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• Gaussian process – refresher

• Vector-valued and scalar valued Gaussian processes 

• The space of samples

• Gaussian process regression
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Gaussian process: Formal definition

A Gaussian process 𝑝 𝑢 = 𝐺𝑃 𝜇, 𝑘

is a probability distribution over functions 

𝑢 ∶ 𝒳 → ℝ𝑑

such that every finite restriction to function values  

𝑢𝑋 = (𝑢 𝑥1 , … , 𝑢 𝑥𝑛 )

is a multivariate normal distribution 

𝑝(𝑢𝑋) = 𝑁 𝜇𝑋, 𝑘𝑋𝑋 .
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Gaussian process: Illustration

Restriction to values at points 𝑋 = {𝑥}

𝑢 𝑥 =
𝑢1 𝑥

𝑢2 𝑥
∼ 𝑁 𝜇𝑋, 𝑘𝑋𝑋

= 𝑁
𝜇1(𝑥)
𝜇2(𝑥)

,
𝑘11(𝑥, 𝑥) 𝑘12(𝑥, 𝑥)
𝑘21(𝑥, 𝑥) 𝑘22(𝑥, 𝑥)

𝜇(𝑥)

𝑥
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Restriction to values at points 𝑋 = {𝑥, 𝑥′}

𝑢(𝑥)

𝑢(𝑥′)
=

𝑢1 𝑥
𝑢2(𝑥)

𝑢1 𝑥′

𝑢2(𝑥′)

∼ 𝑁 𝜇𝑋, 𝑘𝑋𝑋 =

𝑁

𝜇1(𝑥)
𝜇2(𝑥)

𝜇1(𝑥′)

𝜇2(𝑥′)

,

k11(𝑥, 𝑥) k12(𝑥, 𝑥)
k21(𝑥, 𝑥) k22(𝑥, 𝑥)

k11(𝑥, 𝑥′) k12(𝑥, 𝑥′)

k21(𝑥, 𝑥′) k22(𝑥, 𝑥′)

k11(𝑥
′, 𝑥) k12(𝑥

′, 𝑥)

k21(𝑥
′, 𝑥) k22(𝑥

′, 𝑥)

k11(𝑥
′, 𝑥′) k12(𝑥

′, 𝑥′)

k21(𝑥
′, 𝑥′) k22(𝑥

′, 𝑥′)

𝑢(𝑥′)

𝑥′

𝑢(𝑥)

𝑥

Gaussian process: Illustration
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ex

Defining a Gaussian process

A Gaussian process 
𝐺𝑃 𝜇, 𝑘

is completely specified by a mean function 𝜇 and covariance function 
(or kernel) 𝑘.

• 𝜇:𝒳 → ℝ𝑑 defines how the average deformation looks like
• 𝑘:𝒳 × 𝒳 → ℝ𝑑×𝑑 defines how it can deviate from the mean
• Must be positive semi-definite
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Marginalization property

Let 𝑋 = 𝑥1, … , 𝑥𝑛 and 𝑌 = 𝑦1, … , 𝑦𝑚

p 𝑋, 𝑌 = 𝑁
𝜇𝑋
𝜇𝑌

,
Σ𝑋𝑋 Σ𝑋𝑌
Σ𝑌𝑋 Σ𝑌𝑌

The marginal distribution 𝑝 𝑋 = ∫ 𝑝 𝑋, 𝑌 𝑑𝑌 is given by

𝑝 𝑋 = 𝑁 𝜇𝑋, Σ𝑋𝑋 .

• Evaluating the Gaussian process 𝐺𝑃 𝜇, 𝑘 defined on domain 𝒳 at the points 𝑋 =

(𝑥1, … , 𝑥𝑛) is marginalizing out (ignoring) all random variables 𝒳 \ 𝑋
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Conceptual formulation:
Continuous: 𝐺𝑃(𝜇, 𝑘)

Practical implementation:
Discrete: 𝑁(𝜇, 𝐾)

From continuous to discrete
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We can write  u ∼ 𝐺𝑃 𝜇, 𝑘

as 𝑢 ∼ 𝜇 + σ𝑖=1
∞ 𝛼𝑖 𝜆𝑖 𝜙𝑖 , 𝛼𝑖 ∼ 𝑁(0, 1)

• 𝜙𝑖 is the eigenfunction with associated eigenvalue 𝜆𝑖 of the 
linear operator 

[𝑇𝑘𝑢](𝑥) = ∫ 𝑘 𝑥, 𝑠 𝑢 𝑠 𝑑𝑠

The Karhunen-Loève expansion
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• The total variance of the process 
𝑢 ∼ 𝐺𝑃 𝜇, 𝑘

is given by σ𝑖=1
∞ 𝜆𝑖 .

• Observation: Most variance is explained 
by the first eigenfunctions

• Eigenvalue 𝜆𝑖
• Interpretation: Variance of 𝛼𝑖 𝜆𝑖𝜙𝑖

Eigenvalues and variance
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Main idea: Represent process using only the first 𝑟 components
• We have a finite, parametric representation of the process.
• Any deformation 𝑢 is determined by the coefficients 
𝛼 = 𝛼1, … , 𝛼𝑟

𝑝 𝑢 = 𝑝 𝛼 =ෑ

𝑖=1

𝑟
1

2𝜋
exp(−𝛼𝑖

2/2)

𝑢 = 𝜇 +

𝑖=1

𝑟

𝛼𝑖 𝜆𝑖 𝜙𝑖 , 𝛼𝑖 ∼ 𝑁(0, 1)

Low-rank approximation
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Vector-valued and single valued Gaussian 
processes 
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Scalar-valued Gaussian processes

Vector-valued (this course)

• Samples u are deformation fields: 
𝑢:ℝ𝑛 → ℝ𝑑

Scalar-valued (more common)

• Samples f are real-valued functions
𝑓 ∶ ℝ𝑛 → ℝ
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Scalar-valued Gaussian processes

Vector-valued (this course)

𝑢 ∼ 𝐺𝑃 Ԧ𝜇, 𝒌

Ԧ𝜇:𝒳 → ℝ𝑑

𝒌:𝒳 ×𝒳 → ℝ𝑑×𝑑

Scalar-valued (more common)

𝑓 ∼ 𝐺𝑃 𝜇, 𝑘
𝜇:𝒳 → ℝ
𝑘:𝒳 ×𝒳 → ℝ
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A connection 

Matrix-valued kernels can be reinterpreted as scalar-valued kernels:

Matrix valued kernel: 𝒌:𝒳 × 𝒳 → ℝ𝒅×𝒅

Scalar valued kernel: 𝑘:𝒳 × 1. . 𝑑 × 𝒳 × 1. . 𝑑 → ℝ

Bijection: Define

𝑘( 𝑥, 𝑖 , 𝑥′, 𝑗 = 𝒌 𝑥′, 𝑥′ 𝑖,𝑗
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GP Regression – Vector-valued case

21

𝑲 =

𝑘11 𝑥1, 𝑥1 𝑘12 𝑥1, 𝑥1
𝑘21 𝑥1, 𝑥1 𝑘22 𝑥1, 𝑥1

…
𝑘11 𝑥1, 𝑥𝑛 𝑘12 𝑥1, 𝑥𝑛
𝑘21 𝑥1, 𝑥𝑛 𝑘22 𝑥1, 𝑥𝑛

⋮ ⋮
𝑘11 𝑥𝑛, 𝑥1 𝑘12 𝑥𝑛, 𝑥1
𝑘21 𝑥𝑛, 𝑥1 𝑘22 𝑥𝑛, 𝑥1

…
𝑘11 𝑥𝑛, 𝑥𝑛 𝑘12 𝑥𝑛, 𝑥𝑛
𝑘21 𝑥𝑛, 𝑥𝑛 𝑘22 𝑥𝑛, 𝑥𝑛

𝐾 =

𝑘 (𝑥1, 1), (𝑥1, 1) 𝑘 (𝑥1, 1), (𝑥1, 2)

𝑘 𝑥1, 2 , (𝑥1, 1) 𝑘 𝑥1, 2 , (𝑥1, 2)
…

𝑘 (𝑥1, 1), (𝑥𝑛, 1) 𝑘 (𝑥1, 1), (𝑥𝑛, 2)

𝑘 𝑥1, 2 , (𝑥𝑛, 1) 𝑘 𝑥1, 2 , (𝑥𝑛, 2)

⋮ ⋮
𝑘 (𝑥𝑛, 1), (𝑥1, 1) 𝑘 (𝑥𝑛, 1), (𝑥1, 2)

𝑘 𝑥𝑛, 2 , (𝑥1, 1) 𝑘 𝑥𝑛, 2 , (𝑥1, 2)
…

𝑘 (𝑥𝑛, 1), (𝑥𝑛, 1) 𝑘 (𝑥𝑛, 1), (𝑥𝑛, 2)

𝑘 𝑥𝑛, 2 , (𝑥𝑛, 1) 𝑘 𝑥𝑛, 2 , (𝑥𝑛, 2)
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A connection 

Matrix-valued kernels can be reinterpreted as scalar-valued kernels:

Matrix valued kernel: 𝒌:𝒳 × 𝒳 → ℝ𝒅×𝒅

Scalar valued kernel: 𝑘:𝒳 × 1. . 𝑑 × 𝒳 × 1. . 𝑑 → ℝ

Bijection: Define

𝑘( 𝑥, 𝑖 , 𝑥′, 𝑗 = 𝒌 𝑥′, 𝑥′ 𝑖,𝑗

All the theory developed for the scalar-valued GPs holds also for vector-valued GPs!
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Sampling revisited
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Finite views on infinite objects

24

Gaussian process
Infinite 
dimensional

Finite 
dimensional

Continuous 
domain

Finite domain 
(Marginalization)

Finite rank (KL-
Expansion)
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The space of samples

Sampling from 𝐺𝑃 𝜇, 𝑘 is done using the corresponding normal distribution  𝑁( Ԧ𝜇, K)

Algorithm for sampling (slightly inefficient)

1. Do an SVD: K = 𝑈𝐷2𝑈𝑇

2. Draw a normal vector 𝛼 ∼ 𝑁 0, 𝐼𝑛×𝑛

3. Compute Ԧ𝜇 + 𝑈𝐷𝛼

25
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The space of samples

• From K = 𝑈𝐷2𝑈𝑇(using that 𝑈𝑇𝑈 = 𝐼) we have that
K𝑈𝐷−1 = 𝑈𝐷

• Any sample 
𝑠 = Ԧ𝜇 + 𝑈𝐷𝛼 = Ԧ𝜇 + K𝑈𝐷−1𝛼 = 𝜇 + K𝛽

is a linear combinations of the columns of K.

Two ways to represent sample:

1. KL-Expansion: 𝑠 = Ԧ𝜇 + σ𝑖 𝑑𝑖𝛼𝑖𝑢𝑖

2. Linear combination of kernels: 𝑠 = Ԧ𝜇 + σ𝑗 𝛽𝑘𝑗

26
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Four examples covariance functions

27

𝑘 𝑥, 𝑥′ =

𝑖=1

3

𝑓𝑖 𝑥 𝑓𝑖(𝑥
′)

𝑓1 𝑥 = sin 𝑥 , 𝑓2 𝑥 = 𝑥, 𝑓3 𝑥 = cos(𝑥 2)

𝑘 𝑥, 𝑥′ = 𝑓 𝑥 𝑓 𝑥′

f x = (1 − 𝑠 𝑥 )2𝑥2 + 𝑠 𝑥 sin 𝑥2
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Four examples covariance functions

28

𝑘 𝑥, 𝑥′ = 𝛿(𝑥, 𝑥′)
𝑘 𝑥, 𝑥′ = exp −

𝑥 − 𝑥′ 2

9
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Example 1

29

𝑘 𝑥, 𝑥′ = 𝑓 𝑥 𝑓(𝑥′)
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Example 1

30

𝑘 𝑥, 𝑥′ = 𝑓 𝑥 𝑓(𝑥′)
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Example 1

31

𝑘 𝑥, 𝑥′ = 𝑓 𝑥 𝑓(𝑥′)
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Example 2

32

𝑘 𝑥, 𝑥′ =

𝑖=1

3

𝑓𝑖 𝑥 𝑓𝑖(𝑥
′)
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Example 2

33

𝑘 𝑥, 𝑥′ =

𝑖=1

3

𝑓𝑖 𝑥 𝑓𝑖(𝑥
′)
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Example 2

34

𝑘 𝑥, 𝑥′ =

𝑖=1

3

𝑓𝑖 𝑥 𝑓𝑖(𝑥
′)



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 | BASEL

Example 3

35

𝑘 𝑥, 𝑥′ = exp −
𝑥 − 𝑥′ 2

9
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Example 3

36

𝑘 𝑥, 𝑥′ = exp −
𝑥 − 𝑥′ 2

9
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Example 3

37

𝑘 𝑥, 𝑥′ = exp −
𝑥 − 𝑥′ 2

9
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Example 4

38

𝑘 𝑥, 𝑥′ = 𝛿(𝑥, 𝑥′)
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Example 4

39

𝑘 𝑥, 𝑥′ = 𝛿(𝑥, 𝑥′)
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Example 4

40

𝑘 𝑥, 𝑥′ = 𝛿(𝑥, 𝑥′)
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Gaussian process regression revisited
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Gaussian process regression

• Given: observations {(𝑥1, 𝑦1), … , 𝑥𝑛, 𝑦𝑛 }

• Model: 𝑦𝑖 = 𝑓 𝑥𝑖 + 𝜖, 𝑓 ∼ 𝐺𝑃(𝜇, 𝑘)

• Goal: compute p(𝑦∗|𝑥∗, 𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑛)

53

𝑥1 𝑥2 𝑥𝑛𝑥∗

𝑦∗
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Gaussian process regression

• Solution given by posterior process 𝐺𝑃 𝜇𝑝, 𝑘𝑝 with  

𝜇𝑝(𝑥∗) = 𝐾 𝑥∗, 𝑋 𝐾 𝑋, 𝑋 + 𝜎2𝐼 −1𝑦

𝑘𝑝 𝑥∗, 𝑥∗′ = 𝑘 𝑥∗, 𝑥∗′ − 𝐾 𝑥∗, 𝑋 𝐾 𝑋, 𝑋 + 𝜎2𝐼 −1𝐾 𝑋, 𝑥∗
′

• The covariance is independent of the value at the training points

• Structure of posterior GP determined solely by kernel.

54
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Examples

60
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Example: Gaussian kernel

61

σ = 1

𝑘 𝑥, 𝑥′ = exp −
𝑥 − 𝑥′ 2

𝜎2
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Examples

62

• Gaussian kernel (𝜎 = 1)
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Example: Gaussian kernel

63

𝑘 𝑥, 𝑥′ = exp −
𝑥 − 𝑥′ 2

𝜎2

σ = 3
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Examples

64

• Gaussian kernel (𝜎 = 5)
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Periodic kernels

• Define 𝑢 𝑥 =
cos 𝑥
sin(𝑥)

• 𝑘 𝑥, 𝑥′ = exp(−‖(𝑢 𝑥 − 𝑢 𝑥′ ‖2= exp(−4 sin2
‖𝑥 −𝑥′‖

𝜎2
)

65
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Examples

66

• Periodic kernel
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Changepoint kernels

• 𝑘 𝑥, 𝑥′ = 𝑠 𝑥 𝑘1 𝑥, 𝑥′ 𝑠 𝑥′ + (1 − 𝑠 𝑥 )𝑘2(𝑥, 𝑥
′)(1 − 𝑠 𝑥′ )

• s 𝑥 =
1

1+exp( −𝑥)

67
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Examples

68

• Changepoint kernel
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Symmetric kernels

• Enforce that f(x) = f(-x)

• 𝑘 𝑥, 𝑥′ = 𝑘 −𝑥, 𝑥′ + 𝑘(𝑥, 𝑥′)

69
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Examples

70

• Symmetric kernel
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Summary

• Gaussian processes are an extremely rich toolbox for modelling functions / deformation 
fields

• Possible functions are linear combinations of the kernels 𝑘(⋅, 𝑥), fixed at one point 𝑥

• Kernels 𝑘(⋅, 𝑥) form the basis of the space of possible functions

• Regularity/smoothness of kernels is transferred to samples

• In inference tasks, the structure of the kernel determines the prediction

• => Extremely important to model it well


