graphics and vision gravis Winiversity of Basel

Probabilistic Fitting

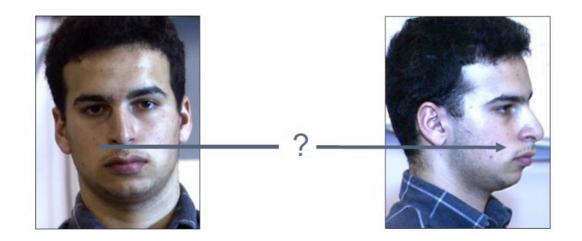
Probabilistic Morphable Models
Summer School, June 2017
Sandro Schönborn
University of Basel

Probabilistic Inference for Face Model Fitting

Approximate Inference with Markov Chain Monte Carlo

Probabilistic Registration

Model-based face image registration



- Probabilistic Gaussian Process framework
- Bayesian Fitting framework

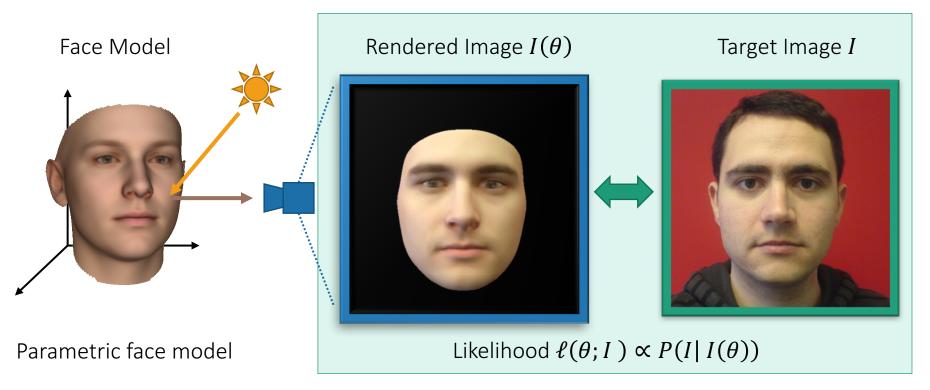
Face Image Manipulation

perceived as more trustworthy

3D Face Reconstruction

Concept: 3D Face Model Fitting

Reconstruction: Analysis-by-Synthesis



 $\theta = (\vartheta, \alpha, \beta, l)$: ϑ Scene Parameters, α Face shape, β Face color, l Illumination

Formal: 3D Face Model Fitting

- 3D face model: $(I_R + h_C) \circ h_S$
 - Color model: $I_R + h_C$
 - Shape model: $I_R \circ h_S$
- 3D-2D computer graphics:
 - $\mathbf{x}^{2D} = T_{IMG} \left(Pr \left(T_{3D} \left(\mathbf{S}(\mathbf{x}^{3D}) \right) \right) \right)$
 - Rigid 3D T_{3D} , transform in image T_{IMG}
 - Projection $Pr(x) = \begin{bmatrix} x/z \\ y/z \end{bmatrix}$
 - $I(x^{2D}) = C_T(L(n(x^{3D}), C(x^{3D}), x^{3D}))$

• Normal n, Color transform $C_T(c)$, illumination L(n,c,x)

Corresponding x^{2D} and x^{3D}

Overview

- Computer Graphics Overview
- Probabilistic Setup
- Markov Chain Monte Carlo
 - Markov Chains
- 3D Fitting Problem
 - Landmarks
- 2D Face Image Analysis
 - Image fitting
 - Filtering with unreliable information

Approximate Bayesian Inference with Samples

Simulating the Posterior Distribution

Reminder: General Bayesian Inference

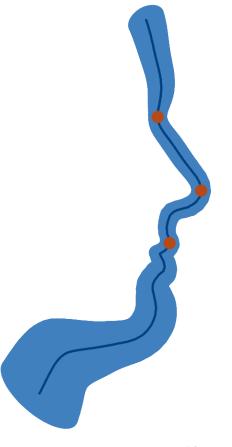
- Observation of additional variables
 - Common case, e.g. face rendering, landmark locations
 - Coupled to core model via likelihood factorization
- General Bayesian inference case:
 - Distribution of data D (formerly Evidence)
 - Parameters θ (formerly Query)

$$P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)}$$

$$P(\theta|D) \propto P(D|\theta)P(\theta)$$

Data: our image or landmarks, etc.

Model: shape and color model of faces, 3d graphics scene



Bayesian Inference and Estimation

- Bayes
 - Whole posterior distribution
 - Belief update (Bayes rule, Bayesian inference)
 - Captures uncertainty
- Maximum-A-Posteriori (MAP):
 - Single value
 - Maximum of posterior distribution "regularized"
- Maximum Likelihood (ML):
 - Single value
 - Maximum of *likelihood* only

$$p(\theta|\mathbf{D}) = \frac{\ell(\theta; \mathbf{D})p(\theta)}{\int \ell(\theta; \mathbf{D})p(\theta)d\theta}$$

$$\hat{\theta} = \arg\max_{\theta} \ell(\theta; D) p(\theta)$$

$$\hat{\theta} = \arg\max_{\theta} \ell(\theta; \mathbf{D})$$

$$\ell(\theta; \mathbf{D}) = P(\mathbf{D}|\theta)$$

Bayesian Fitting

Posterior distribution

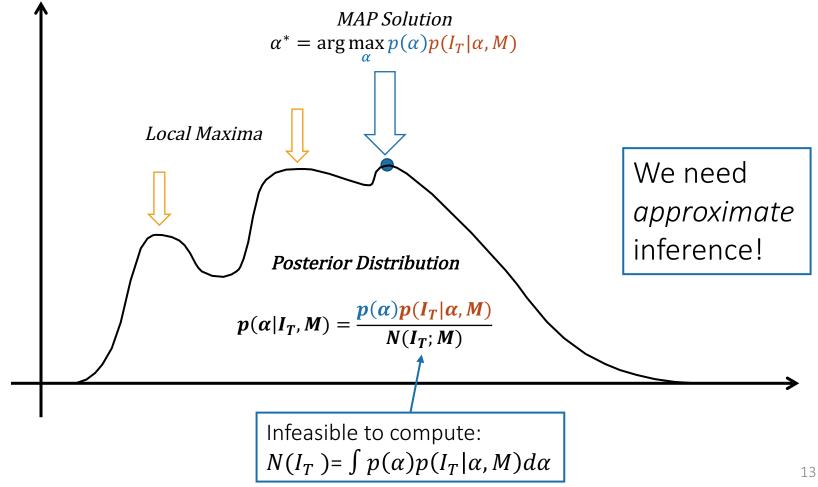
$$p(\alpha|I_T, M) = \frac{p(\alpha)p(I_T|\alpha, M)}{N(I_T; M)}$$

• Prior deformations of the mean face: $p(\varphi)$

$$\varphi \sim GP(\mu, k)$$
: $\varphi \approx M[\alpha] = \mu + \sum_{i}^{a} \alpha_{i} \sqrt{\lambda_{i}} \Phi_{i}$ parameterization: low-rank models $\alpha \sim N(0, E_{d})$

• Likelihood, e.g. $p(I_T | \alpha, I_R) \propto \exp \frac{-D[I_T, I_R \circ M[\alpha]]}{\sigma^2}$

Posterior distribution



Approximate Bayesian Inference

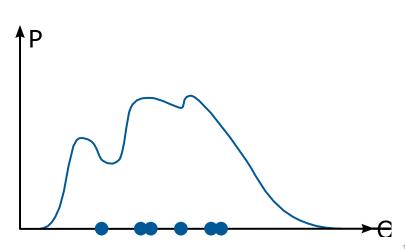
Variational methods

- Function approximation $q(\theta)$ arg $\max_{q} \text{KL}(q(\theta)|p(\theta|D))$
- Variational Message Passing, Mean-Field Theory, Moment matching, ...

KL: Kullback-Leibler divergence

Sampling methods

- Numeric approximations through simulation
- Monte Carlo, Importance sampling, Particle Filters, MCMC, ...



Sampling Methods

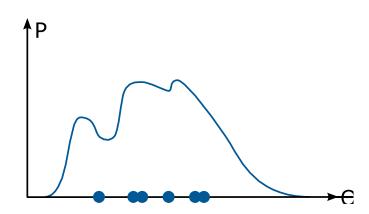
- Simulate a distribution p through random samples x_i
- Evaluate expectations

$$E[f(x)] = \int f(x)p(x)dx$$

$$E[f(x)] \approx \hat{f} = \frac{1}{N} \sum_{i}^{N} f(x_i), \qquad x_i \sim p(x)$$

$$V[\hat{f}] \sim O\left(\frac{1}{N}\right)$$
This is difficult!

- "Independent" of dimensionality
- More samples increase accuracy



Sampling from A Distribution

- Easy for standard distributions ... is it?
 - Uniform
 - Gaussian

```
Random.nextDouble()
Random.nextGaussian()
```

- How to sample from more complex distributions?
 - Beta, Exponential, Chi square, Gamma, ...
 - Posteriors are very often not in a "nice" standard text book form
- Sadly, only very few distributions are easy to sample from
 - We need to sample from an unknown posterior with only unnormalized, expensive point-wise evaluation ⊗
- General Samplers?
 - Yes! Rejection, Importance, MCMC

Markov Chain Monte Carlo

- Markov Chain Monte Carlo Methods (MCMC)

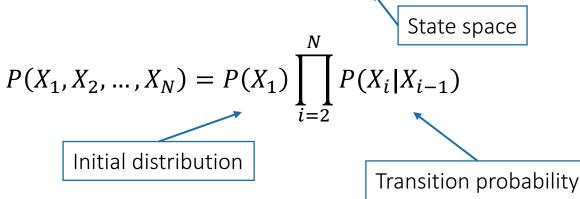
 Design a Markov Chain such that samples x obey the target distribution pConcept: "Use an already existing sample to produce the next one"
- Very powerful general sampling methods
 - Many successful practical applications
 - Proven: developed in the 1950/1970ies (Metropolis/Hastings)
 - Direct mapping of computing power to approximation accuracy
- Algorithms (buzz words):
 - Metropolis/-Hastings, Gibbs, Slice Sampling

Markov Chains

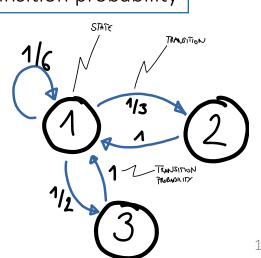
Understanding Markov Chain Monte Carlo Methods

Markov Chain

• Sequence of random variables $\{X_i\}_{i=1}^N$, $X_i \in S$ with joint distribution

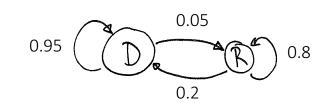


- Simplifications: (for our analysis)
 - Discrete state space: $S = \{1, 2, ..., K\}$
 - Homogeneous Chain: $P(X_i = l | X_{i-1} = m) = T_{lm}$



Example: Markov Chain

- Simple weather model: dry (D) or rainy (R) hour
 - Condition in next hour? X_{t+1}
 - State space $S = \{D, R\}$
 - Stochastic: $P(X_{t+1}|X_t)$
 - Depends only on *current* condition X_t



- Draw Samples from chain:
 - Initial: $X_0 = D$
 - Evolution: $P(X_{t+1}|X_t)$

- Long-term Behavior
 - Does it converge? Average probability of rain?
 - Dynamics? How quickly will it converge?

Discrete Homogeneous Markov Chain

Formally linear algebra:

• Distribution (vector):

$$P(X_i): \ \boldsymbol{p_i} = \begin{bmatrix} P(X_i = 1) \\ \vdots \\ P(X_i = K) \end{bmatrix}$$

• Transition probability (transition matrix):

$$P(X_i|X_{i-1}): T = \begin{bmatrix} P(1 \leftarrow 1) & \cdots & P(1 \leftarrow K) \\ \vdots & \ddots & \vdots \\ P(K \leftarrow 1) & \cdots & P(K \leftarrow K) \end{bmatrix}$$

$$T_{lm} = P(l \leftarrow m) = P(X_i = l | X_{i-1} = m)$$

Evolution of the Initial Distribution

• Evolution of $P(X_1) \rightarrow P(X_2)$:

$$P(X_2 = l) = \sum_{m \in S} P(l \leftarrow m)P(X_1 = m)$$
$$\boldsymbol{p}_2 = T\boldsymbol{p}_1$$

Evolution of n steps:

$$\boldsymbol{p}_{n+1} = T^n \boldsymbol{p}_1$$

• Is there a *stable* distribution p^* ? (steady-state)

$$\boldsymbol{p}^* = T\boldsymbol{p}^*$$

A stable distribution is an eigenvector of T with eigenvalue $\lambda = 1$

Steady-State Distribution: $oldsymbol{p}^*$

- It exists:
 - T subject to normalization constraint: left eigenvector to eigenvalue 1

$$\sum_{l} T_{lm} = 1 \iff [1 \dots 1]T = [1 \dots 1]$$

- T has eigenvalue $\lambda = 1$ (left-/right eigenvalues are the same)
- Steady-state distribution as corresponding right eigenvector

$$T\boldsymbol{p}^* = \boldsymbol{p}^*$$

- Does *any* arbitrary initial distribution *evolve* to p^* ?
 - Convergence?
 - Uniqueness?

Equilibrium Distribution: p^*

- Additional requirement for $T: (T_{lm})^n > 0 \text{ for } n > N_0$
 - The chain is called *irreducible* and *aperiodic* (implies *ergodic*)
 - All states are connected using at most N_0 steps
 - Return intervals to a certain state are irregular
- Perron-Frobenius theorem for positive matrices:
 - PF1: $\lambda_1 = 1$ is a simple eigenvalue with 1d eigenspace (*uniqueness*)
 - PF2: $\lambda_1 = 1$ is dominant, all $|\lambda_i| < 1$, $i \neq 1$ (convergence)
- $oldsymbol{p}^*$ is a stable attractor, called equilibrium distribution

$$T\boldsymbol{p}^* = \boldsymbol{p}^*$$

Convergence

• Time evolution of arbitrary distribution $oldsymbol{p}_0$

$$\boldsymbol{p}_n = T^n \boldsymbol{p}_0$$

• Expand p_0 in Eigen basis of T:

$$T oldsymbol{e}_i = \lambda_i oldsymbol{e}_i, \qquad |\lambda_i| < \lambda_1 = 1, \qquad |\lambda_k| \ge |\lambda_{k+1}|$$
 $oldsymbol{p}_0 = \sum_i^K c_i oldsymbol{e}_i$
 $T oldsymbol{p}_0 = \sum_i^K c_i \lambda_i^n oldsymbol{e}_i$
 $T^n oldsymbol{p}_0 = \sum_i^K c_i \lambda_i^n oldsymbol{e}_i = c_1 oldsymbol{e}_1 + \lambda_2^n c_2 oldsymbol{e}_2 + \lambda_3^n c_3 oldsymbol{e}_3 + \cdots$

Normalizations:

Convergence (II)

$$T^{n}\boldsymbol{p}_{0} = \sum_{i}^{K} c_{i}\lambda_{i}^{n}\boldsymbol{e}_{i} = c_{1}\boldsymbol{e}_{1} + \lambda_{2}^{n}c_{2}\boldsymbol{e}_{2} + \lambda_{3}^{n}c_{3}\boldsymbol{e}_{3} + \cdots$$

$$(n \gg 1) \approx \boldsymbol{p}^{*} + \lambda_{2}^{n}c_{2}\boldsymbol{e}_{2}$$

$$c_{1}\boldsymbol{e}_{1} = \boldsymbol{p}^{*}$$

• We have convergence:

$$T^n \boldsymbol{p}_0 \xrightarrow{n \to \infty} \boldsymbol{p}^*$$

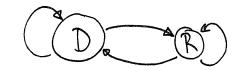
• Rate of convergence:

$$\|\boldsymbol{p}_{n}-\boldsymbol{p}^{*}\| \approx \|\lambda_{2}^{n}c_{2}\boldsymbol{e}_{2}\| = |\lambda_{2}|^{n}|c_{2}|$$

Example: Weather Dynamics

Rain forecast for stable versus mixed weather:

stable
$$W_s = \begin{bmatrix} 0.95 & 0.2 \\ 0.05 & 0.8 \end{bmatrix}$$



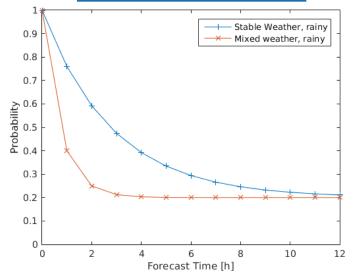
mixed

$$W_m = \begin{bmatrix} 0.85 & 0.6 \\ 0.15 & 0.4 \end{bmatrix}$$

$$p^* = \begin{bmatrix} 0.8 \\ 0.2 \end{bmatrix}$$
 Long-term average probability of rain: 20% $p^* = \begin{bmatrix} 0.8 \\ 0.2 \end{bmatrix}$

Eigenvalues: 1, 0.75

Rainy now, next hours?



Eigenvalues: 1, 0.25

Rainy now, next hours?

RDDDDDDDDDDDDDDD RDDDRDDDDDDDD...

Markov Chain: First Results

- Aperiodic and irreducible chains are ergodic: (every state reachable after > N steps, irregular return time)
 - Convergence towards a unique equilibrium distribution $oldsymbol{p}^*$
- Equilibrium distribution p^*
 - Eigenvector of T with eigenvalue $\lambda = 1$:

$$T\boldsymbol{p}^* = \boldsymbol{p}^*$$

Rate of convergence:

Exponential decay with second largest eigenvalue $\propto |\lambda_2|^n$

• How to design a chain with a *given* equilibrium distribution?

Detailed Balance

Detailed Balance is a local equilibrium

Distribution p satisfies detailed balance if the total flow of probability between every pair of states is equal, the chain is then reversible:

$$P(l \leftarrow m)p(m) = P(m \leftarrow l)p(l)$$

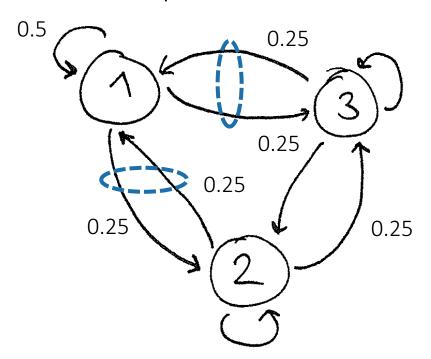
• Detailed balance implies: p is the equilibrium distribution

$$(T\boldsymbol{p})_l = \sum_m T_{lm} p_m = \sum_m T_{ml} p_l = p_l$$

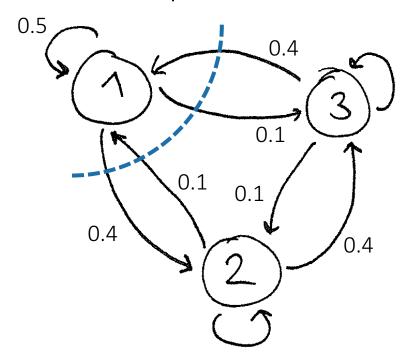
Design Markov Chains with specific equilibrium distributions!

Example: Detailed Balance

Local Equilibrium



Global Equilibrium



- same equilibrium distribution [1/3, 1/3, 1/3]
- different convergence *mechanism*

Summary: Markov Chains

- Sequential random variables: $X_1, X_2, ...$
- Aperiodic and irreducible chains are ergodic:
 - Convergence towards a unique equilibrium distribution $oldsymbol{p}^*$
- Equilibrium distribution p^*
 - Eigenvector of T with eigenvalue $\lambda = 1$: $T p^* = p^*$
 - Rate of convergence: decay with second largest eigenvalue $\propto |\lambda_2|^n$
- Detailed Balance:
 - Local equilibrium ⇒ global equilibrium
 - Easier to design Markov chains with given equilibrium distribution

The Metropolis Algorithm

MCMC to draw samples from an arbitrary distribution

The Metropolis Algorithm

Requirements:

- Proposal distribution Q(x'|x) must generate samples, symmetric
- Target distribution P(x) with point-wise evaluation

Result:

- Stream of samples approximately from P(x)
- ullet Initialize with sample $oldsymbol{x}$
- ullet Generate next sample, with current sample $oldsymbol{x}$
 - 1. Draw a sample x' from Q(x'|x) ("proposal")
 - 2. With probability $\alpha = \min\left\{\frac{P(x')}{P(x)}, 1\right\}$ accept x' as new state x
 - 3. Emit current state x as sample

Properties

- Approximation: Samples $x_1, x_2, ...$ approximate P(x) Unbiased but correlated (not *iid*)
- Normalization: P(x) does not need to be normalized Algorithm only considers ratios P(x')/P(x)
- Dependent Proposals: Q(x'|x) depends on current sample xAlgorithm adapts to target with simple 1-step memory
- Symmetric Proposals: Q(x'|x) = Q(x|x')

Requirement of Metropolis algorithm

Typical choice: Gaussian random walk $\mathcal{N}(x'|x,\sigma^2)$

Example: 2D Gaussian

• Target:
$$P(x) = \frac{1}{2\pi\sqrt{|\Sigma|}} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}$$

• Proposal: $Q(x'|x) = \mathcal{N}(x'|x, \sigma^2 I_2)$ Random walk

Target

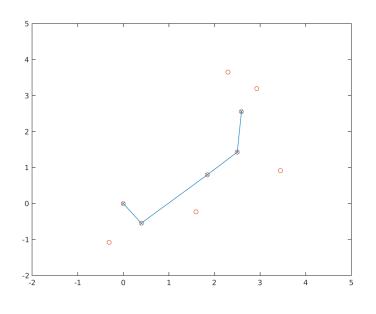
$$\mu = \begin{bmatrix} 1.5 \\ 1.5 \end{bmatrix}$$

$$\Sigma = \begin{bmatrix} 1.25 & 0.75 \\ 0.75 & 1.25 \end{bmatrix}$$

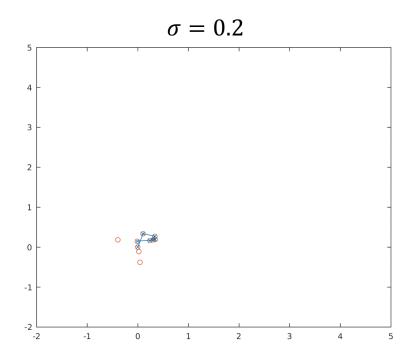
Sampled Estimate

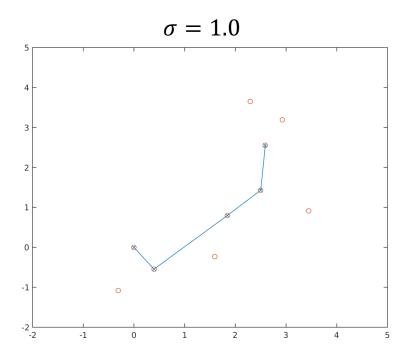
$$\hat{\mu} = \begin{bmatrix} 1.56 \\ 1.68 \end{bmatrix}$$

$$\hat{\Sigma} = \begin{bmatrix} 1.09 & 0.63 \\ 0.63 & 1.07 \end{bmatrix}$$



2D Gaussian: Different Proposals





Metropolis Algorithm: MCMC

• Metropolis defines a Markov chain with equilibrium distribution P

$$T_M(x' \leftarrow x) = Q(x'|x)\alpha(x'|x) + \sum_{\tilde{x}} Q(\tilde{x} \mid x) (1 - \alpha(\tilde{x}|x)) \delta_{x'x}$$

Check: does detailed balance hold for P?

$$T_M(x' \leftarrow x)P(x) = T_M(x \leftarrow x')P(x')$$

- Expand: (blackboard)
- Result: P satisfies detailed balance for Metropolis kernel T_M
 - P is the stable distribution
 - P is the equilibrium distribution if the chain is irreducible
 - Samples from chain converge to be drawn from P!

Metropolis-Hastings Algorithm

• Extension to asymmetric Proposal distribution

$$Q(x'|x) \neq Q(x|x')$$
$$Q(x'|x) > 0 \Leftrightarrow Q(x|x') > 0$$

Correction in acceptance probability

$$\alpha = \min \left\{ \frac{P(x')}{P(x)} \frac{Q(x|x')}{Q(x'|x)}, 1 \right\}$$

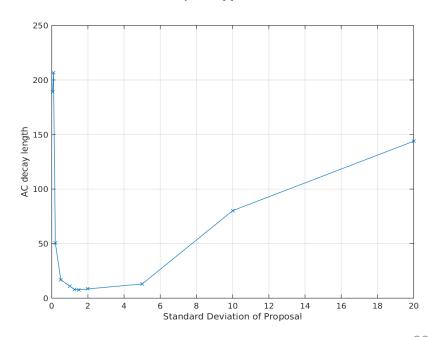
- Initialize with sample $oldsymbol{x}$
- ullet Generate next sample, with current sample $oldsymbol{x}$
 - 1. Draw a sample x' from Q(x'|x) ("proposal")
 - 2. With probability $\alpha = \min\left\{\frac{P(x')}{P(x)}\frac{Q(x|x')}{Q(x'|x)}, 1\right\}$ accept x' as new state x
 - 3. Emit current state x as sample

Metropolis: Limitations

- Highly correlated targets
 Proposal should match target to avoid too many rejections
 - σ_{min}

 Bishop. PRML, Springer, 2006

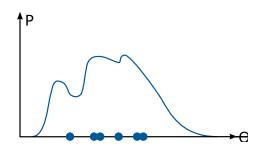
- Serial correlation
 - Results from rejection and too small stepping
 - Subsampling



Probabilistic Fitting with MCMC

- Probabilistic Registration
- Bayesian Inference
 - Posterior distribution
- Approximate Inference
- Sampling
 - Simulate posterior distribution
- Metropolis-Hastings
 - MCMC, general sampler
 - Sample from Q transform to P
 - Choose $P \propto p(\theta|I_R,I_T)$

$$p(\theta|I_R, I_T) = \frac{\ell(\theta; D)p(\theta)}{\int \ell(\theta; D)p(\theta)d\theta}$$



$$\alpha = \min \left\{ \frac{P(x')}{P(x)} \frac{Q(x|x')}{Q(x'|x)}, 1 \right\}$$

Propose-and-Verify Algorithm

• Metropolis algorithm formalizes: propose-and-verify

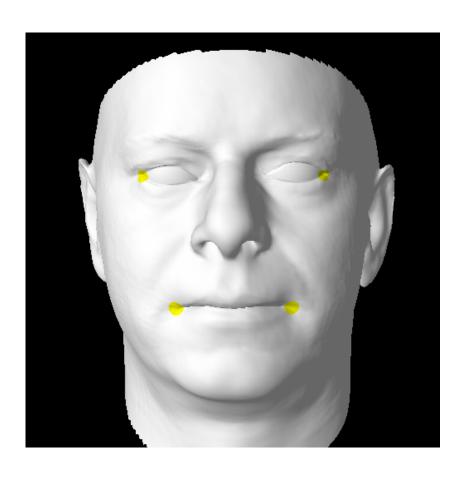
Draw a sample x' from $Q(x' x)$	Propose
With probability $\alpha = \min\left\{\frac{P(x')}{P(x)}, 1\right\}$ accept x' as new sample	Verify

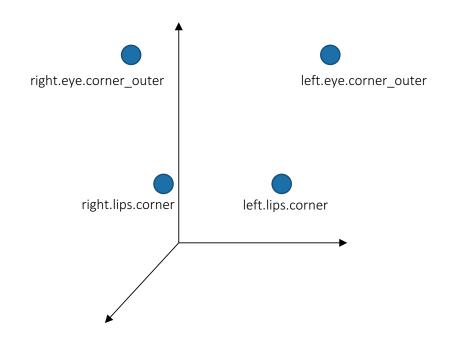
- Very useful concept to integrate unreliable proposals!
 - Can deal with heuristics which are not always right
 - Can deal with unreliable data
- Algorithmic advantage beyond probabilistic Bayesian concept Outlook: Filtering for 2D image analysis with unreliable data

Fitting 3D Landmarks

3D Alignment with Shape and Pose

3D Fitting Example





3D Fitting Setup

- 3D face with statistical model
 Discrete low-rank Gaussian Process
- Arbitrary rigid transformation
 Pose, Positioning in space
- Observations
 - Observed positions \widetilde{x}_1 , \widetilde{x}_2 ..., \widetilde{x}_L
 - Correspondence: $x_1^r, x_2^r, ..., x_L^r$
- Goal: Find Posterior Distribution $P(\theta | \widetilde{x}_1, ..., \widetilde{x}_L) \propto \ell(\widetilde{x}_1, ..., \widetilde{x}_L | \theta) P(\alpha)$

Parameters

$$\theta = (\boldsymbol{\alpha}, \boldsymbol{\varphi}, \boldsymbol{\psi}, \boldsymbol{\vartheta}, \boldsymbol{t})$$

Shape

$$\mathbf{x}' = \mu(\mathbf{x}) + \sum_{i}^{d} \alpha_{i} \sqrt{\lambda_{i}} \Phi_{i}(\mathbf{x})$$

- Rigid Transform
 - 3 angles (pitch, yaw, roll) φ , ψ , ϑ
 - Translation **t**

$$\mathbf{x}' = R_{\vartheta} R_{\psi} R_{\varphi}(\mathbf{x}) + \mathbf{t}$$

Proposals

Choose simple Gaussian random walk proposals (Metropolis)

$$"Q(\theta'|\theta) = N(\theta'|\theta, \Sigma_{\theta})"$$

- Normal perturbations of current state
- Block-wise to account for different parameter types
 - Shape $N(\alpha'|\alpha, \sigma_S^2 E_S)$
 - Rotation $N(\varphi'|\varphi,\sigma_{\varphi}^2) + N(\psi'|\psi,\sigma_{\psi}^2) + N(\vartheta'|\vartheta,\sigma_{\vartheta}^2)$
 - Translation $N(t'|t, \sigma_t^2 E_3)$

 E_d Identity matrix (I is image)

• Large mixture distributions as proposals

$$Q(\theta'|\theta) = \sum c_i Q_i(\theta'|\theta)$$

3DMM Landmarks Likelihood

Simple models: Independent Gaussians

Observation of L landmark locations $\widetilde{\boldsymbol{x}}_i$ in image

• Single *landmark position* model:

$$\mathbf{x'}_{i}(\theta) = R_{\varphi,\psi,\vartheta} \left(h_{\alpha}(\mathbf{x}_{i}^{\text{ref}}) \right) + \mathbf{t}$$
$$\ell_{i}(\theta; \widetilde{\mathbf{x}}_{i}) = N(\widetilde{\mathbf{x}}_{i} | \mathbf{x'}_{i}(\theta), \sigma_{\text{LM}}^{2})$$

Independent model (conditional independence):

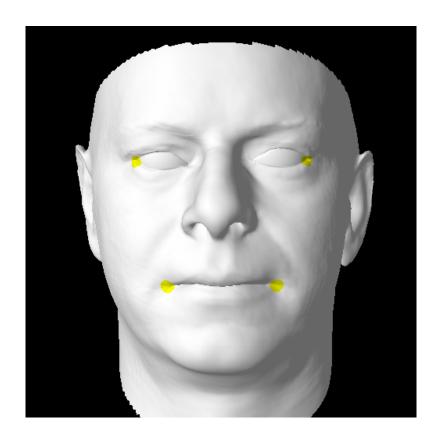
$$\ell(\theta; \widetilde{\boldsymbol{x}}_1, \widetilde{\boldsymbol{x}}_2, \dots, \widetilde{\boldsymbol{x}}_L) = \prod_{i=1}^L \ell_i(\theta; \widetilde{\boldsymbol{x}}_i)$$

$$\longleftarrow \ell(\theta; D) = p(D|\theta)$$

 Independence and Gaussian are just simple models (questionable)

3D Fit to Landmarks

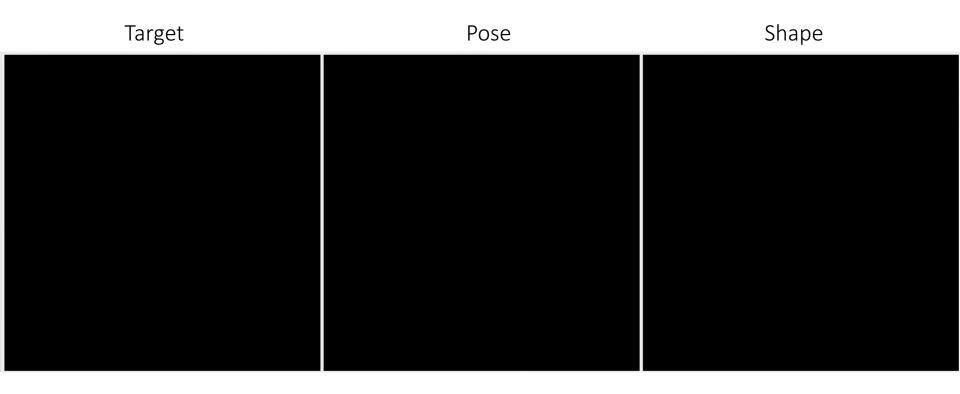
- Influence of landmarks uncertainty on final posterior?
 - $\sigma_{\text{LM}} = 1 \text{mm}$
 - $\sigma_{\rm LM} = 4 {\rm mm}$
 - $\sigma_{LM} = 10 \text{mm}$
- Only 4 landmark observations:
 - Expect only weak shape impact
 - Should still constrain pose
- Uncertain LM should be looser



3D Fitting: Code

```
val yawProposal
                     = GaussianRotationProposal (AxisY, sdev = 0.05)
val pitchProposal
                     = GaussianRotationProposal (AxisX, sdev = 0.05)
val rollProposal
                     = GaussianRotationProposal (AxisZ, sdev = 0.05)
val rotationProposal = MixtureProposal(
        0.6 *: yawProposal + 0.3 *: pitchProposal + 0.1 *: rollProposal)
val translationProposal = GaussianTranslationProposal(Vector(2, 2, 2))
val poseProposal = MixtureProposal(
        rotationProposal + translationProposal)
                       = GaussianShapeProposal(sdev = 0.05)
val shapeProposal
val lmFitter = MetropolisHastings(
   proposal = MixtureProposal(0.2 *: poseProposal + 0.8 *: shapeProposal),
   evaluator = ProductEvaluator(lmLikelihood * shapePrior))
val samples = lmFitter.iterator(initState).drop(2000).take(8000).toIndexedSeq
```

Posterior: Pose & Shape, 4mm



$$\hat{\mu}_{yaw} = 0.511$$
 $\hat{\sigma}_{yaw} = 0.073 (4^{\circ})$

$$\hat{\mu}_{t_x} = -1 \text{ mm}$$

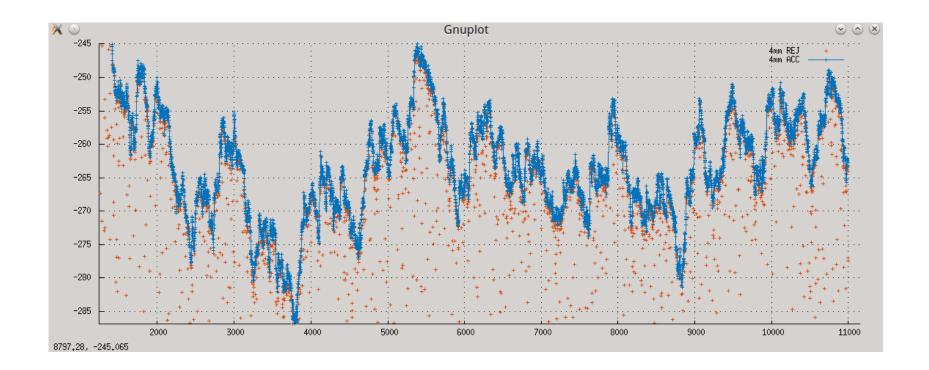
$$\hat{\sigma}_{t_x} = 4 \text{ mm}$$

$$\hat{\mu}_{\alpha_1} = 0.4$$

$$\hat{\sigma}_{\alpha_1} = 0.6$$

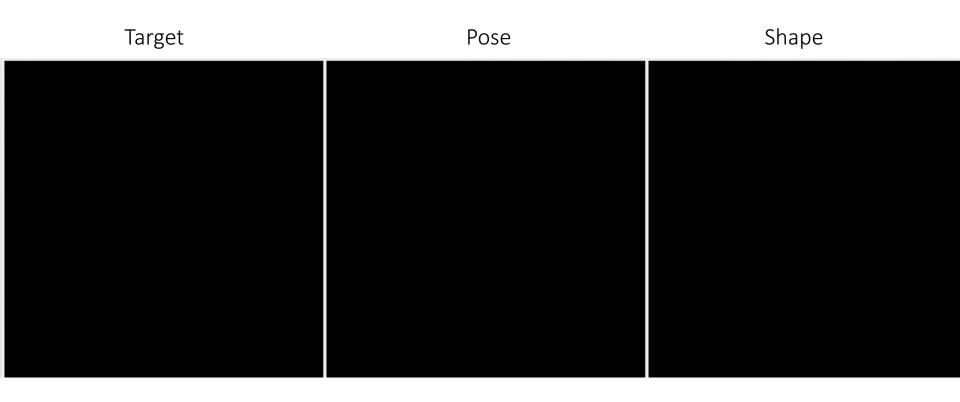
(Estimation from samples)

Posterior: Pose & Shape, 4mm



Posterior values (log, unnormalized!)

Posterior: Pose & Shape, 1mm



$$\hat{\mu}_{yaw} = 0.50$$
 $\hat{\mu}_{t_x} = -2 \text{ mm}$ $\hat{\sigma}_{yaw} = 0.041 (2.4^\circ)$ $\hat{\sigma}_{t_y} = 0.8 \text{ mm}$

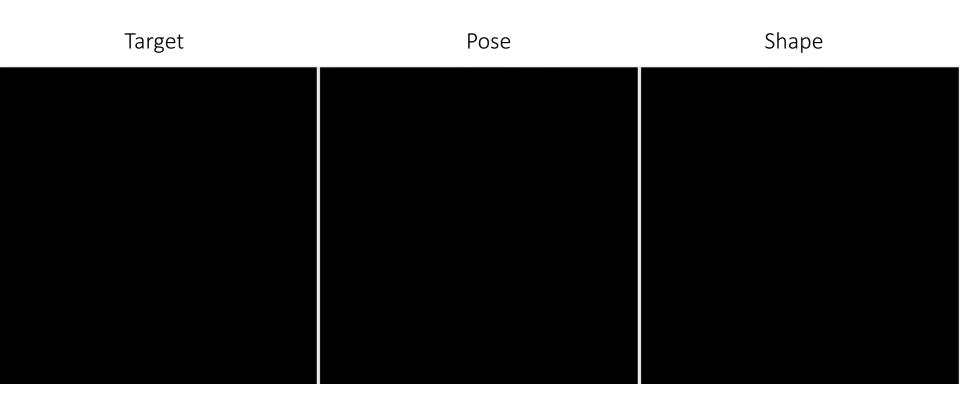
$$\hat{\mu}_{t_x} = -2 \text{ mm}$$

$$\hat{\sigma}_{t_x} = 0.8 \text{ mm}$$

$$\hat{\mu}_{\alpha_1} = 1.5$$

$$\hat{\sigma}_{\alpha_1} = 0.35$$

Posterior: Pose & Shape, 10mm



$$\hat{\mu}_{\text{yaw}} = 0.49$$

$$\hat{\sigma}_{\text{vaw}} = 0.11 (7^{\circ})$$

$$\hat{\mu}_{t_x} = -5 \text{ mm}$$
 $\hat{\sigma}_{t_y} = 10 \text{ mm}$

$$\hat{\mu}_{\alpha_1} = 0$$

$$\hat{\sigma}_{\alpha_1} = 0.6$$

Summary: MCMC for 3D Fitting

- Probabilistic inference for fitting probabilistic models
 - Bayesian inference: posterior distribution
- Probabilistic inference is often intractable
 - Use *approximate* inference methods
- Sampling methods approximate by simulation
- MCMC methods provide a powerful sampling framework
 - Markov Chain with target distribution as equilibrium distribution
 - General algorithms, e.g. Metropolis-Hastings
- 3D landmarks fitting example: Posterior distribution
 - Model likelihood
 - Define proposals

Overview

- Computer Graphics Overview
- Probabilistic Setup
- Markov Chain Monte Carlo
 - Markov Chains
- 3D Fitting Problem
 - Landmarks
- 2D Face Image Analysis
 - Image fitting
 - Filtering with unreliable information