graphics and vision gravis

Gaussian processes

Refresher and some more insights

Marcel Lüthi

Graphics and Vision Research Group Department of Mathematics and Computer Science University of Basel

Outline

• Gaussian process – refresher

• Vector-valued and scalar valued Gaussian processes

• The space of samples

• Gaussian process regression

Gaussian process: Formal definition

A Gaussian process $p(u) = GP(\mu, k)$

is a probability distribution over functions $u: \ \mathcal{X} \to \mathbb{R}^d$

such that every finite restriction to function values $u_X = (u(x_1), \dots, u(x_n))$

is a multivariate normal distribution

$$p(u_X) = N(\mu_X, k_{XX}).$$

Gaussian process: Illustration

Restriction to values at points $X = \{x\}$ $u(x) = \begin{pmatrix} u_1(x) \\ u_2(x) \end{pmatrix} \sim N(\mu_X, k_{XX})$ $= N\left(\begin{pmatrix} \mu_1(x) \\ \mu_2(x) \end{pmatrix}, \begin{pmatrix} k_{11}(x, x) & k_{12}(x, x) \\ k_{21}(x, x) & k_{22}(x, x) \end{pmatrix}\right)$

Gaussian process: Illustration

Defining a Gaussian process

A Gaussian process $GP(\mu, k)$ is completely specified by a mean function μ and covariance function (or kernel) k.

- $\mu: \mathcal{X} \to \mathbb{R}^d$ defines how the average deformation looks like
- $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}^{d \times d}$ defines how it can deviate from the mean
 - Must be positive semi-definite

Marginalization property

Let $X = (x_1, ..., x_n)$ and $Y = (y_1, ..., y_m)$ $p(X, Y) = N\left(\begin{pmatrix} \mu_X \\ \mu_Y \end{pmatrix}, \begin{pmatrix} \Sigma_{XX} & \Sigma_{XY} \\ \Sigma_{YX} & \Sigma_{YY} \end{pmatrix}\right)$ The marginal distribution $p(X) = \int p(X, Y) dY$ is given by $p(X) = N(\mu_X, \Sigma_{XX}).$

• Evaluating the Gaussian process $GP(\mu, k)$ defined on domain \mathcal{X} at the points $X = (x_1, \dots, x_n)$ is marginalizing out (ignoring) all random variables $\mathcal{X} \setminus X$

Practical implementation: Discrete: $N(\mu, K)$

The Karhunen-Loève expansion

We can write
$$u \sim GP(\mu, k)$$

as $u \sim \mu + \sum_{i=1}^{\infty} \alpha_i \sqrt{\lambda_i} \phi_i, \ \alpha_i \sim N(0, 1)$

• ϕ_i is the eigenfunction with associated eigenvalue λ_i of the linear operator

$$[T_k u](x) = \int k(x,s)u(s)ds$$

Low-rank approximation

$$u = \mu + \sum_{i=1}^{r} \alpha_i \sqrt{\lambda_i} \phi_i, \qquad \alpha_i \sim N(0, 1)$$

Main idea: Represent process using only the first r components

- We have a finite, parametric representation of the process.
- Any deformation u is determined by the coefficients $\alpha = (\alpha_1, \dots, \alpha_r)$

$$p(u) = p(\alpha) = \prod_{i=1}^{r} \frac{1}{\sqrt{2\pi}} \exp(-\alpha_i^2/2)$$

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

Vector-valued and single valued Gaussian processes

Scalar-valued Gaussian processes

Vector-valued (this course)

• Samples u are deformation fields: $u: \mathbb{R}^n \to \mathbb{R}^d$

Scalar-valued (more common)

• Samples f are real-valued functions $f: \mathbb{R}^n \to \mathbb{R}$

Scalar-valued Gaussian processes

Vector-valued (this course) $u \sim GP(\vec{\mu}, \mathbf{k})$ $\vec{\mu}: \mathcal{X} \rightarrow \mathbb{R}^d$ $\mathbf{k}: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}^{d \times d}$

Scalar-valued (more common) $f \sim GP(\mu, k)$ $\mu: \mathcal{X} \rightarrow \mathbb{R}$ $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$

A connection

Matrix-valued kernels can be reinterpreted as scalar-valued kernels:

Matrix valued kernel: $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}^{d \times d}$

Scalar valued kernel: $k: \mathcal{X} \times (1..d) \times \mathcal{X} \times (1..d) \rightarrow \mathbb{R}$

Bijection: Define

$$k((x,i),((x',j))) = \mathbf{k}(x',x')_{i,j}$$

GP Regression – Vector-valued case

$$K = \begin{pmatrix} k_{11}(x_1, x_1) & k_{12}(x_1, x_1) & \cdots & k_{11}(x_1, x_n) & k_{12}(x_1, x_n) \\ k_{21}(x_1, x_1) & k_{22}(x_1, x_1) & \cdots & k_{21}(x_1, x_n) & k_{22}(x_1, x_n) \\ \vdots & \vdots & \vdots \\ k_{11}(x_n, x_1) & k_{12}(x_n, x_1) & \cdots & k_{11}(x_n, x_n) & k_{12}(x_n, x_n) \\ k_{21}(x_n, x_1) & k_{22}(x_n, x_1) & \cdots & k_{21}(x_n, x_n) & k_{22}(x_n, x_n) \end{pmatrix}$$

$$K = \begin{pmatrix} k((x_1, 1), (x_1, 1)) & k((x_1, 1), (x_1, 2)) & \cdots & k((x_1, 1), (x_n, 1)) & k((x_1, 1), (x_n, 2)) \\ k((x_1, 2), (x_1, 1)) & k((x_1, 2), (x_1, 2)) & \cdots & k((x_1, 2), (x_n, 1)) & k((x_1, 2), (x_n, 2)) \\ \vdots & \vdots \\ k((x_n, 1), (x_1, 1)) & k((x_n, 1), (x_1, 2)) & \cdots & k((x_n, 1), (x_n, 1)) & k((x_n, 1), (x_n, 2)) \\ k((x_n, 2), (x_1, 1)) & k((x_n, 2), (x_1, 2)) & \cdots & k((x_n, 2), (x_n, 1)) & k((x_n, 2), (x_n, 2)) \\ k((x_n, 2), (x_1, 1)) & k((x_n, 2), (x_1, 2)) & \cdots & k((x_n, 2), (x_n, 1)) & k((x_n, 2), (x_n, 2)) \end{pmatrix}$$

A connection

Matrix-valued kernels can be reinterpreted as scalar-valued kernels:

Matrix valued kernel: $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}^{d \times d}$

Scalar valued kernel: $k: \mathcal{X} \times (1..d) \times \mathcal{X} \times (1..d) \rightarrow \mathbb{R}$

Bijection: Define

$$k((x,i),((x',j))) = \mathbf{k}(x',x')_{i,j}$$

All the theory developed for the scalar-valued GPs holds also for vector-valued GPs!

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

Sampling revisited

Finite views on infinite objects

The space of samples

Sampling from $GP(\mu, k)$ is done using the corresponding normal distribution $N(\vec{\mu}, K)$

Algorithm for sampling (slightly inefficient)

- 1. Do an SVD: $K = UD^2U^T$
- 2. Draw a normal vector $\alpha \sim N(0, I_{n \times n})$
- 3. Compute $\vec{\mu} + UD\alpha$

The space of samples

- From $\mathbf{K} = UD^2U^T$ (using that $U^TU = I$) we have that $\mathbf{K}UD^{-1} = UD$
- Any sample

$$s = \vec{\mu} + UD\alpha = \vec{\mu} + KUD^{-1}\alpha = \mu + K\beta$$

is a linear combinations of the columns of K.

Two ways to represent sample:

- 1. KL-Expansion: $s = \vec{\mu} + \sum_i d_i \alpha_i u_i$
- 2. Linear combination of kernels: $s = \vec{\mu} + \sum_{j} \beta k_{j}$

Four examples covariance functions

k(x, x') = f(x)f(x')

 $f(x) = (1 - s(x))2x^2 + s(x)\sin(x^2)$

$$k(x, x') = \sum_{i=1}^{3} f_i(x) f_i(x')$$

$$f_1(x) = \sin(x), f_2(x) = x, f_3(x) = \cos(x^2)$$

Four examples covariance functions

$$k(x, x') = \exp\left(-\frac{\|x - x'\|^2}{9}\right)$$

$$k(x, x') = \delta(x, x')$$

k(x, x') = f(x)f(x')

k(x, x') = f(x)f(x')

$$k(x, x') = f(x)f(x')$$

$$k(x, x') = \sum_{i=1}^{3} f_i(x) f_i(x')$$

Sample columns from covariance matrix

$$k(x, x') = \sum_{i=1}^{3} f_i(x) f_i(x')$$

$$k(x, x') = \exp\left(-\frac{\|x - x'\|^2}{9}\right)$$

$$k(x,x') = \exp\left(-\frac{\|x - x'\|^2}{9}\right)$$

 $k(x,x') = \delta(x,x')$

 $k(x, x') = \delta(x, x')$

Sample columns from covariance matrix

 $k(x, x') = \delta(x, x')$

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

Gaussian process regression revisited

Gaussian process regression

- Given: observations $\{(x_1, y_1), ..., (x_n, y_n)\}$
- Model: $y_i = f(x_i) + \epsilon$, $f \sim GP(\mu, k)$
- Goal: compute $p(y_*|x_*, x_1, ..., x_n, y_1, ..., y_n)$

Gaussian process regression

• Solution given by posterior process $GP(\mu_p, k_p)$ with

$$\mu_p(x_*) = K(x_*, X) [K(X, X) + \sigma^2 I]^{-1} y$$

$$k_p(x_*, x_*') = k(x_*, x_*') - K(x_*, X)[K(X, X) + \sigma^2 I]^{-1}K(X, x_*')$$

- The covariance is independent of the value at the training points
 - Structure of posterior GP determined solely by kernel.

UNIVERSITÄT BASEL

Example: Gaussian kernel

$$k(x, x') = \exp\left(-\frac{\|x - x'\|^2}{\sigma^2}\right)$$

$$\sigma = 1$$

• Gaussian kernel ($\sigma = 1$)

Example: Gaussian kernel

$$k(x, x') = \exp\left(-\frac{\|x - x'\|^2}{\sigma^2}\right)$$

 $\sigma = 3$

• Gaussian kernel ($\sigma = 5$)

Periodic kernels

• Define $u(x) = \begin{pmatrix} \cos(x) \\ \sin(x) \end{pmatrix}$

•
$$k(x, x') = \exp(-\|(u(x) - u(x')\|^2) = \exp(-4\sin^2\left(\frac{\|x - x'\|}{\sigma^2}\right))$$

• Periodic kernel

Changepoint kernels

• $k(x, x') = s(x)k_1(x, x')s(x') + (1 - s(x))k_2(x, x')(1 - s(x'))$ • $s(x) = \frac{1}{1 + \exp(-x)}$

• Changepoint kernel

Symmetric kernels

- Enforce that f(x) = f(-x)
- k(x, x') = k(-x, x') + k(x, x')

• Symmetric kernel

Summary

 Gaussian processes are an extremely rich toolbox for modelling functions / deformation fields

- Possible functions are linear combinations of the kernels $k(\cdot, x)$, fixed at one point x
 - Kernels $k(\cdot, x)$ form the basis of the space of possible functions
 - Regularity/smoothness of kernels is transferred to samples

- In inference tasks, the structure of the kernel determines the prediction
 - => Extremely important to model it well