ =

𝑖=0

𝑛



𝑘∈ℤ𝑑

𝛽 2−𝑖𝑥 − 𝑘 𝛽 2−𝑖𝑦 − 𝑘

Opfer, Roland. "Multiscale kernels." 
Advances in computational mathematics 25.4 (2006): 357-380.
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Multi-scale kernel
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Anisotropic priors

Scale deformations differently in each direction

k 𝑥, 𝑥′ = 𝑅𝑇
𝑠1 0

0 𝑠2
𝑘 𝑥, 𝑥′

𝑠1 0

0 𝑠2
𝑅

• R is a rotation matrix

• 𝑘 is scalar valued

• 𝑠1, s2 scaling factors
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Anisotropic priors
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Spatially-varying priors

Use different models for different regions

𝑘 𝑥, 𝑥′ = 𝜒 𝑥 𝜒 𝑥′ 𝑘1 𝑥, 𝑥′

+ 1 − 𝜒 𝑥 (1 − 𝜒 𝑥′ ) 𝑘2(𝑥, 𝑥
′)

χ 𝑥 = ቊ
1 if 𝑥 ∈ thumb region
0 otherwise

𝜒 𝑥 = 1

𝜒 𝑥 = 0

Freiman, Moti, Stephan D. Voss, and Simon K. Warfield. "Demons registration with local affine adaptive regularization: 
application to registration of abdominal structures." Biomedical Imaging: From Nano to Macro, 2011 IEEE 
International Symposium on. IEEE, 2011.
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Spatially-varying priors
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𝜇𝑝(𝑥) = 𝜇 𝑥 + 𝐾 𝑥, 𝑌 (𝐾 𝑌, 𝑌 + 𝜎2𝐼2𝑚×2𝑚 )−1 𝒖 − 𝜇(𝑌)

𝑘𝑝 𝑥, 𝑥′ = 𝑘 𝑥, 𝑥′ − 𝐾 𝑥, 𝑌 (𝐾 𝑌, 𝑌 + 𝜎2𝐼2𝑚×2𝑚 )−1𝐾(𝑌, 𝑥′)

The posterior 
𝑢 | 𝑥1 , … , 𝑥𝑚, 𝑢1, … , 𝑢𝑚

is a Gaussian process 
𝐺𝑃 𝜇𝑝, 𝑘𝑝

Its parameters are known analytically.

Landmark registration using Gaussian processes
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Landmark registration
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Hybrid registration

• We can now combine landmark registration with intensity:

1. Compute a posterior model using landmarks 𝐺𝑃(𝜇, 𝑘)

2. Use 𝐺𝑃(𝜇𝑝, 𝑘𝑝) as prior for registration with any image likelihood you like

• Example of Bayesian inference:
𝑝 𝑢 → 𝑝 𝑢 𝐿𝑅, 𝐿𝑇 → 𝑝 𝑢 𝐿𝑅, 𝐿𝑇 , 𝐼𝑅 , 𝐼𝑇

• Elegant solution to hybrid registration

Wörz, Stefan, and Karl Rohr. "Hybrid spline-based elastic image registration using analytic solutions of the 
navier equation." Bildverarbeitung für die Medizin 2007. Springer Berlin Heidelberg, 2007. 151-155.

Lu, Huanxiang, Philippe C. Cattin, and Mauricio Reyes. "A hybrid multimodal non-rigid registration of MR 
images based on diffeomorphic demons." Engineering in Medicine and Biology Society (EMBC), 2010 Annual 
International Conference of the IEEE. IEEE, 2010.
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• Frees us from “tyranny of differentiability”

• Easy to integrate contours

• Let’s us model effects such as outliers, artifacts, … in principled ways

• Makes it possible to integrate results of bottom up proposals (landmark detectors)

• Let’s us reason about uncertainty of a solution

Draw a sample 𝑥′ from 𝑄(𝑥′|𝑥) Propose

With probability 𝛼 = min
𝑃 𝒙′

𝑃 𝒙
, 1 accept 𝒙′ as new sample Verify

Use Metropolis-Hastings for registration

67
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Call to arms

• Our MCMC scheme was designed for 
really difficult problems

• 3D => 2D

• Complex illumination

• No scale

• Uncontrolled environment

• Let’s start together to tackle the 
complicated problems in medical 
image analysis.
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