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Uncertainty: Probability Distributions

* Probabilistic Models
e Uncertain Observation (noise, outlier, occlusion, ...)
* Fitting: Model explanation of observed data — probabilistic?

\Tells us about the outcome’s certainty!
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Probability: An Example

* Dentist example: Does the patient have a cavity?

P(cavity) = 0.1

P(cavity|toothache) = 0.8

P(cavity|toothache, gum problems) = 0.4

But the patient either has a cavity or does not

 Thereis no 80% cavity!

* Having a cavity should not depend on whether the
patient has a toothache or gum problems

All these statements do not contradict each other, they

summarize the dentist’s knowledge about the patient

AIMA: Russell & Norvig, Artificial Intelligence. A Modern Approach, 3 edition,
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Uncertainty: Bayesian Probability

* How are probabilities to be interpreted?

They are sometimes contradictory: Why does the distribution change when
we have more data? Shouldn’t there be a real distribution of P(8)?

* Bayesian probabilities rely on a subjective perspective:

Probability is used to express our current knowledge. It can change when we
learn or see more: With more data, we are more certain about our result.

Subjectivity: There is no single, real underlying distribution. A probability
distribution expresses our knowledge — It is different in different situations
and for different observers since they have different knowledge.

* Not subjective in the sense that it is arbitrary!
There are quantitative rules to follow mathematically

* Probability expresses an observers certainty, often called belief
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Towards Bayesian Inference

Posterior Models: Gaussian Process Regression
Probabilistic Fit: Probabilistic interpretation of data

Observed Points

Update of prior to posterior model:
Bayesian Inference

Posterior Model .
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Belief Updates

_)_'}

Model Observation Posterior
Face distribution Concrete points Face distribution
Possibly uncertain consistent with observation
Prior belief More knowledge Posterior belief

Consistency: Laws of probability calculus! 6
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Joint Distribution

Probabilistic model: joint distribution of points

P(xll xZ)
Marginal Conditional
Distribution of certain points only Distribution of points conditioned on
known values of others
P(x1) — ZP(X1,XZ) P(xll xz)
P(x{|xy) = —/———
= ( 1| 2) P(xz)

Both can be easily calculated
for Gaussian models
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Certain Observation

e Observations are known values
* Distribution of x; after

observing X, ..., Xy

P(xlleJ ---;xN)
P(xs, ..., )

* Conditional probability

PQcy|oy oxey) =
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Towards Bayesian Inference

Update belief about x4 by
P(xy) = P(x| )

Factorize joint distribution

P (x4, ) = P( |21 )P (1)

Rewrite conditional distribution

_ P(x, ) _ P( 21 )P (x1)
P (x| ) = P( Y P( )

General: Query (Q) and

P(Q, ) P(Z1Q)P(Q)

P =50 =70
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Uncertain Observation

e Observations with uncertainty

Model needs to describe how
observations are distributed

with joint distribution P(Q, E)

e Still conditional probability

But joint distribution is more complex
* Joint distribution factorized
P(Q,E) = P(E|Q)P(Q)

* Likelihood P(E|Q)
* Prior P(Q)

10
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Joint Likelihood Prior
P(Q,E) = P(E|Q)P(Q)

* Likelihood x prior: factorization is more flexible than full joint
 Prior: distribution of core model without observation

e Likelihood: describes how observations are distributed

« Common example: Gaussian distributed points

&

P(0) P(E|Q)

11



UNIVERSITAT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE PROBABILISTIC MORPHABLE MODELS | JUNE 2017 | BASEL

Bayesian Inference

Conditional/Bayes rule: method to update beliefs

Likelihood Prior

Posterior  D(F P
PQIE) = o

Marginal Likelihood

Each observation updates our belief (changes knowledge!)

P(Q) - P(Q|E) » P(Q|E,F) » P(Q|E,F,G) - -~

Bayesian Inference: How beliefs evolve with observation

Recursive: Posterior becomes prior of next inference step

12
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Marginalization

 Models contain irrelevant/hidden variables

e.g. points on chin when nose is queried

* Marginalize over hidden variables (H)

P(E,H|O)P
PQIE) = ) P(QHIE) = ) ( P(}LQ;) ©
H H )

13
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General Bayesian Inference

 Observation of additional variables

 Common case, e.g. face rendering, landmark locations

* Coupled to core model via likelihood factorization

e General Bayesian inference case:
e Distribution of data D (formerly Evidence)

e Parameters 6 (formerly Query)
P(D|6)P(0)

P(D)

P(4|D) =

P(0|D) « P(D|6)P(6)

14
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Example: Bayesian Curve Fitting

e Curve Fitting: Data interpretation with a model

* Posterior distribution expresses certainty
* in parameter space

* in the predictive distribution
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Posterior of Regression Parameters

No data P(w)
l P(D;[w)
= P(w|D;)
l P(D,|w)
N=2 P(w|Dy, D;)
N=19 | P(w|D4, D,,...)

- 0 ! -1 0 x 1

Bishop PRML, 2006
ishop , 16
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More Bayesian Inference Examples

4 GPR versus Kernel Ridge

— True ! 6
KRR ({'alpha': 0.001, 'kernel': ExpSineSquared(length_scale=4.64, periodicity=12.9)})
3 [ == GPR (ExpSineSquared(length_scale=1.53, periodicity=6.15) + WhiteKernel(noise_level=0.699)) |4
e data 4 L
2 L
g
5 or
-2
-3 —4 B
Bishop PRML, 2006
-4 - L
0 5 10 15 20 -6
data -4 2 4
Non-Linear Curve Fitting Classification
e.g. Gaussian Process Regression e.g. Bayes classifier

17
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Summary: Bayesian Inference

Belief: formal expression of an observer’s knowledge
» Subjective state of knowledge about the world

Beliefs are expressed as probability distributions
* Formally not arbitrary: Consistency requires laws of probability

Observations change knowledge and thus beliefs

Bayesian inference formally updates prior beliefs to posteriors
e Conditional Probability
* Integration of observation via likelihood x prior factorization

P(D|6)P(6)
P(D)

P(O|D) =

18



