

Gaussian processes for non-rigid registration

Connections to medical image analysis

Marcel Lüthi

Graphics and Vision Research Group Department of Mathematics and Computer Science University of Basel

Aims of the talk

 Show how Analysis by Synthesis and Gaussian processes lead to a family of methods for non-rigid registration

 Provide an understanding of many common algorithms in terms of Gaussian processes

• Show how to derive new registration approaches using GPMMs and MCMC

Outline

- The registration problem
 - Problem formulation
 - Registration as analysis by synthesis problem
 - An algorithm using Gaussian process priors
- Priors for registration
 - Spline-based models, Radial basis functions
 - Multis-scale and Spatially-varying models
 - Statistical deformation models

- Likelihood functions
 - Landmark registration
 - Image to image registration
 - Surface to image registration

• Advancing registration

Outline

- The registration problem
 - Problem formulation
 - Registration as analysis by synthesis problem
 - An algorithm using Gaussian process priors
- Priors for registration
 - Spline-based models
 - Radial basis functions
 - Statistical deformation models

- Likelihood functions
 - Landmark registration
 - Image to image registration
 - Surface to image registration

• Some ideas where to go from here

Variational formulation

$$\varphi^* = \arg\min_{\varphi} D[I_R, I_T \circ \varphi] + \lambda R[\varphi]$$

Mapping φ^* is trade-off that

- makes the images look similar (for similarity measure *D*)
- matches the prior assumptions (encoded by regularizer R)

Variational formulation

$$\varphi^* = \arg\min_{\varphi} D[I_R, \varphi] + \lambda R[\phi]$$

Variational formulation

$$\varphi^* = \arg\min_{\varphi} D[I_R, I_{\varphi} \circ \varphi] + \lambda \varphi$$

Variational formulation

$$\varphi^* = \arg\min_{\varphi} D[I_R, I_T \circ \varphi] + \lambda R[\varphi]$$

Representation of the mapping φ

Representation of the mapping ϕ

Representation of the mapping ϕ

Assumption: Images are rigidly aligned

• Mapping can be represented as a displacement vector field:

$$\varphi(x) = x + u(x)$$
$$u : \Omega \to \mathbb{R}^d$$

Representation of the mapping arphi

Assumption: Images are rigidly aligned

 Mapping can be represented as a displacement vector field:

 $\varphi(x) = x + u(x)$ $u : \Omega \to \mathbb{R}^d$

Further assumption:

• φ is parametric : $\varphi[\theta](x) = x + u[\theta](x)$

Representation of the mapping arphi

Mapping: $\varphi[\theta](x) = x + u[\theta](x)$

Observation:

- Knowledge of θ and I_R allows us to synthesize target image I_T
 - (at least up to intensity differences)

Registration as analysis by synthesis

Probabilistic formulation of registration

Using Bayes rule:
$$P(\varphi[\theta]|I_T, I_R) = \frac{P(I_T|\varphi[\theta], I_R)P(\varphi[\theta], I_R)}{P(I_T)}$$

$$MAP \ solution \\ \theta^* = \arg \max_{\theta} p(\varphi[\theta]|I_T, I_R) = \arg \max_{\theta} p(\varphi[\theta]) p(I_T|I_R \circ \varphi[\theta])$$

Mapping θ^* is trade-off that defines a mapping $\varphi[\theta^*]$ which

- explains the data well (likelihood function)
- matches the prior assumptions (prior distribution)

Registration problem

 $\varphi^* = \arg \max_{\theta} p(\varphi[\theta]) p(I_T | I_R \circ \varphi[\theta])$ = $\arg \max_{\theta} \ln p(\varphi[\theta]) + \ln(p(I_T | I_R \circ \varphi[\theta]))$ = $\arg \min_{\theta} - \ln p(\varphi[\theta]) - \ln(p(I_T | I_R \circ \varphi[\theta]))$

Variational formulation

$$\varphi^* = \arg\min_{\varphi} D[I_T, I_R \circ \varphi] + \lambda R[\varphi]$$

Probabilistic formulation $\theta^* = \arg\min_{\theta} - \ln(p(I_T | I_R \circ \varphi[\theta])) - \ln p(\varphi[\theta])$

Take home message: Registration is model fitting!!!

Gaussian processes

Define the Gaussian process $u \sim GP(\mu, k)$ with mean function $\mu: \Omega \to \mathbb{R}^2$ and covariance function $k: \Omega \times \Omega \to \mathbb{R}^{2 \times 2}$.

Parametric representation of Gaussian process

Represent GP using only the first
$$r$$
 components of its KL-Expansion
 $u = \mu + \sum_{i=1}^{r} \alpha_i \sqrt{\lambda_i} \phi_i, \quad \alpha_i \sim N(0, 1)$

- We have a finite, parametric representation of the process.
- We know the pdf for a deformation *u*

$$p(u) = p(\alpha) = \prod_{i=1}^{r} \frac{1}{\sqrt{2\pi}} \exp(-\alpha_i^2/2) = \frac{1}{Z} \exp(-\frac{1}{2} \|\alpha\|^2)$$

Registration problem

$$\varphi^* = \arg\min_{\theta} - \ln p(\varphi[\theta]) - \ln p(I_T | I_R \circ \varphi[\theta])$$

$$= \arg\min_{\theta} - \ln \frac{1}{Z} \exp(-\frac{1}{2} ||\theta||^2) - \ln(p(I_T | I_R \circ \varphi[\theta]))$$

$$= \arg\min_{\theta} - \ln \frac{1}{Z} + \frac{1}{2} ||\theta||^2 - \ln(p(I_T | I_R \circ \varphi[\theta]))$$

$$= \arg\min_{\theta} \frac{1}{2} ||\theta||^2 - \ln(p(I_T | I_R \circ \varphi[\theta]))$$

Summary: registration problem

$$\arg\min_{\theta} \frac{1}{2} \|\theta\|^2 + \ln(p(I_T | I_R \circ \varphi[\theta]))$$

- Variational and probabilistic formulation are closely related
 - Prior can be seen as regularizer
 - Likelihood term is an image similarity
- For a low-rank Gaussian process prior, the problem becomes parametric since

$$\varphi[\theta](x) = x + \mu(x) + \sum_{i=1}^{\infty} \theta_i \sqrt{\lambda_i} \phi_i(x)$$

- Can be optimized using gradient-descent schemes.
- All the regularization assumptions are encoded in the eigenfunctions ϕ_i

Outline

- The registration problem
 - Problem formulation
 - Registration as analysis by synthesis problem
 - An algorithm using Gaussian process priors
- Priors for registration
 - Spline-based models, Radial basis functions
 - Multis-scale and Spatially-varying models
 - Statistical deformation models

- Likelihood functions
 - Landmark registration
 - Image to image registration
 - Surface to image registration

• Advancing registration

Why are priors interesting?

$$\theta^* = \arg \max_{\theta} p(\varphi[\theta]) p(I_T | I_R \circ \varphi[\theta])$$

Why are priors interesting?

Defining a Gaussian process

A Gaussian process $GP(\mu, k)$ is completely specified by a mean function μ and covariance function (or kernel) k.

- $\mu: \Omega \to \mathbb{R}^d$ defines how the average deformation looks like
- $k: \Omega \times \Omega \rightarrow \mathbb{R}^{d \times d}$ defines how it can deviate from the mean
 - Must be positive semi-definite

The mean function

• Usual assumption:

$$\mu(x) = \begin{pmatrix} \mu_1(x) \\ \vdots \\ \mu_d(x) \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

• The reference shape is an average shape.

Scalar-valued Gaussian kernel

Diagonal kernel

$$k(x,x') = \begin{pmatrix} k^{(1)}(x,x') & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & k^{(d)}(x,x') \end{pmatrix}$$

- $k^{(1)}, \dots, k^{(d)}: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ are scalar-valued kernels
- $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}^{d \times d}$ becomes a matrix valued kernel.

Assumption: Each dimension is modelled independently.

• the output-dimensions are uncorrelated.

A model for smooth 2D deformations

$$k(x, x') = \begin{pmatrix} s_1 \exp\left(-\frac{\|x - x'\|^2}{\sigma_1^2}\right) & 0\\ 0 & s_2 \exp\left(-\frac{\|x - x'\|^2}{\sigma_2^2}\right) \end{pmatrix}$$

GRAVIS 2016 | BASEL

UNIVERSITÄT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

A model for smooth deformations

 $s_1 = s_2$ small, $\sigma_1 = \sigma_2$ large

GRAVIS 2016 | BASEL

UNIVERSITÄT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

A model for smooth deformations

UNIVERSITÄT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

A model for smooth deformations

 $s_1 = s_2$ large, $\sigma_1 = \sigma_2$ large

Matern class of kernels

$$k(x,x') = \sigma^2 \frac{2^{1-\nu}}{\Gamma(\nu)} \left(2\sqrt{2\nu} \frac{\|x-x'\|}{\rho} \right)^{\nu} K_{\nu}(\sqrt{2\nu} \frac{\|x-x'\|}{\rho})$$

- Γ is the Γ function, k_{ν} the modified Bessel function and ν , ρ are parameters
- The derivatives are $\nu 1$ times differentiable
- Special cases:

•
$$\nu = \frac{1}{2}$$
: $k(x, x') = \sigma^2 \exp(-\frac{\|x - x'\|}{\rho})$
• $\nu = \frac{3}{2}$: $k(x, x') = \sigma^2 (1 + \frac{\sqrt{3}\|x - x'\|}{\rho}) \exp(-\frac{\sqrt{3}\|x - x'\|}{\rho})$

• $\nu \rightarrow \infty$ Gaussian kernel

Thin-plate splines

• Minimize the bending energy of a metal sheet

$$R[\varphi] = \sum_{k=1}^{d} \int_{\Omega} \left(\nabla^{T} \nabla \varphi_{k}(x) \right)^{2} dx$$

• Corresponding covariance function

$$k(x, x') = \frac{1}{12} (2\|x - x'\|^3 - 3R(\|x - x'\|^2 + R^3))$$

where $R = \max_{x, x' \in \Omega} \|x - x'\|$

Rohr, Karl, et al. "Landmark-based elastic registration using approximating thin-plate splines." *IEEE Transactions on medical imaging* 20.6 (2001): 526-534.

Elastic body splines

- Mechanical model of an elastic body or material
- Solution to the following PDE

$$\mu \nabla^2 u(x) + (\mu + \lambda) \nabla [\nabla \cdot u(x)] = c |x|$$

• Corresponding (matrix-valued) covariance function (may not be positive definite) $k(x, x') = (12(1 - \nu) - 1)|x|^2 I - 3xx^T$ where $\nu = \frac{\lambda}{2(\lambda + \mu)}$

Kohlrausch, Jan, Karl Rohr, and H. Siegfried Stiehl. "A new class of elastic body splines for nonrigid registration of medical images." *Journal of Mathematical Imaging and Vision* 23.3 (2005): 253-280.

B-Splines

• Use B-Spline basis function

$$k(x,y) = \sum_{k \in \mathbb{Z}^d} \beta(sx - k)\beta(sy - k)$$

Where *s* is a scaling constant

- Rueckert, Daniel, et al. "Nonrigid registration using free-form deformations: application to breast MR images." *IEEE transactions on medical imaging* 18.8 (1999): 712-721.
- Klein, Stefan, et al. "Elastix: a toolbox for intensity-based medical image registration." *IEEE transactions on medical imaging* 29.1 (2010): 196-205.

Statistical deformation models

Estimate mean and covariance function from data:

Summary: Priors

- Leads to formulation of many standard transformation models in terms of Gaussian process
 - Improves understanding of methods
 - Let's us switch between "priors"

- Purely conceptual formulation
 - No algorithms
- Can sample and visualize deformations
 - Invaluable to check assumptions

Outline

- The registration problem
 - Problem formulation
 - Registration as analysis by synthesis problem
 - An algorithm using Gaussian process priors
- Priors for registration
 - Spline-based models, Radial basis functions
 - Multis-scale and Spatially-varying models
 - Statistical deformation models

- Likelihood functions
 - Landmark registration
 - Image to image registration
 - Surface to image registration

• Advancing registration

Landmark likelihood

For one landmark pair (l_R, l_T) :

 $p(l_T | \theta, l_R) = N(\varphi[\theta](l_R), \sigma^2)$

For many landmarks $L = ((l_R^1, l_T^1), \dots, (l_R^n, l_T^n))$

$$p(l_1^T, \dots, l_n^T | \theta, l_R^1, \dots, l_R^n)$$
$$= \prod_i N(\varphi[\theta](l_R), \sigma^2)$$

Landmark likelihood and GP Regression

Given:

- Gaussian process: $u \sim GP(\mu, k)$
- Observations: $\{(l_i^R, \tilde{u}_i), i = 1, ..., m\}$

Assume:

$$u(\tilde{x}_i) + \epsilon = \tilde{u}_i \text{ with } \epsilon \sim N(0, \sigma^2 I_{2 \times 2}).$$

Goal:

• Find posterior distribution $u \mid l_1^R, \dots, l_n^R, \tilde{u}_1, \dots, \tilde{u}_m$

Gaussian process regression

The posterior $u | l_1^R, ..., l_n^R, \tilde{u}_1, ..., \tilde{u}_m$ is a Gaussian process $GP(\mu_p, k_p)$ Its parameters are known analytically.

 $\mu_p(x) = \mu(x) + K(x, Y)(K(Y, Y) + \sigma^2 I_{2m \times 2m})^{-1}(\widetilde{u} - \mu(Y))$ $k_p(x, x') = k(x, x') - K(x, Y)(K(Y, Y) + \sigma^2 I_{2m \times 2m})^{-1}K(Y, x')$

Landmark registration

Landmark likelihood: Some remarks

- Classical problems in registration
- Needs either many landmark points or good structure of prior to achieve good results

Rohr, Karl, et al. "Landmark-based elastic registration using approximating thin-plate splines." *IEEE Transactions on medical imaging* 20.6 (2001): 526-534.

Image to image registration

• What is a good synthesis function?

Simple choice: Use the warped reference image!

 $I_R \circ h_{\theta}^{-1}$

Image likelihood (single point)

- Probabilistic model: $I_T(h_{\theta}(x)) = I_R(x) + \epsilon, \ \epsilon \sim N(0, \sigma^2), x \in \Omega_R$
- Likelihood for a single point *x*:

 $p(I_T(h_\theta(x))|\theta, I_R, x) \sim N(I_R(x), \sigma^2)$

Image likelihood (full image)

• Assuming that noise is independent at each point:

$$p(I_T \circ h_\theta \mid \vec{\theta}, I_R) \sim \prod_{x \in I_R} N(I_R(x), \sigma^2)$$
$$p(I_T \circ h_\theta \mid \vec{\theta}, I_R) = \frac{1}{Z} \prod_{x \in I_R} \exp(-\frac{\left(I_R(x) - I_T(h_\theta(x))\right)^2}{\sigma^2})$$

The sum of squared distance metric

$$\ln p(I_T \circ h_\theta \mid \vec{\theta}, I_R) = \ln \left[\frac{1}{Z} \prod_{x \in I_R} \exp\left(-\frac{\left(I_R(x) - I_T(h_\theta(x))\right)^2}{\sigma^2}\right) \right]$$
$$= -Z_1 \sum_{x \in I_R} \left(I_R(x) - I_T(h_\theta(x))\right)^2$$
$$= D_{SSD}[I_R, I_T, h_\theta]$$

- The sum of squared differences implements an independence assumption
- The parameter σ^2 becomes a weighting constant.

Likelihood from other metrics

• We can use any standard image metric $D[I_R, I_T, h_{\theta}]$ to define a likelihood function:

$$p(I_T|\theta, I_R) = \frac{1}{Z} \exp \left[-(D[I_R, I_T, h_\theta])\right]$$

- Examples:
 - Normalized cross correlations
 - Mutual information
 - ...
- Makes it possible to reformulate any standard registration problem into the analysis by synthesis framework.
- Special case of collective likelihood

What about surface registration?

Reference (surface): Γ_R

Target (surface): Γ_T

A trick: Implicit definition of a surface

- Any surface Γ can be represented as the zero level set of a level set function Φ

 $\Gamma = \{x \mid \Phi(x) = 0\}$

• Popular choice is the signed distance function defined as

$$D_{\Gamma}(x) = \|CP_{\Gamma}(x) - x\|$$

with
$$CP_{\Gamma}(x) = \arg\min_{x' \in \Gamma} \|x - x'\|$$

Surface registration as image registration

- We define the distance functions and use image to image likelihoods $p(D_T(h_\theta(x)) | \vec{\theta}, D_R, x) \sim N(D_R(x), \sigma^2)$
- Most likely solution will map points on the zero level-sets to each other
 - Noise parameter σ^2 has geometric interpretation (variance of distance between the mapped points)

Reference $D_R: \Omega_R \to \mathbb{R}$

Target $D_T : \Omega_T \to \mathbb{R}$

UNIVERSITÄT BASEL

Active shape models (surface to image registration)

- ASMs model each profile as a normal distribution $p(\rho_i) = N(\mu_i, \Sigma_i)$
- Single profile point x_i : $p(I_T(h_{\theta}(x_i))|\theta, x_i) = N(\mu_i, \Sigma_i)$
- Image likelihood:

$$p(I_T(h_{\theta}(x))|\theta, \Gamma_R) = \prod_i N(\mu_i, \Sigma_i)$$

Summary: Likelihood functions

- Synthesis function is often just a warp of a reference
 - Works well if modality and dimensionality is the same
 - Leads to very simple systems
- We get probabilistic interpretations of some standard metrics
 - Makes assumptions more clear

• If we do not want full interpretation any metric can be turned into a likelihood function

Outline

- The registration problem
 - Problem formulation
 - Registration as analysis by synthesis problem
 - An algorithm using Gaussian process priors
- Priors for registration
 - Spline-based models
 - Radial basis functions
 - Statistical deformation models

- Likelihood functions
 - Landmark registration
 - Image to image registration
 - Surface to image registration

- Advancing registration
 - More expressive priors
 - Hybrid registration
 - ASM using the Metropolis Hastings algorithm

Constructing s.p.d. kernels

1.
$$k(x, x') = f(x) f(x')^T, f: X \to \mathbb{R}^d$$

2. $k(x, x') = \alpha k(x, x'), \alpha \in \mathbb{R}_+$ (scaling)
3. $k(x, x') = B^T k(x, x') B, B \in \mathbb{R}^{r \times d}$ (lifting)
4. $k(x, x') = k_1(x, x') + k_2(x, x')$ (or relationship)
5. $k(x, x') = k_1(x, x') \cdot k_2(x, x')$ (and relationship)
6. $k(x, x') = k(\phi(x), \phi(x'))$ (domain warp)

Multi-scale kernels

Add kernels that act on different scales:

$$k(x,x') = \sum_{i=0}^{n} \sum_{k \in \mathbb{Z}^d} \beta (2^{-i}x - k) \beta (2^{-i}y - k)$$

Opfer, Roland. "Multiscale kernels." *Advances in computational mathematics* 25.4 (2006): 357-380.

Multi-scale kernel

Anisotropic priors

Scale deformations differently in each direction

$$k(x, x') = R^T \begin{pmatrix} \sqrt{s_1} & 0\\ 0 & \sqrt{s_2} \end{pmatrix} k(x, x') \begin{pmatrix} \sqrt{s_1} & 0\\ 0 & \sqrt{s_2} \end{pmatrix} R$$

- R is a rotation matrix
- k is scalar valued
- s_1 , s_2 scaling factors

Anisotropic priors

GRAVIS 2016 | BASEL

Spatially-varying priors

Use different models for different regions

 $k(x, x') = \chi(x)\chi(x')k_1(x, x') + (1 - \chi(x))(1 - \chi(x'))k_2(x, x')$

 $\chi(x) = \begin{cases} 1 & \text{if } x \in \text{thumb region} \\ 0 & \text{otherwise} \end{cases}$

Freiman, Moti, Stephan D. Voss, and Simon K. Warfield. "Demons registration with local affine adaptive regularization: application to registration of abdominal structures." *Biomedical Imaging: From Nano to Macro, 2011 IEEE International Symposium on*. IEEE, 2011.

Spatially-varying priors

Landmark registration using Gaussian processes

The posterior $u \mid \tilde{x}_1, ..., \tilde{x}_m, \tilde{u}_1, ..., \tilde{u}_m$ is a Gaussian process $GP(\mu_p, k_p)$ Its parameters are known analytically.

 $\mu_p(x) = \mu(x) + K(x, Y)(K(Y, Y) + \sigma^2 I_{2m \times 2m})^{-1}(\widetilde{u} - \mu(Y))$ $k_p(x, x') = k(x, x') - K(x, Y)(K(Y, Y) + \sigma^2 I_{2m \times 2m})^{-1}K(Y, x')$

Landmark registration

Hybrid registration

- We can now combine landmark registration with intensity:
 - 1. Compute a posterior model using landmarks $GP(\mu, k)$
 - 2. Use $GP(\mu_p, k_p)$ as prior for registration with any image likelihood you like
- Example of Bayesian inference:

$$p(u) \rightarrow p(u|L_R, L_T) \rightarrow p(u|L_R, L_T, I_R, I_T)$$

• Elegant solution to hybrid registration

Wörz, Stefan, and Karl Rohr. "Hybrid spline-based elastic image registration using analytic solutions of the navier equation." *Bildverarbeitung für die Medizin 2007*. Springer Berlin Heidelberg, 2007. 151-155.

Lu, Huanxiang, Philippe C. Cattin, and Mauricio Reyes. "A hybrid multimodal non-rigid registration of MR images based on diffeomorphic demons." *Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE*. IEEE, 2010.

Use Metropolis-Hastings for registration

- Frees us from "tyranny of differentiability"
 - Easy to integrate contours
 - Let's us model effects such as outliers, artifacts, ... in principled ways
- Makes it possible to integrate results of bottom up proposals (landmark detectors)
- Let's us reason about uncertainty of a solution

UNIVERSITÄT BASEL

Call to arms

- Our MCMC scheme was designed for really difficult problems
 - 3D => 2D
 - Complex illumination
 - No scale
 - Uncontrolled environment
- Let's start together to tackle the complicated problems in medical image analysis.

Call to arms

- Our MCMC scheme was designed for really difficult problems
 - 3D => 2D
 - Complex illumination

No ve you know how!

• Let's start together to tackle the complicated problems in medical image analysis