graphics and vision 2" i s

Probabilistic Fitting

Probabilistic Morphable Models
Summer School, June 2017
Sandro Schonborn

University of Basel



UNIVERSITAT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE PROBABILISTIC MORPHABLE MODELS | JUNE 2017 | BASEL

Probabilistic Inference for
~ace Model Fitting

Approximate Inference with Markov Chain Monte Carlo
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Probabilistic Registration

* Model-based face image registration

* Probabilistic Gaussian Process framework

* Bayesian Fitting framework

Images: CMU PIE Database
Sim, Baker, Bsat, 2002
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Face Image Manipulation

perceived as more trustworthy
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3D Face Reconstruction
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Concept: 3D Face Model Fitting

Reconstruction: Analysis-by-Synthesis

Face Model Rendered Image 1(0) Target Image |

Parametric face model Likelihood €(08;1) «< P(I| 1(8))

0 =(9,a,p,1): 9 Scene Parameters, a Face shape, 8 Face color, [ lllumination
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Formal: 3D Face Model Fitting

e 3D face model: (g + h¢) o hg

e Color model: Ig + h¢

* Shape model: Ip o hg
e 3D-2D computer graphics:
¢ xZD = TIMG (Pr (T3D(S(x3D))))

* Rigid 3D T3p, transform in image Tyvg
x/z

y/z

o I(xZD) — CT(L(n(x3D), C(xBD),xBD))

* Projection Pr(x) = [

Corresponding x?? and x3P

* Normal n, Color transform Ct(c), illumination L(n, ¢, x)
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Overview

Computer Graphics Overview

Probabilistic Setup

Markov Chain Monte Carlo
* Markov Chains

3D Fitting Problem

e Landmarks

2D Face Image Analysis
* Image fitting

* Filtering with unreliable information
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Approximate Bayesian
Inference with Samples

Simulating the Posterior Distribution
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Reminder: General Bayesian Inference

 Observation of additional variables

 Common case, e.g. face rendering, landmark locations

* Coupled to core model via likelihood factorization

e General Bayesian inference case:
e Distribution of data D (formerly Evidence)

e Parameters 6 (formerly Query)
P(D|6)P(0)

P(D)

P(4|D) =

P(0|D) « P(D|6)P(6)

Data: our image or landmarks, etc.
Model: shape and color model of faces, 3d graphics scene 0
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Bayesian Inference and Estimation

* Bayes £(0; D)p(0)
or distributi PEID) = T3 Dyp(o)as
* Whole posterior distribution J£(6; D)p(6)

* Belief update (Bayes rule, Bayesian inference)

e Captures uncertainty

* Maximum-A-Posteriori (MAP): 6 = arg max £(6; D)p(6)
* Single value

* Maximum of posterior distribution — “regularized”

Approximation

* Maximum Likelihood (ML): 6 = argmax £(6; D)

e Single value

* Maximum of /ikelihood only
2(6; D) = P(D|6)

11
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Bayesian Fitting

e Posterior distribution

p(a|ly, M) = p(a)p(Ir|a, M)

N(Ir; M)

* Prior deformations of the mean face: p(¢)
d

@ ~GP(uk): ¢ =~ M|a] za\/_q) parameterization:
’ i

low-rank models

a ~ N(O, Ed)

* Likelihood, e.g. p(I;|a, Ir) o exp—

12
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Posterior distribution

MAP Solution
a* =argmaxp(a)p(ly|a, M)
a

Local Maxima

We need
approximate
inference!

Posterior Distribution

p(a)p(Ir|a, M)
N(Ir; M)
f
>
[
Infeasible to compute:
N(I7 ):fp(a)p(ITla, M)da 13

p(allTr M) =
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Approximate Bayesian Inference

Variational methods

* Function approximation q(8)
argmax KL(q(0)|p(6|D))

* Variational Message Passing, Mean-
Field Theory, Moment matching, ...

tp

KL: Kullback-Leibler
divergence

Sampling methods

* Numeric approximations through
simulation

* Monte Carlo, Importance sampling,
Particle Filters, MCMC, ...

14
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Sampling Methods

 Simulate a distribution p through random samples x;

 Evaluate expectations

E[f(0)] = j F PG dx

Elf ()] = f = Zf(xa

Vi)~ (%) 1P

* “Independent” of dimensionality
* More samples increase accuracy

Y
M




UNIVERSITAT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE PROBABILISTIC MORPHABLE MODELS | JUNE 2017 | BASEL

Sampling from A Distribution

Easy for standard distributions ... is it?

* Uniform Random.nextDouble ()
e (Gaussian Random.nextGaussian ()

How to sample from more complex distributions?
* Beta, Exponential, Chi square, Gamma, ...
* Posteriors are very often not in a “nice” standard text book form

Sadly, only very few distributions are easy to sample from

* We need to sample from an unknown posterior with only
unnormalized, expensive point-wise evaluation ®

General Samplers?
* Yes! —Rejection, Importance, MCMC

16
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Markov Chain Monte Carlo

* Markov Chain Monte Carlo Methods (MCMC)
Design a Markov Chain such that samples x obey the target distribution p

Concept: “Use an already existing sample to produce the next one”

* Very powerful general sampling methods
* Many successful practical applications
* Proven: developed in the 1950/1970ies (Metropolis/Hastings)

* Direct mapping of computing power to approximation accuracy

e Algorithms (buzz words):
* Metropolis/-Hastings, Gibbs, Slice Sampling

17
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Markov Chains

Understanding Markov Chain Monte Carlo Methods

18
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* Sequence of random variables {X;}_;, X; € S with joint distribution

\ State space

P(X1, X, ) Xi) —P(Xl)]_[f%x X;-1)

/ - \

Initial distribution — —
Transition probab|I|ty

Ttmru

e Simplifications: (for our analysis)
 Discrete state space: § = {1, 2, ..., K} /"I-:»\&

* Homogeneous Chain: P(X; = l|X;_; = m) =Ty,
1 frmi
4/1

> .
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Example: Markov Chain

e Simple weather model: dry (D) or rainy (R) hour
e Condition in next hour? X1

0.05
* State space S = {D, R} 0.95 ,—\A® 0
 Stochastic: P(X¢4+1|X¢) — 5
0.2
* Depends only on current condition X;
e Draw Samples from chain:
N DDDDDDDDRRRRRRRRRRRDDDDDDDDDDD
* Initial: Xo = D DDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

* Evolution: P(X¢411X¢) DDDDDDDDDRDD. . .

e Long-term Behavior
e Does it converge? Average probability of rain?
* Dynamics? How quickly will it converge?

20
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Discrete Homogeneous Markov Chain

Formally linear algebra:

 Distribution (vector):
P(Xl — 1)
P(X;): p; = :

P(X; = K)

* Transition probability (transition matrix):
P1«<1) - P(1«K)
P(Xi|Xi—1): T = : ' ‘

PKe1) - PK<K)

Tim = Pl em) = P(X; = l|X;_1 =m)

21
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Evolution of the Initial Distribution

* Evolution of P(X;) — P(X,):

PX,=1) = z P(l « m)P(X; =m)

mesS
p: =Tp4
* Evolution of n steps:
Pn+1 =T"pq

* |s there a stable distribution p*? (steady-state)

. . A stable distribution is an
p =Tp eigenvector of T with
eigenvalue A =1

22
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Steady-State Distribution: p*

* |t exists:

e T subject to normalization constraint: /eft eigenvector to eigenvalue 1

ZTlm=1 o [ .. 1T=[1 . 1]
l

* T has eigenvalue A = 1 (left-/right eigenvalues are the same)

» Steady-state distribution as corresponding right eigenvector
* Does any arbitrary initial distribution evolve to p*?

e Convergence?

* Uniqueness?

23
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clob ] [} ob . . *
Equiliorium Distribution: p

* Additional requirement for T: (T};,)™ > 0 forn > N,

The chain is called irreducible and aperiodic (implies ergodic)
 All states are connected using at most N, steps

e Return intervals to a certain state are irregular

* Perron-Frobenius theorem for positive matrices:
 PF1: A4, = 1is asimple eigenvalue with 1d eigenspace (uniqueness)

* PF2: A; = lisdominant, all |A;] <1, i # 1 (convergence)

e p* is a stable attractor, called equilibrium distribution
Tp* =p*

24
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Convergence

* Time evolution of arbitrary distribution py

Pn =T"Po
* Expand pg in Eigen basis of T
Te; = ?}iei» il <A =1, Ak | = [A41l
Po — z Ci€;
i

K
Tpoy = 2 cilie;

'k

TnpO — 2 Ci/‘{?ei = (1€ + /13'6'262 + /‘11316'333 + --.

i

25
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Convergence (Il)

K
T"po = z ciAle; = cieq + Ajcye, + Aczes + -+

l
~ Nn* n
n>1) ~p +A2C232 c,eq =p*

 \We have convergence. ——
N—00 Normalizations:

T"py— p* ||e1|1 =1
xip =1

* Rate of convergence:
Ipn — D7l = l|2zc2€2]l = [22]" [z

26
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Example: Weather Dynamics

Rain forecast for stable versus mixed weather:

0.95 0.2 : 0.85 0.6
W. = A d =
stable s =1o.05 0.8 [ ®) med VWa=lois o4
p* = l0-8 . Long-term average . l0.8
0.2 probability of rain: 20% " P T2
Eigenvalues: 1, 0.75 T\ - e weatnr, rany | | Eigenvalues: 1, 0.25

Rainy now, next hours? Rainy now, next hours?

Probability
o o
wm

RRRRDDDDDDDDDDDD TN | RDDDDDDDDDDDDDDD
DDDDDDDDDDDDD. . . “l >~ T~ | RDDDRDDDDDDDD...

Forecast Time [h]
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Markov Chain: First Results

* Aperiodic and irreducible chains are ergodic:
(every state reachable after > N steps, irregular return time)

e Convergence towards a unique equilibrium distribution p*

* Equilibrium distribution p*

* Eigenvector of T with eigenvalue A = 1:

% %

Tp"=p
* Rate of convergence:

Exponential decay with second largest eigenvalue o< |1, |"

* How to design a chain with a given equilibrium distribution?

28
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Detailed Balance

* Detailed Balance is a local equilibrium

Distribution p satisfies detailed balance if the total flow of probability between
every pair of states is equal, the chain is then reversible:

P(l « m)p(m) = P(m < Dp(1)

* Detailed balance implies: p is the equilibrium distribution

(Tp), = 2 TymPm = z Toup1 = P
m m

* Design Markov Chains with specific equilibrium distributions!

29
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Example: Detailed Balance

* Local Equilibrium e Global Equilibrium

0.25

e same equilibrium distribution [1/3, 1/3, 1/3]
» different convergence mechanism

30
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Summary: Markov Chains

Sequential random variables: X4, X5, ...

Aperiodic and irreducible chains are ergodic:

» Convergence towards a unique equilibrium distribution p*

Equilibrium distribution p*
* Eigenvector of T with eigenvalue A = 1: Tp* = p*

 Rate of convergence: decay with second largest eigenvalue « |4, |

Detailed Balance:
* Local equilibrium = global equilibrium

* Easier to design Markov chains with given equilibrium distribution

31
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The Metropolis Algorithm

MCMC to draw samples from an arbitrary distribution

32
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The Metropolis Algorithm

Requirements:

* Proposal distribution Q (x'|x) — must generate samples, symmetric
* Target distribution P(x) — with point-wise evaluation

Result:

 Stream of samples approximately from P(x)

* Initialize with sample x

e Generate next sample, with current sample x
1. Draw asample x’ from Q(x'|x) (“proposal”)

2. With probability & = min {I;((’;)) , 1} accept x’ as new state x

3. Emit current state x as sample

33
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Properties

* Approximation: Samples x4, X5, ... approximate P(x)

Unbiased but correlated (not iid)

* Normalization: P(x) does not need to be normalized
Algorithm only considers ratios P(x") /P (x)

» Dependent Proposals: Q(x'|x) depends on current sample x
Algorithm adapts to target with simple 1-step memory

« Symmetric Proposals: Q(x'|x) = Q(x|x")
Requirement of Metropolis algorithm

Typical choice: Gaussian random walk V' (x| x, %)

34
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Example: 2D Gaussian

1 Y NTy =1y
 Target: P(x) = e 2R I (R
2704/ | 2]
e Proposal:  Q(x'|x) = N (x'|x,0%],) <« Random walk
Target Sampled Estimate )
_ [1.5 A [1_56 |
o # = l1.68
z=[L25 075 5= [L09 062
0.75 1.25 0.63 1.07 °r

35
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2D Gaussian: Different Proposals

36
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Metropolis Algorithm: MCMC

* Metropolis defines a Markov chain with equilibrium distribution P

T« x) = Q' [)ac|0) + ) QG [0(1 - a(®]0)) 8,4

* Check: does detailed balance hold for P?
Ty(x" < x)P(x) = Ty(x « x")P(x")

e Expand: (blackboard)

* Result: P satisfies detailed balance for Metropolis kernel Ty,
* P is the stable distribution
e Pisthe equilibrium distribution if the chain is irreducible
e Samples from chain converge to be drawn from P!

37
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Metropolis-Hastings Algorithm

Extension to asymmetric Proposal distribution
Q(x'|x) # Q(x|x’)
Qx'|lx) >0 Q(x|x') >0
Correction in acceptance probability
v = min {P(x’) Q(x|x") 1}
P(x) Q(x'|x)’

Initialize with sample x

Generate next sample, with current sample x

1. Draw asample x’ from Q(x'|x) (“proposal”)
P(x') Q(xIx')
P(x) Q(x'|x)’
3.  Emit current state x as sample

2. With probability a = min{ 1} accept x’ as new state x

38
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Metropolis: Limitations

* Highly correlated targets * Serial correlation
Proposal should match target to e Results from rejection
avoid too many rejections and too small stepping

e Subsampling

250

200

AC decay length
—
w
o

=
o
o

Umin Bishop. PRML, Springer, 50 H
2006

1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20
Standard Deviation of Proposal

39
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Probabilistic Fitting with MCMC

* Probabilistic Registration

e Bayesian Inference

£(0; D)p(6
* Posterior distribution p(O|ly, 1) = (0; D)p(9)

J €(6; D)p(6)d8

* Approximate Inference
MP

e Sampling

* Simulate posterior distribution
* Metropolis-Hastings |
* MCMC, general sampler

e Sample from @Q transform to P (PO QCx|x") ’
* Choose P < p(0|Ig, I7) @ = mh P(x) Q(x'|x)’

40
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Propose-and-Verifty Algorithm

* Metropolis algorithm formalizes: propose-and-verify

Draw a sample x’ from Q (x'|x) Propose

P(x")

P(x)

With probability a« = min{ ,1} accept x’ as new sample Verify

* Very useful concept to integrate unreliable proposals!
* Can deal with heuristics which are not always right

e Can deal with unreliable data

* Algorithmic advantage beyond probabilistic Bayesian concept

Outlook: Filtering for 2D image analysis with unreliable data

41
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Fitting 3D Landmarks

3D Alignment with Shape and Pose

42
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3D Fitting Example

right.eye.corner_outer left.eye.corner_outer

right.lips.corner left.lips.corner

v

43
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3D Fitting Setup

* 3D face with statistical model e Parameters
Discrete low-rank Gaussian Process 0=(aqey, 0,1t
 Arbitrary rigid transformation * Shape

Pose, Positioning in space

Observations

d
X = p() + ) e E()

* Observed positions X1, X5 ..., X, « Rigid Transform

° L X1, X5 [
Correspondence: x§, x5, ..., xf * 3 angles (pitch, yaw, roll) ¢, ¥, 9

Goal: Find Posterior Distribution e Translation t
P(Hl’xvll "')’va) X f(%ll ;%ng)P(a) x' = R0R¢R¢(x) +t

44
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e Choose simple Gaussian random walk proposals (Metropolis)
'Q(8']16) = N(6'16,%6)"
* Normal perturbations of current state

* Block-wise to account for different parameter types

* Shape N(a'|a, 6ZE)
. Rotation N(o'|p,03) + N('|w,03) + N(9'|9, 05)
e Translation N(t’ | t, O-tZEB) E,4 Identity matrix (I is image)

* Large mixture distributions as proposals
Q(O'160) = Xc;Q:(6'|6)

45
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3DMM Landmarks Likelihood

Simple models: Independent Gaussians

Observation of L landmark locations X; in image

» Single landmark position model:
x'i(0) = Ryyo (ha(xfef)) +t
fi(giii) = N(%ilx’i(e)' 0']_2,1\/[) «— ¢(8;D) = p(D|6)

* Independent model (conditional independence):

L
2(6;%,, %y, o, Fy) = H#i(e;xi)
i=1 * Independence and

Gaussian are just simple
models (questionable)

46
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3D Fit to Landmarks

* Influence of landmarks
uncertainty on final posterior?

* OLM = Imm
* oM = 4mm

* oM = 10mm

* Only 4 landmark observations:

e Expect only weak shape
Impact

e Should still constrain pose

 Uncertain LM should be looser

47
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[ ]
[ ]
3D Fitting: Code

val yawProposal = GaussianRotationProposal (AxisY, sdev = 0.05)
val pitchProposal = GaussianRotationProposal (AxisX, sdev = 0.05)
val rollProposal = GaussianRotationProposal (AxisZ, sdev = 0.05)
val rotationProposal = MixtureProposal (

0.6 *: yawProposal + 0.3 *: pitchProposal + 0.1 *: rollProposal)

val translationProposal GaussianTranslationProposal (Vector (2, 2, 2))

val poseProposal = MixtureProposal (
rotationProposal + translationProposal)

val shapeProposal = GaussianShapeProposal (sdev = 0.05)
val ImFitter = MetropolisHastings (
proposal = MixtureProposal (0.2 *: poseProposal + 0.8 *: shapeProposal),

evaluator = ProductEvaluator (IlmLikelihood * shapePrior))

val samples = ImFitter.iterator (initState) .drop(2000) .take(8000) .toIndexedSeq

48
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Posterior: Pose & Shape, 4mm

Target Pose Shape

fyaw = 0.511 fe, = —1 mm flo, = 0.4
Oyaw = 0.073 (4°) 0y, = 4 mm Oq, = 0.6

(Estimation from samples)
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Posterior: Pose & Shape, 4mm

K Gnuplot ¥ @ ®
B mepocsosoog 1009555500000 000 1955556000000004 4010,0.016.6/0.0/0/06/0.0.59 A PP T TP YTIIY e L
[ : : . : "5 : o o . dnm REJ +
i : : : . 4mm ACC ————

-250

-255

-260

-265

=270

-275

-280

-285

8797,28, -245,065

Posterior values (log, unnormalized!)
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Posterior: Pose & Shape, 1mm

Target Pose Shape

N

N

fyaw = 0.50 fe, = —2 mm flo, = 1.5
Oyaw = 0.041 (2.4°) 0y, = 0.8 mm 0q, = 0.35
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Posterior: Pose & Shape, 10mm

Target Pose Shape

N N

ﬁyaw = 0.49 Hey = —5 mm Ha, =
Oyaw = 0.11 (7°) 0y, = 10 mm 0q, = 0.6
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Summary: MCMC for 3D Fitting

Probabilistic inference for fitting probabilistic models
e Bayesian inference: posterior distribution

Probabilistic inference is often intractable
* Use approximate inference methods

Sampling methods approximate by simulation

MCMC methods provide a powerful sampling framework
* Markov Chain with target distribution as equilibrium distribution
* General algorithms, e.g. Metropolis-Hastings

3D landmarks fitting example: Posterior distribution
* Model likelihood
* Define proposals

53



UNIVERSITAT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE PROBABILISTIC MORPHABLE MODELS | JUNE 2017 | BASEL

Overview

Computer Graphics Overview

Probabilistic Setup

Markov Chain Monte Carlo

e Markov Chains

3D Fitting Problem

 [andmarks

2D Face Image Analysis
* Image fitting

* Filtering with unreliable information
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