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Uncertainty:	Probability	Distributions

• Probabilistic	Models

• Uncertain	Observation	(noise,	outlier,	occlusion,	…)

• Fitting:	Model	explanation	of	observed	data	– probabilistic?
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Tells	us	about	the	outcome’s	certainty!

Observations
Fit	&	Certainty
Ground	truth Bishop	PRML,	2006
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Probability:	An	Example

• Dentist	example:	Does	the	patient	have	a	cavity?
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But	the	patient	either	has	a	cavity	or	does	not
• There	is	no	80%	cavity!
• Having	a	cavity	should	not	depend	on	whether	the	

patient	has	a	toothache	or	gum	problems

All	these	statements	do	not	contradict	each	other,	they	
summarize	the	dentist’s	knowledge about	the	patient

Certainty

𝑃 cavity = 0.1

𝑃 cavity toothache) = 0.8

𝑃 cavity toothache, gum	problems) = 0.4

AIMA:	Russell	&	Norvig,	Artificial	Intelligence.	A	Modern	Approach, 3rd edition,	
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Uncertainty:	Bayesian	Probability

• How	are	probabilities	to	be	interpreted?
They	are	sometimes	contradictory:	Why	does	the	distribution	change	when	
we	have	more	data?	Shouldn’t	there	be	a	real distribution	of	𝑃 𝜃 ?

• Bayesian	probabilities	rely	on	a	subjective	perspective:
Probability	is	used	to	express	our	current	knowledge.	It	can	change	when	we	
learn	or	see	more:	With	more	data,	we	are	more	certain	about	our	result.

• Not	subjective	in	the	sense	that	it	is	arbitrary!
There	are	quantitative	rules	to	follow	mathematically

• Probability	expresses	an	observers	certainty,	often	called	belief
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Subjectivity: There is no single, real underlying distribution. A probability
distribution expresses our knowledge – It is different in different situations
and for different observers since they have different knowledge.
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Towards	Bayesian	Inference
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Posterior	Models:	Gaussian	Process	Regression
Probabilistic	Fit:	Probabilistic	interpretation	of	data

Observed	Points

Posterior	Model

Update	of	prior	to	posterior	model:
Bayesian	Inference



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE PROBABILISTIC MORPHABLE MODELS | JUNE 2017 | BASEL

Belief	Updates
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Model
Face	distribution

Observation
Concrete	points
Possibly	uncertain

Posterior
Face	distribution	

consistent	with	observation

Prior	belief More	knowledge Posterior	belief

Consistency:	Laws	of	probability	calculus!



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE PROBABILISTIC MORPHABLE MODELS | JUNE 2017 | BASEL

Joint	Distribution

Marginal

Distribution	of	certain	points	only

Conditional

Distribution	of	points	conditioned	on	
known values	of	others
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Probabilistic	model:	joint	distribution	of	points

𝑃 𝑥>|𝑥@ =
𝑃 𝑥>, 𝑥@
𝑃 𝑥@

𝑃 𝑥> =A𝑃(𝑥>, 𝑥@)
�

DE

𝑃 𝑥>, 𝑥@

Both	can	be	easily	calculated	
for	Gaussian	models
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Certain	Observation

• Observations	are	known values

• Distribution	of	𝑥> after	
observing 𝑥@, … , 𝑥G:

𝑃 𝑥>|𝑥@ …𝑥G =
𝑃 𝑥>, 𝑥@, … , 𝑥G
𝑃 𝑥@, … , 𝑥G

• Conditional	probability
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Towards	Bayesian	Inference
• Update	belief	about	𝑥> by	observing	𝑥@, … , 𝑥G

𝑃 𝑥> → 𝑃 𝑥> 𝑥@ …𝑥G
• Factorize	joint	distribution

𝑃 𝑥>, 𝑥@, … , 𝑥G = 𝑃 𝑥@, … , 𝑥G|𝑥> 𝑃 𝑥>

• Rewrite	conditional	distribution

𝑃 𝑥>|𝑥@ …𝑥G =
𝑃 𝑥>, 𝑥@, … , 𝑥G
𝑃 𝑥@, … , 𝑥G

=
𝑃 𝑥@, … , 𝑥G|𝑥> 𝑃 𝑥>

𝑃 𝑥@, … , 𝑥G

• General:	Query	(𝑄)	and	Evidence	(𝐸)

𝑃 𝑄|𝐸 =
𝑃 𝑄, 𝐸
𝑃 𝐸 =

𝑃 𝐸|𝑄 𝑃 𝑄
𝑃 𝐸
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Uncertain	Observation

• Observations	with	uncertainty
Model	needs	to	describe	how	
observations	are	distributed
with	joint	distribution	𝑃 𝑄, 𝐸

• Still	conditional	probability
But	joint	distribution	is	more	complex

• Joint	distribution	factorized

𝑃 𝑄, 𝐸 = 𝑃 𝐸|𝑄 𝑃 𝑄

• Likelihood	𝑃 𝐸|𝑄
• Prior	𝑃 𝑄
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Likelihood

𝑃 𝑄, 𝐸 = 𝑃 𝐸|𝑄 𝑃 𝑄

• Likelihood	x	prior: factorization	is	more	flexible	than	full	joint
• Prior:	distribution	of	core	model	without	observation
• Likelihood:	describes	how	observations	are	distributed

• Common	example:	Gaussian	distributed	points
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PriorLikelihoodJoint

𝑃 𝑄 𝑃 𝐸|𝑄

𝑸

𝑬
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Bayesian	Inference

• Conditional/Bayes	rule:	method	to	update	beliefs

𝑃 𝑄|𝐸 =
𝑃 𝐸|𝑄 𝑃 𝑄

𝑃 𝐸

• Each	observation	updates	our	belief	(changes	knowledge!)

𝑃 𝑄 → 𝑃 𝑄 𝐸 → 𝑃 𝑄 𝐸, 𝐹 → 𝑃 𝑄 𝐸, 𝐹, 𝐺 → ⋯

• Bayesian	Inference:	How	beliefs	evolve	with	observation

• Recursive:	Posterior	becomes	prior	of	next	inference	step
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PriorLikelihood
Posterior

Marginal	Likelihood
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Marginalization

• Models	contain	irrelevant/hidden	variables
e.g.	points	on	chin	when	nose	is	queried

• Marginalize	over	hidden	variables	(𝐻)
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𝑃 𝑄 𝐸 =A𝑃 𝑄,𝐻 𝐸
�

Q

=A
𝑃 𝐸,𝐻|𝑄 𝑃 𝑄

𝑃 𝐸,𝐻

�

Q
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General	Bayesian	Inference

• Observation	of	additional	variables
• Common	case,	e.g.	face	rendering,	landmark	locations
• Coupled	to	core	model	via	likelihood	factorization

• General	Bayesian	inference	case:	
• Distribution	of	data	𝐷 (formerly	Evidence)
• Parameters	𝜃 (formerly	Query)

𝑃 𝜃|𝐷 =
𝑃 𝐷|𝜃 𝑃 𝜃

𝑃 𝐷

𝑃 𝜃|𝐷 ∝ 𝑃 𝐷|𝜃 𝑃 𝜃
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Example:	Bayesian	Curve	Fitting

• Curve	Fitting:	Data	interpretation	with	a	model

• Posterior	distribution	expresses	certainty
• in	parameter	space
• in	the	predictive	distribution
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Posterior	of	Regression	Parameters
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No	data

N=1

N=2

N=19

𝑃 𝑤 𝐷>

Bishop	PRML,	2006

𝑃 𝑤

𝑃 𝑤 𝐷>, 𝐷@

𝑃 𝑤 𝐷>, 𝐷@, …

𝑃 𝐷>|𝑤

𝑃 𝐷@|𝑤
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More	Bayesian	Inference	Examples
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Bishop	PRML,	2006

Classification
e.g.	Bayes	classifier

Non-Linear	Curve	Fitting
e.g.	Gaussian	Process	Regression
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Summary:	Bayesian	Inference

• Belief:	formal	expression	of	an	observer’s	knowledge
• Subjective	state	of	knowledge	about	the	world

• Beliefs	are	expressed	as	probability distributions
• Formally	not	arbitrary:	Consistency	requires	laws	of	probability

• Observations	change	knowledge	and	thus	beliefs

• Bayesian	inference	formally	updates	prior	beliefs	to	posteriors
• Conditional	Probability
• Integration	of	observation	via	likelihood	x	prior factorization

𝑃 𝜃|𝐷 =
𝑃 𝐷|𝜃 𝑃 𝜃

𝑃 𝐷
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