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Probabilistic	Inference	for
Face	Model	Fitting
Approximate	Inference	with	Markov	Chain	Monte	Carlo
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Probabilistic	Registration

• Model-based	face	image	registration

• Probabilistic	Gaussian	Process	framework

• Bayesian	Fitting	framework

3
Images:	CMU	PIE	Database
Sim,	Baker,	Bsat,	2002
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Face	Image	Manipulation

4

perceived	as	more	trustworthy



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE PROBABILISTIC MORPHABLE MODELS | JUNE 2017 | BASEL

3D	Face	Reconstruction
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Concept:	3D	Face	Model	Fitting
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Parametric face model

Target	Image	𝐼Rendered	Image	𝐼 𝜃

Likelihood	ℓ 𝜃; 𝐼	 ∝ 𝑃 𝐼 	𝐼 𝜃

Face	Model	

Reconstruction:	Analysis-by-Synthesis

𝜃 = 𝜗, 𝛼, 𝛽, 𝑙 :			𝜗 Scene	Parameters,	𝛼	Face	shape,	𝛽 Face	color,	𝑙 Illumination
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Formal: 3D	Face	Model	Fitting

• 3D	face	model: 𝐼. + ℎ1 ∘ ℎ3
• Color	model: 𝐼. + ℎ1
• Shape	model: 𝐼. ∘ ℎ3

• 3D-2D	computer	graphics:

• 𝒙56 = T89: Pr T=> 𝑺 𝒙=6

• Rigid	3D	T=>,	transform	in	image	T89:

• Projection	Pr 𝒙 = 𝑥/𝑧
𝑦/𝑧

• 𝑰 𝒙56 = CF L 𝒏 𝒙=6 , 𝑪 𝒙=6 , 𝒙=6

• Normal	𝒏,	Color	transform	CF 𝒄 ,	illumination	L 𝒏, 𝒄, 𝒙

7

Corresponding	𝒙56 and	𝒙=6
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Overview

• Computer	Graphics	Overview

• Probabilistic	Setup

• Markov	Chain	Monte	Carlo
• Markov	Chains

• 3D	Fitting	Problem
• Landmarks

• 2D	Face	Image	Analysis
• Image	fitting
• Filtering	with	unreliable	information

8
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Approximate	Bayesian	
Inference	with	Samples
Simulating	the	Posterior	Distribution

9
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Reminder:	General	Bayesian	Inference

• Observation	of	additional	variables
• Common	case,	e.g.	face	rendering,	landmark	locations
• Coupled	to	core	model	via	likelihood	factorization

• General	Bayesian	inference	case:	
• Distribution	of	data	𝐷 (formerly	Evidence)
• Parameters	𝜃 (formerly	Query)

𝑃 𝜃|𝐷 =
𝑃 𝐷|𝜃 𝑃 𝜃

𝑃 𝐷

𝑃 𝜃|𝐷 ∝ 𝑃 𝐷|𝜃 𝑃 𝜃

10

Data: our	image or	landmarks,	etc.
Model: shape	and	color	model	of	faces,	3d	graphics	scene
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Bayesian	Inference	and	Estimation

• Bayes
• Whole	posterior	distribution
• Belief	update	(Bayes	rule,	Bayesian	inference)
• Captures	uncertainty

• Maximum-A-Posteriori	(MAP):
• Single	value
• Maximum	of	posterior distribution	– “regularized”

• Maximum	Likelihood	(ML):
• Single	value
• Maximum	of	likelihood only

11

𝜃M = 	argmax
R
ℓ(𝜃; 𝐷)

𝜃M = 	argmax
R
ℓ 𝜃; 𝐷 𝑝(𝜃)

𝑝(𝜃|𝐷) =
ℓ 𝜃; 𝐷 𝑝(𝜃)

∫ ℓ 𝜃; 𝐷 𝑝 𝜃 d𝜃�
�

ℓ 𝜃; 𝐷 = 𝑃 𝐷|𝜃

Ap
pr
ox
im

at
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Bayesian	Fitting

• Posterior	distribution

𝑝 𝛼 𝐼Y,𝑀) =
𝑝 𝛼 𝑝(𝐼Y|𝛼,𝑀)

𝑁(𝐼Y;𝑀)

• Prior	deformations	of	the	mean	face:	𝑝 𝜑

𝜑	~	𝐺𝑃 𝜇, 𝑘 : 		𝜑 ≈ 𝑀 𝛼 = 𝜇 +c𝛼d 𝜆d
� Φd

g

d
𝛼	~	𝑁 0, 𝐸g

• Likelihood,	e.g.	𝑝 𝐼Y 𝛼, 𝐼.) ∝ exp
l6[no,np∘q[r]]

tu

12

parameterization:	
low-rank	models
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Posterior	distribution

13

Posterior	Distribution	

𝒑 𝜶 𝑰𝑻,𝑴) =
𝒑 𝜶 𝒑(𝑰𝑻|𝜶,𝑴)

𝑵(𝑰𝑻;𝑴)

MAP	Solution
𝛼∗ = argmax

r
𝑝 𝛼 𝑝(𝐼Y|𝛼,𝑀)

Local	Maxima

We	need	
approximate	
inference!

Infeasible	to	compute:	
𝑁(𝐼Y	)=	∫ 𝑝 𝛼 𝑝 𝐼Y 𝛼,𝑀 𝑑𝛼
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Variational	methods

• Function	approximation	𝑞(𝜃)
argmax

�
KL(𝑞(𝜃)|𝑝(𝜃|𝐷))

• Variational Message	Passing,	Mean-
Field	Theory,	Moment	matching,	…

Sampling	methods

• Numeric	approximations	through		
simulation

• Monte	Carlo,	Importance	sampling,	
Particle	Filters,	MCMC,	…

14

Approximate	Bayesian	Inference

KL:	Kullback-Leibler	
divergence
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Sampling	Methods

• Simulate	a	distribution	𝑝 through	random	samples	𝑥d
• Evaluate	expectations

𝐸 𝑓 𝑥 = �𝑓 𝑥 𝑝 𝑥 𝑑𝑥
�

�

𝐸 𝑓 𝑥 ≈ 𝑓M =
1
𝑁c𝑓 𝑥d , 	 𝑥d	~	𝑝 𝑥

�

d

𝑉 𝑓M 	~	𝑂
1
𝑁

15

• “Independent”	of	dimensionality
• More	samples	increase	accuracy

This	is	difficult!
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Sampling	from	A	Distribution

• Easy	for	standard	distributions	…	is	it?
• Uniform
• Gaussian

• How	to	sample	from	more	complex	distributions?
• Beta,	Exponential,	Chi	square,	Gamma,	…
• Posteriors	are	very	often	not	in	a	“nice”	standard	text	book	form

• Sadly,	only	very	few	distributions	are	easy	to	sample	from
• We	need	to	sample	from	an	unknown	posterior	with	only	
unnormalized,	expensive	point-wise	evaluation	L

• General	Samplers?
• Yes!	– Rejection,	Importance,	MCMC

16

Random.nextDouble()
Random.nextGaussian()
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Markov	Chain	Monte	Carlo

• Markov	Chain	Monte	Carlo	Methods	(MCMC)
Design	a	Markov	Chain	such	that	samples	𝑥 obey	the	target	distribution	𝑝
Concept:	“Use	an	already	existing	sample	to	produce	the	next	one”

• Very	powerful	general	sampling	methods
• Many	successful	practical	applications
• Proven:	developed	in	the	1950/1970ies	(Metropolis/Hastings)
• Direct	mapping	of	computing	power	to	approximation	accuracy

• Algorithms	(buzz	words):
• Metropolis/-Hastings,	Gibbs,	Slice	Sampling

17
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Markov	Chains
Understanding	Markov	Chain	Monte	Carlo	Methods

18
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Markov	Chain

• Sequence	of	random	variables	 𝑋d d��� , 𝑋d ∈ 𝑆 with	joint	distribution

𝑃 𝑋�, 𝑋5, … , 𝑋� = 𝑃 𝑋� �𝑃(𝑋d|𝑋dl�)
�

d�5

• Simplifications:	(for	our	analysis)
• Discrete	state	space:	𝑆 = {1, 2, … , 𝐾}
• Homogeneous	Chain:	𝑃 𝑋d = 𝑙 𝑋dl� = 𝑚 = 𝑇� 

19

Initial	distribution
Transition	probability

State	space
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Example:	Markov	Chain

• Simple	weather	model:	dry (D)	or	rainy (R)	hour
• Condition	in	next	hour?	𝑋¡¢�
• State	space	𝑆 = {𝐷, 𝑅}
• Stochastic:	𝑃(𝑋¡¢�|𝑋¡)
• Depends	only	on	current	condition	𝑋¡

• Draw	Samples	from	chain:
• Initial:	𝑋¥ = 𝐷
• Evolution:	𝑃 𝑋¡¢� 𝑋¡

• Long-term	Behavior
• Does	it	converge?	Average probability	of	rain?
• Dynamics?	How	quickly will	it	converge?

20
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Discrete	Homogeneous	Markov	Chain

Formally	linear	algebra:
• Distribution	(vector):

𝑃 𝑋d :		𝒑𝒊 =
𝑃(𝑋d = 1)

⋮
𝑃(𝑋d = 𝐾)

• Transition	probability	(transition	matrix):

𝑃 𝑋d 𝑋dl� : 		𝑇 =
𝑃 1 ← 1 ⋯ 𝑃 1 ← 𝐾

⋮ ⋱ ⋮
𝑃 𝐾 ← 1 ⋯ 𝑃 𝐾 ← 𝐾

𝑇�  = 𝑃 𝑙 ← 𝑚 = 𝑃 𝑋d = 𝑙 𝑋dl� = 𝑚

21
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Evolution	of	the	Initial	Distribution

• Evolution	of	𝑃 𝑋� → 𝑃(𝑋5):

𝑃 𝑋5 = 𝑙 = c 𝑃 𝑙 ← 𝑚 𝑃 𝑋� = 𝑚
�

 ∈3
𝒑5 = 𝑇𝒑�

• Evolution	of 𝑛 steps:

𝒑­¢� = 𝑇­𝒑�
• Is there a	stable distribution 𝒑∗?	(steady-state)

𝒑∗ = 𝑇𝒑∗

22

A	stable	distribution	is	an	
eigenvector of	𝑇 with	
eigenvalue	𝜆 = 1
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Steady-State	Distribution:	𝒑∗

• It	exists:
• 𝑇 subject	to	normalization	constraint:	left eigenvector	to	eigenvalue	1

c𝑇� 

�

�

= 1			 ⇔ 			 1 … 1 𝑇 = 1 … 1

• T	has	eigenvalue	𝜆 = 1 (left-/right	eigenvalues	are	the	same)
• Steady-state	distribution	as	corresponding	right	eigenvector

𝑇𝒑∗ = 𝒑∗

• Does	any arbitrary	initial	distribution	evolve	to	𝒑∗?
• Convergence?
• Uniqueness?

23
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Equilibrium	Distribution:	𝒑∗

• Additional	requirement	for	𝑇:	 𝑇�  ­ > 0		for	𝑛 > 𝑁¥
The	chain	is	called	irreducible	and	aperiodic	(implies	ergodic)

• All	states	are	connected	using	at	most	𝑁¥	steps
• Return	intervals	to	a	certain	state	are	irregular

• Perron-Frobenius theorem	for	positive	matrices:
• PF1:	𝜆� = 1 is	a	simple	eigenvalue	with	1d	eigenspace	(uniqueness)
• PF2:	𝜆� = 1 is	dominant,	all	 𝜆d < 1, 	𝑖 ≠ 1 (convergence)

• 𝒑∗ is	a	stable	attractor,	called	equilibrium	distribution
𝑇𝒑∗ = 𝒑∗

24
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Convergence
• Time	evolution	of	arbitrary	distribution	𝒑¥

𝒑­ = 𝑇­𝒑¥

• Expand	𝒑¥ in	Eigen	basis	of	𝑇:

𝑇𝒆d = 𝜆d𝒆d, 			 𝜆d < 𝜆� = 1, 𝜆µ ≥ |𝜆µ¢�|

𝒑¥ =c𝑐d𝒆d

¸

d

𝑇𝒑¥ =c𝑐d𝜆d𝒆d

¸

d

𝑇­𝒑¥ =c𝑐d𝜆d­𝒆d

¹

d

= 𝑐�𝒆� + 𝜆5­𝑐5𝒆5 + 𝜆=­𝑐=𝒆= + ⋯

25
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Convergence	(II)

𝑇­𝒑¥ =c𝑐d𝜆d­𝒆d

¹

d

= 𝑐�𝒆𝟏 + 𝜆5­𝑐5𝒆5 + 𝜆=­𝑐=𝒆= + ⋯

≈ 𝒑∗ + 𝜆5­𝑐5𝒆5
• We have convergence:

𝑇­𝒑¥
­→»

𝒑∗

• Rate of	convergence:
𝒑­ − 𝒑∗ ≈ 𝜆5­𝑐5𝒆5 = 𝜆5 ­ 𝑐5

26

Normalizations:
𝒆� = 1
∑ 𝑝d∗�
d = 1

𝑐�𝒆𝟏 = 𝒑∗(𝑛 ≫ 1)
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Example:	Weather	Dynamics

Rain	forecast	for	stable	versus	mixed	weather:

27

𝑊À =
0.95 0.2
0.05 0.8stable 𝑊  = 0.85 0.6

0.15 0.4
mixed

𝒑∗ = 0.8
0.2 𝒑∗ = 0.8

0.2

Eigenvalues:	1,	0.75 Eigenvalues:	1,	0.25

RDDDDDDDDDDDDDDD
RDDDRDDDDDDDD...

RRRRDDDDDDDDDDDD
DDDDDDDDDDDDD...

Rainy	now,	next	hours? Rainy	now,	next	hours?

Long-term	average	
probability	of	rain:	20%
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Markov	Chain:	First	Results

• Aperiodic and	irreducible chains	are	ergodic:
(every	state	reachable	after> 𝑁 steps,	irregular	return	time)

• Convergence	towards	a	unique	equilibrium	distribution	𝒑∗

• Equilibrium	distribution	𝒑∗
• Eigenvector	of	𝑇 with	eigenvalue	𝜆 = 1:		

𝑇𝒑∗ = 𝒑∗

• Rate	of	convergence:	
Exponential	decay	with	second	largest	eigenvalue	∝ 𝜆5 ­

• How	to	design	a	chain	with	a	given equilibrium	distribution?

28
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Detailed	Balance

• Detailed	Balance	is	a	local	equilibrium
Distribution	𝑝 satisfies	detailed	balance	if	the	total	flow	of	probability	between	
every	pair	of	states is	equal,	the	chain	is	then	reversible:

𝑃 𝑙 ← 𝑚 𝑝 𝑚 = 𝑃 𝑚 ← 𝑙 𝑝(𝑙)

• Detailed	balance	implies:	𝑝 is	the	equilibrium	distribution

𝑇𝒑 � =c𝑇� 𝑝 

�

 

=c𝑇 �𝑝�

�

 

= 𝑝�

• Design	Markov	Chains	with	specific	equilibrium	distributions!

29
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Example:	Detailed	Balance

• Local	Equilibrium • Global	Equilibrium

30

• same	equilibrium	distribution	[1/3,	1/3,	1/3]
• different	convergence	mechanism

0.25

0.25

0.25

0.25

0.25

0.5

0.4

0.1

0.4

0.1

0.1

0.4

0.5
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Summary:	Markov	Chains

• Sequential	random	variables:	𝑋�, 𝑋5, …

• Aperiodic and	irreducible chains	are	ergodic:
• Convergence	towards	a	unique	equilibrium	distribution	𝒑∗

• Equilibrium	distribution	𝒑∗
• Eigenvector	of	𝑇 with	eigenvalue	𝜆 = 1:		𝑇𝒑∗ = 𝒑∗

• Rate	of	convergence:	decay	with	second	largest	eigenvalue	∝ 𝜆5 ­

• Detailed	Balance:	
• Local	equilibrium	⇒ global	equilibrium
• Easier	to	design	Markov	chains	with	given	equilibrium	distribution

31
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The	Metropolis	Algorithm
MCMC	to	draw	samples	from	an	arbitrary	distribution

32
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The	Metropolis	Algorithm

• Initialize	with	sample	𝒙
• Generate	next	sample,	with	current	sample	𝒙	

1. Draw	a	sample	𝒙È from	𝑄(𝒙È|𝒙) (“proposal”)

2. With	probability 𝛼 = min Ê 𝒙Ë

Ê 𝒙
, 1 accept	𝒙È as	new	state	𝒙

3. Emit	current	state	𝒙 as	sample
33

Requirements:
• Proposal	distribution	𝑄(𝒙È|𝒙) – must	generate	samples,	symmetric
• Target	distribution	𝑃 𝒙 – with	point-wise	evaluation
Result:
• Stream	of	samples	approximately	from	𝑃 𝒙



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE PROBABILISTIC MORPHABLE MODELS | JUNE 2017 | BASEL

Properties

• Approximation: Samples	𝑥�, 𝑥5, … approximate	𝑃(𝑥)
Unbiased	but	correlated	(not	iid)

• Normalization: 𝑃(𝑥) does	not	need	to	be	normalized
Algorithm	only	considers	ratios	𝑃(𝑥′)/𝑃(𝑥)

• Dependent	Proposals:	𝑄 𝑥È 𝑥 depends	on	current	sample	𝑥
Algorithm	adapts	to	target	with	simple	1-step	memory

• Symmetric	Proposals: 𝑄 𝑥È 𝑥 = 𝑄 𝑥 𝑥′
Requirement	of	Metropolis	algorithm
Typical	choice:	Gaussian	random	walk	𝒩 𝑥È|𝑥, 𝜎5

34
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Example:	2D	Gaussian

• Target:	 𝑃 𝒙 = �
5Ï Ð� 𝑒l

Ò
u 𝒙l𝝁

oÐÔÒ(𝒙l𝝁)	

• Proposal:	 𝑄 𝒙È 𝒙 = 𝒩(𝒙È|𝒙, 𝜎5𝐼5)

35

Random	walk

�̂� = 1.56
1.68

Σ× = 1.09 0.63
0.63 1.07

𝜇 = 1.5
1.5

Σ = 1.25 0.75
0.75 1.25

Sampled	EstimateTarget



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE PROBABILISTIC MORPHABLE MODELS | JUNE 2017 | BASEL

2D	Gaussian:	Different	Proposals

36

𝜎 = 0.2 𝜎 = 1.0
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Metropolis	Algorithm:	MCMC

• Metropolis	defines	a	Markov	chain	with	equilibrium	distribution	𝑃

𝑇q 𝑥È ← 𝑥 = 𝑄 𝑥È|𝑥 𝛼 𝑥È|𝑥 +c𝑄 𝑥Ú	|	𝑥 1 − 𝛼 𝑥Ú|𝑥
�

ÛÚ

𝛿ÛËÛ

• Check:	does	detailed	balance	hold	for	𝑃?
𝑇q 𝑥È ← 𝑥 𝑃 𝑥 = 𝑇q 𝑥 ← 𝑥È 𝑃 𝑥È

• Expand:	(blackboard)

• Result:	𝑃 satisfies	detailed	balance	for	Metropolis	kernel	𝑇q
• 𝑃 is	the	stable	distribution
• 𝑃 is	the	equilibrium	distribution	if	the	chain	is	irreducible
• Samples	from	chain	converge	to	be	drawn	from	𝑃!

37
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Metropolis-Hastings	Algorithm

• Initialize	with	sample	𝒙
• Generate	next	sample,	with	current	sample	𝒙	

1. Draw	a	sample	𝒙È from	𝑄(𝒙È|𝒙) (“proposal”)

2. With	probability	𝛼 = min Ê ÛË

Ê Û
Ý Û|ÛË

Ý ÛË|Û
, 1 accept	𝒙È as	new	state	𝒙

3. Emit	current	state	𝒙 as	sample
38

• Extension	to	asymmetric	Proposal	distribution
𝑄 𝒙È 𝒙 ≠ 𝑄 𝒙 𝒙È

𝑄 𝒙È 𝒙 > 0 ⇔ 𝑄 𝒙 𝒙È > 0
• Correction	in	acceptance	probability

𝛼 = min
𝑃 𝑥È

𝑃 𝑥
𝑄 𝑥|𝑥È

𝑄 𝑥È|𝑥 , 1
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Metropolis:	Limitations

• Highly	correlated	targets
Proposal	should	match	target	to	
avoid	too	many	rejections

• Serial	correlation
• Results	from	rejection	
and	too	small	stepping

• Subsampling

39

Bishop.	PRML,	Springer,	
2006
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Probabilistic	Fitting	with	MCMC

• Probabilistic	Registration

• Bayesian	Inference
• Posterior	distribution

• Approximate	Inference

• Sampling
• Simulate posterior	distribution

• Metropolis-Hastings
• MCMC,	general	sampler
• Sample	from	𝑄 transform	to	𝑃
• Choose	𝑃 ∝ 𝑝 𝜃 𝐼., 𝐼Y

40

𝑝 𝜃 𝐼., 𝐼Y =
ℓ(𝜃; 𝐷)𝑝(𝜃)	

∫ ℓ(𝜃; 𝐷)𝑝(𝜃)dθ	

𝛼 = min
𝑃 𝑥È

𝑃 𝑥
𝑄 𝑥|𝑥È

𝑄 𝑥È|𝑥 , 1
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Propose-and-Verify	Algorithm

• Metropolis	algorithm	formalizes:	propose-and-verify

• Very	useful	concept	to	integrate	unreliable	proposals!
• Can	deal	with	heuristics	which	are	not	always	right
• Can	deal	with	unreliable	data

• Algorithmic	advantage	beyond	probabilistic	Bayesian	concept
Outlook:	Filtering	for	2D	image	analysis	with	unreliable	data

41

Draw	a	sample	𝑥È from	𝑄(𝑥È|𝑥)	 Propose

With	probability 𝛼 = min Ê 𝒙Ë

Ê 𝒙
, 1 accept	𝒙È as	new	sample	 Verify
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Fitting	3D	Landmarks
3D	Alignment	with	Shape	and	Pose

42
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3D	Fitting	Example

43

right.eye.corner_outer left.eye.corner_outer

right.lips.corner left.lips.corner
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3D	Fitting	Setup

• 3D	face	with	statistical	model

Discrete	low-rank	Gaussian	Process

• Arbitrary	rigid	transformation

Pose,	Positioning	in	space

• Observations

• Observed	positions	𝒙ß�, 𝒙ß5 … , 𝒙ßà
• Correspondence:	𝒙�á, 𝒙5á , … , 𝒙àá

• Goal:	Find	Posterior	Distribution
𝑃 𝜃 𝒙ß�, … , 𝒙ßà ∝ ℓ 𝒙ß�, … , 𝒙ßà|𝜃 𝑃(𝜶)

• Parameters

𝜃 = (𝜶, 𝜑, 𝜓, 𝜗, 𝒕)

• Shape

𝒙È = 𝜇(𝒙) +c𝛼d 𝜆d
� Φd(𝒙)

g

d

• Rigid	Transform
• 3	angles	(pitch,	yaw,	roll)	𝜑,𝜓, 𝜗

• Translation	𝒕

𝒙È = 𝑅ä𝑅å𝑅æ 𝒙 + 𝒕

44
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Proposals

• Choose	simple	Gaussian	random	walk	proposals	(Metropolis)

"𝑄 𝜃È|𝜃 = 𝑁(𝜃È|𝜃, ΣR)"
• Normal	perturbations of	current	state

• Block-wise	to	account	for	different	parameter	types
• Shape	 𝑁(𝜶′|𝜶, 𝜎35𝐸À)
• Rotation 𝑁 𝜑È 𝜑, 𝜎æ5 + 𝑁 𝜓È 𝜓, 𝜎å5 + 𝑁 𝜗È 𝜗, 𝜎ä5

• Translation 𝑁 𝒕È 𝒕, 𝜎¡5𝐸=

• Large	mixture	distributions	as	proposals

𝑄 𝜃È|𝜃 = ∑𝑐d𝑄d(𝜃È|𝜃)

45

𝐸g Identity	matrix	(𝐼 is	image)
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3DMM	Landmarks	Likelihood

Simple	models:	Independent	Gaussians

Observation	of	𝐿 landmark	locations	𝒙ßd in	image

• Single	landmark	position	model:

𝒙Èd 𝜃 = 𝑅æ,å,ä ℎ𝜶 𝒙dáéê + 𝒕
ℓd 𝜃; 𝒙ßd = 𝑁 𝒙ßd|𝒙′d 𝜃 , 𝜎à95

• Independentmodel	(conditional	independence):	

ℓ 𝜃; 𝒙ß�, 𝒙ß5, … , 𝒙ßë =�ℓd 𝜃; 𝒙ßd

ë

d��

46

• Independence	and	
Gaussian	are	just	simple
models (questionable)

ℓ 𝜃; 𝐷 = 𝑝(𝐷|𝜃)
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3D	Fit	to	Landmarks

• Influence	of	landmarks	
uncertainty	on	final	posterior?

• 𝜎à9 = 1mm
• 𝜎à9 = 4mm
• 𝜎à9 = 10mm

• Only	4	landmark	observations:
• Expect	only	weak	shape	
impact

• Should	still	constrain	pose

• Uncertain	LM	should	be	looser

47
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3D	Fitting:	Code

48

val yawProposal = GaussianRotationProposal(AxisY, sdev = 0.05)
val pitchProposal = GaussianRotationProposal(AxisX, sdev = 0.05)
val rollProposal = GaussianRotationProposal(AxisZ, sdev = 0.05)
val rotationProposal = MixtureProposal(

0.6 *: yawProposal + 0.3 *: pitchProposal + 0.1 *: rollProposal)

val translationProposal = GaussianTranslationProposal(Vector(2, 2, 2))

val poseProposal = MixtureProposal(
rotationProposal + translationProposal)

val shapeProposal = GaussianShapeProposal(sdev = 0.05)

val lmFitter = MetropolisHastings(
proposal = MixtureProposal(0.2 *: poseProposal +  0.8 *: shapeProposal),
evaluator = ProductEvaluator(lmLikelihood * shapePrior))

val samples = lmFitter.iterator(initState).drop(2000).take(8000).toIndexedSeq
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Posterior:	Pose	&	Shape,	4mm

49

�̂�ìíî = 0.511
𝜎ïìíî = 0.073	(4°)

�̂�ñò = −1	mm
𝜎ïñò = 4	mm

�̂�rÒ = 0.4
𝜎ïrÒ = 0.6

(Estimation	from	samples)

Target Pose Shape
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Posterior:	Pose	&	Shape,	4mm

50

Posterior	values	(log,	unnormalized!)
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Posterior:	Pose	&	Shape,	1mm
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�̂�ìíî = 0.50
𝜎ïìíî = 0.041	(2.4°)

�̂�ñò = −2	mm
𝜎ïñò = 0.8	mm

�̂�rÒ = 1.5
𝜎ïrÒ = 0.35

Target Pose Shape
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Posterior:	Pose	&	Shape,	10mm
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�̂�ìíî = 0.49
𝜎ïìíî = 0.11	(7°)

�̂�ñò = −5	mm
𝜎ïñò = 10	mm

�̂�rÒ = 0
𝜎ïrÒ = 0.6

Target Pose Shape
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Summary:	MCMC	for	3D	Fitting
• Probabilistic	inference	for	fitting	probabilistic	models

• Bayesian	inference:	posterior	distribution

• Probabilistic	inference	is	often	intractable
• Use	approximate inference	methods

• Sampling	methods	approximate	by	simulation

• MCMC	methods	provide	a	powerful	sampling	framework
• Markov	Chain	with	target	distribution	as	equilibrium	distribution
• General	algorithms,	e.g.	Metropolis-Hastings

• 3D	landmarks	fitting	example:	Posterior	distribution
• Model	likelihood
• Define	proposals

53
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Overview

• Computer	Graphics	Overview

• Probabilistic	Setup

• Markov	Chain	Monte	Carlo
• Markov	Chains

• 3D	Fitting	Problem
• Landmarks

• 2D	Face	Image	Analysis
• Image	fitting
• Filtering	with	unreliable	information
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