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2D	Face	Image	Analysis

𝑃 𝜃 𝐼 ∝ ℓ 𝜃; 𝐼 𝑃(𝜃)

Morphable	Model	adaptation	to	explain	image
Bayesian	Inference	Setup

Face	&	Feature	point	detection
Fast	bottom-up	methods

𝐹

Image	Likelihood
Image	as	observation	
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3D	Face	Reconstruction

4



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE PROBABILISTIC MORPHABLE MODELS | JUNE 2017 | BASEL

Fitting	as	Probabilistic	Inference

• Probabilistic	Inference	Problem:

𝑃 𝜃 𝐼) =
𝑃 𝐼 𝜃)𝑃(𝜃)

𝑁 𝐼 										𝑁 𝐼 = ∫ 𝑃 𝐼 𝜃)𝑃(𝜃)d𝜃
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ℓ 𝜃; 𝐼 =/𝒩 𝐼1	|	𝐼13 𝜃 , 𝜎6𝐼7

�

1∈:

/𝑏<= 𝐼1

�

>∈?

𝐹

𝐵

• Likelihood:	𝑃 𝐼 𝜃)
Image	is	observation

• Prior:	𝑃 𝜃
Statistical	face	model

Face	shape	&	color	(PPCA/GP	models):

𝑠B = 	𝜇 + 𝑈𝐷𝛼						𝛼~	𝑁 0, 𝐼J

Scene:	illumination,	pose,	camera

𝐼K
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MH	Inference	of	the	3DMM

• Target	distribution	is	our	“posterior”:
𝑃:		𝑃M 𝜃 𝐼 = ℓ 𝜃; 𝐼 𝑃 𝜃

• Unnormalized
• Point-wise	evaluation	only

• Parameters
• Shape:	 50	– 200,	low-rank	parameterized	GP	shape	model
• Color:	 50	– 200,	low-rank	parameterized	GP	color	model
• Pose/Camera: 9	parameters,	pin-hole	camera	model
• Illumination: 9*3	Spherical	Harmonics	illumination/reflectance

≈	300	dimensions	(!!)

6
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Metropolis	Algorithm

7

𝑄(𝜃O|𝜃) 𝑃(𝜃O|𝐼) 𝜃′

Proposal Accept	with	probability

reject

draw	proposal	𝜃O

	𝜃

Update	𝜃 ← 𝜃′

𝛼 = min
𝑃(𝜃O|𝐼)	
𝑃(𝜃|𝐼)	 , 1

1 − 𝛼

• Asymptotically	generates	samples	𝜃1 ∼ 𝑃(𝜃|𝐼):	𝜃X, 𝜃6, 𝜃7, …
• Markov	chain	Monte	Carlo	(MCMC)	Method
• Works	with	unnormalized,	point-wise	posterior

MH	Algorithm	filters	
samples	with	stochastic	
accept/reject	steps
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Proposals

• Choose	simple	Gaussian	random	walk	proposals	(Metropolis)
"𝑄 𝜃O|𝜃 = 𝑁(𝜃O|𝜃, Σ\)"

• Normal	perturbations of	current	state

• Block-wise	to	account	for	different	parameter	types
• Shape	 𝑁(𝜶′|𝜶, 𝜎6𝐸`)
• Color 𝑁(𝜷′|𝜷, 𝜎b6𝐸b)
• Camera ∑ 𝑁(𝜃dO|𝜃d, 𝜎d6)�

d

• Illumination ∑ 𝑁(𝜃eO |𝜃e, 𝜎e,16 𝐸e)�
1

• Large	mixture	distributions,	e.g. In	practice,	we	often	add	
more	complicated	proposals,	
e.g.	shape	scaling,	a	direct	
illumination	estimation	and	
decorrelation
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2
3𝑄h 𝜃O 𝜃 +

1
3i𝜆1𝑄1e(𝜃O|𝜃)

�

1



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE PROBABILISTIC MORPHABLE MODELS | JUNE 2017 | BASEL

Landmarks	Fitting

Projection

Variable	Parameters
• Pose
• Shape

Likelihood	ℓ 𝜃; 𝒙l ∝ 𝑃 𝒙l 𝒙 𝜃

Target	LandmarksRendered	LandmarksFace	Model	

Prior	𝑃 𝜃
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3DMM	Landmarks	Likelihood

Simple	models:	Independent	Gaussians

• Observation	of	landmark	locations	in	image
• Single	landmark	position	model:	

𝒙16m 𝜃 = Top ∘ Pr ∘ Tto ∘ ℎ𝜶 𝒙17m

ℓ1 𝜃; 𝒙l16m = 𝑁 𝒙l16m|𝒙16m 𝜃 , 𝜎vt6

• Independent	model

ℓ 𝜃;	{𝒙l16m}1 =/ℓ 𝜃; 𝒙l16m
�

1 • Independence	and	
Gaussian	are	just	simple
models (questionable)
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Tto 𝒙 = 𝑅z,{,| 𝒙 + 𝒕

(Top ∘ Pr)(𝒙) =

𝑤
2 ∗

𝑥
𝑧

−
ℎ
2 ∗

𝑦
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Landmarks:	Samples

11
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Results:	Landmarks

• Landmarks	posterior:
Manual	labelling:	𝜎vt = 4pix
Image:	512x512

• Certainty	of	pose	fit
• Influence	of	ear	points?
• Frontal	better	than	sideview?

Yaw, σ𝐋𝐌 = 4pix with	ears w/o	ears

Frontal 1.4∘ ± 𝟎. 𝟗∘ −1.4∘ ± 𝟐. 𝟕∘

Sideview 24.8∘ ± 𝟐. 𝟓∘ 25.2∘ ± 𝟒. 𝟎∘

12

Distance stdev with	ears w/o	ears

Frontal 22cm 125cm
Sideview 35cm 35cm
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Face	Model	Fitting

13

Parametric face model

Target	Image	𝐼Rendered	Image	𝐼 𝜃

Likelihood	ℓ 𝜃; 𝐼	 ∝ 𝑃 𝐼 	𝐼 𝜃

Face	Model	

Reconstruction:	Analysis-by-Synthesis

𝜃 = 𝜗, 𝛼, 𝛽 :			𝜗 Scene	Parameters,	𝛼	Face	shape,	𝛽 Face	color
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Independent	Pixels	Likelihood

∗ ⋯𝒩( | , 𝜎6𝐼7) 𝒩( | , 𝜎6𝐼7)∗ℓ 𝜃; 𝐼K =

ℓ 𝜃; 𝐼K =/𝒩 𝐼13	|	𝐼1 𝜃 , 𝜎6𝐼7
�

1∈:

𝐹

Standard	choice
Corresponds	to	least	squares	fitting
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Background	Model

Shrinking Misalignment	

The	face	model	covers	only	a	small	
part	of	the	complete	target	image

What	to	do	outside face	region?

ℓ 𝜃; 𝐼K =/ℓ1 𝜃; 𝐼13
�

1∈:

• Explicitmodel

• Ignore→	strong	artifacts

15
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Explicit	Background	Model

Add	explicit	likelihood	for	background

Why	is	ignoring	bad?

16

Schönborn et	al.	«Background	modeling for generative	image models»,	Computer	Vision	and	Image	
Understanding,	Volume	136,	July	2015,	Pages	117–127,	doi:10.1016/j.cviu.2015.01.008

Implicit	background	model	is	always
present	but	might	be	inappropriate
→ better	make	it	explicit!

ℓ 𝜃; 𝐼K =/ℓ� 𝜃; 𝐼13
�

1∈:
𝑏<= 𝐼13 = 1

ℓ 𝜃; 𝐼K =/ℓ� 𝜃; 𝐼13
�

1∈:

/𝑏<= 𝐼13
�

>∈?

Arbitrary background: The
explicit background model
needs to be based on generic
and simple assumptions:

Constant	model

Histogram	model
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Collective	Likelihood

• Independence	is	not	a	good	assumption
Too	many	observations	(100k+):	overconfident
Colors	are	correlated

• Model	distribution	of	image	distance
Fit	to	empirical histogram	or	use	model
Can	be	any	measure	extracted	on	images

• Most-likely	solutions	match	the	image	
with	the	expected	noise	level
A	perfect	reconstruction	is	unlikely

ℎ(𝑑)

𝑑 = −

17
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Posterior	Samples:	Fitting	Result

• Model	instances	with	comparable	reconstruction	quality

• Remaining	uncertainty	of	model	representation

• Integration	of	uncertain	detection	directly	into	model	adaptation

18
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Results:	Image

Yaw	angle:		1.9∘ ± 0.2∘ 19
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Image:	Samples

20
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Posterior	Shape	Variation

Landmarks	posterior,	
sd[mm]

Image	posterior,	
sd[mm] 21
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Fitting	Results

22

(a) original (b) histogram (c) constant (M) (d) no bg (M)

Figure 13: Fitting results on a few selected images of the AFLW database. Each column has

been created using a di↵erent background model. In (b), we used image-based evaluation while

(c) and (d) are created using model-based evaluation (M). Background models are necessary

but the exact type is uncritical. Face ids: 39370, 39796, 39853, 40199, 40505, 41008, 43311.

29

Images	from:	Huang,	Gary	B.,	et	al. Labeled	faces	in	the	
wild:	A	database	for	studying	face	recognition	in	
unconstrained	environments.	Vol.	1.	No.	2.	Technical	
Report	07-49,	University	of	Massachusetts,	Amherst,	2007.

Images	from:	Köstinger,	Martin,	et	al.	"Annotated	
facial	landmarks	in	the	wild:	A	large-scale,	real-world	
database	for	facial	landmark	localization." Computer	
Vision	Workshops	(ICCV	Workshops),	2011	IEEE	
International	Conference	on.	IEEE,	2011.

(a) original (b) histogram (c) constant (M) (d) no bg (M)

Figure 13: Fitting results on a few selected images of the AFLW database. Each column has

been created using a di↵erent background model. In (b), we used image-based evaluation while

(c) and (d) are created using model-based evaluation (M). Background models are necessary

but the exact type is uncritical. Face ids: 39370, 39796, 39853, 40199, 40505, 41008, 43311.
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LFW AFLW
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Automatic	Fitting

• Detection	of	face and	feature	points
• Scanning	window	&	classifier
• Uncertain	results
• Feed-forward:	early	hard decisions

• Integration	concept
• Bayesian	integration
→	Filtering

• Metropolis	sampling
→	Propose	&	verify

23

Which	box	contains	the	face?

Schönborn,	Sandro,	et	al.	"Markov Chain	Monte	Carlo	for Automated Face	
Image	Analysis." International	Journal	of Computer	Vision (2016):	1-24.
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Random	Forest	Detection

• Scanning	Window • Random	Forest	Classifier

24

𝑓6 𝐼�

𝑓X 𝐼�

𝑓7 𝐼�

ü û û ü

• Haar Features
• Information	gain	splitting
• Bagging	many	trees,	depth	~16
• ~200k	training	patches	(AFLW)

> 𝜃≤ 𝜃

• Classify	each	patch:	face	or	not
• Search	over	image
• Search	over	scales
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Bayesian	Integration

• Different	modality
• Box	𝐹:	position	&	size
• Landmarks	𝐷:	certainty

• Detection	is	uncertain

• Likelihood	models
• Detection	is	observation
• Different	observation	models

• Conceptual	uncertainty
25

Observation	likelihood

𝑃 𝜃 𝐹, 𝐷 =
ℓ 𝜃; 𝐹, 𝐷 𝑃 𝜃 	

𝑁(𝐹, 𝐷)

ℓ 𝜃; 𝐹, 𝐷 = 𝑃 𝐹|𝜃 𝑃 𝐷|𝜃

Bayesian	inference

Detection	data Bayesian	integration
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Detection	Likelihood

𝐷 𝒙

ℓ 𝜃; 𝐷 = max
𝒕
𝒩 𝒕|𝒙 𝜃 , 𝜎6 𝐷 𝒕 	

Face	detection

Box:	position	&	size	of	
detected	face

Landmarks	detection

Detection	map:	certainty
of	detecting	at	position	𝒙

Model:	Best	combination	of	landmarks	
uncertainty	and	detection	certainty

Model:	Uncertainty	of	position	and	scale

ℓ 𝜃; 𝐹 =𝒩 𝒑|𝒙 𝜃 , 𝜎�6 ℒ𝒩 𝑠|𝑠 𝜃 , 𝜎£6

26

𝒑, 𝑠
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Integration	by	Filtering

• Step-by-step	Bayesian	inference

• Condition	on	observations	one	after	the	other

• Posterior	of	first	observation	becomes	prior	for	next	step
• Each	step	adds	an	observation	through	conditioning	with	its	likelihood

• Equivalent	to	single-step	Bayesian	inference

27

𝑃 𝜃 𝑃(𝜃| ) 𝑃(𝜃| )
ℓ 𝜃; 𝐹, 𝐷 ℓ 𝜃; 𝐼
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Filtering:	Multiple	Metropolis	Decisions

28

• Step-wise	Bayesian	inference:	Needs	ℓ 𝜃 for	each	step
• Saves	computation	time	if	properly	ordered

𝑄 𝑃 𝜃|𝐹, 𝐷, 𝐼
𝑃 𝐼

𝑃 𝜃 𝑃 𝜃|𝐹, 𝐷
𝐹,𝐷

Check	if	the	proposals	
fit	the	detection	first!

𝑃(𝜃O) ℓ¤(𝜃O; 𝐼) 	𝜃′ℓ¥(𝜃O; 𝐷)𝑄(𝜃O|𝜃)

Proposal

	𝜃 	𝜃 	𝜃

𝜃 ← 𝜃′

Bayesian	inference	steps
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Alternatives

29
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• Metropolis	algorithm	formalizes:	propose-and-verify

• Decouples	finding	possible	solution	from	selection
• No	need	to	always	provide	good	solutions	in	proposals
• Verification	for	consistency	with	the	model

• Algorithmic	advantage	beyond	probabilistic	Bayesian	concept

Draw	a	sample	𝑥O from	𝑄(𝑥O|𝑥)	 Propose

With	probability 𝛼 = min h 𝒙¦

h 𝒙
, 1 accept	𝒙O as	new	sample	 Verify

Metropolis:	Propose-and-Verify

30

“Anything	that	is	more	informed than	
random	walks	should	improve	fitting”
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Multiple	Alternative	Proposals

• Metropolis	formalizes	propose-and-verify
• Decouples	proposing	possible	solution	from	validation
• No	need	to	always	provide	good	solutions	in	proposals

• Introduce	alternatives	through	proposals

31

Σ 𝜃 ← 𝜃′

𝑄X(𝜃O|𝜃)

𝑄6(𝜃O|𝜃) ℓ?(𝜃O; 𝐵) ℓ¤(𝜃O; 𝐼§)ℓe¨(𝜃O; 𝐷)

𝑄7(𝜃O|𝜃) ℓ?(𝜃O; 𝐵) ℓ¤(𝜃O; 𝐼§)ℓe¨(𝜃O; 𝐷)

Many	candidates

Data-Driven	Markov	Chain	Monte	Carlo	(DDMCMC):
Use	data to	build	more	informed	proposals
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“Anything	that	is	more	informed than	
random	walks	should	improve	fitting”
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Summary

• Fitting	as	probabilistic	inference

• Probabilistic	inference	is	often	intractable

• Sampling	methods	approximate	by	simulation

• MCMC	methods	provide	a	powerful	sampling	framework
• Markov	Chain	with	target	distribution	as	equilibrium	distribution
• General	algorithms,	e.g.	Metropolis-Hastings

• Fitting	of	the	3DMM	as	a	real	inference	problem

• MH	algorithm	to	integrate	information:	Framework
• Filtering:	Uncertain	information	as	observation,	step-by-step
• Propose-and-verify:	Alternatives,	multiple	hypotheses,	heuristics
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