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Registration, the problem of establishing correspondence between points of two objects,
is one of the central problems in Computer Vision, Computer Graphics and Medical
Imaging. In this paper we present a new appraoch for establishing point-to-point corre-
spondence between two objects given as two-dimensional surfaces in three-dimensional
space. In contrast to traditional approaches for surface registration, we do not register
the surfaces directly. Rather, we represent the surfaces as the zero level-set of a signed
distance function in three-dimensional space. Correspondence is then established for the
distance function, and thus in particular for the zero-level set that represents the surface.
Using this representation, the registration algorithm becomes independent of the surfaces
topology and even topological changes can be dealt with. As the basis for our registration
algorithm we use the well known Thirion's Demons algorithm. Our experiments showed
that using this method, the surfaces are accurately matched. However, due to the lack
of information on the surface, the correspondences do not always correspond to those a
human expert would identify. Therefore we extend the algorithm, such that it consid-
ers the curvature information on the surface. We show that the new term �ts naturally
into the original formulation of Thirion's Demons. Moreover, we provide an additional
interpretation of our extension in the variational framework.

We performed experiments on various synthetic and medical structures. Using the here
presented representation, we were able to register extremely complex structures, such as
the human skull, accurately. Our experiments show that for our data the extension yields
considerably improvements compared to Thirion's original formulation.



1 Introduction

For many tasks in medical imaging, computer vision, and computer graphics, one is not
interested in analyzing a single object by itself, but rather to combine information from
several objects of the same class. For example to gather statistical knowledge about
their shape, a large number of objects from this class are required. In order to be able to
extract meaningful information from such a family of objects, its constituting parts (e.g.
points) have to be brought into correspondence. This problem, known as the registration
or correspondence problem, is therefore of large importance, and has accordingly been
investigated extensively in the last decades.

In the most common case, the objects to be registered are given as surface meshes or n-
dimensional images. The goal is to �nd a suitable transformation, such that a similarity
measure for the objects is maximized. For surface registration, the similarity measure is
usually given as a distance of the surfaces in Euclidean space. In image registration, the
similarity is often measured as a function of the image intensities. Although the problems
and the solution techniques appear to be similar at �rst glance, the algorithms that have
been developed are very distinct, due to the inherently di�erent nature of meshes and
images.

In this article we present a method for the registration of surfaces using image registration
algorithms. This approach allows us to register surfaces of arbitrary topology using the
powerful methods developed in image registration. We represent a surface as a zero
level set of a distance function that is de�ned over a rectangular domain and apply
Thirion's Demons Algorithm [27] to register the two distance images. We show that this
approach leads to a good �t between the two surfaces and that even topological changes
are handled in a natural way. We also demonstrate that, despite the good match, the
algorithm may fail to �nd meaningful correspondences within the surface. This is due
to the lack of information on the surface points, that all have the same intensity. We
derive a new cost function, that includes a curvature term to guide the registration in
directions tangential to the surface. This additional term �ts nicely into the algorithm
formulated by Thirion. In addition, it admits a nice interpretation in the variational
framework.

Although the method is general and can be applied to many registration tasks, our
particular motivation is rooted in medical imaging. Our goal is to build statistical models
of the femur-bone and the human skull. In the case of the statistical femur model, the
main advantage of our method, compared to traditional surface registration methods,
is that it automatically yields reasonable correspondences in a neighborhood around
the surface. These correspondences are automatically obtained by warping the original
image by the deformation �eld obtained from our algorithm. We will exploit this point
in a later stage to automatically �t the inner structures of the bone. For the skull-
model, the main motivation is di�erent. The structure of a human skull is extremely
complex and �nding a parametrization seems to be infeasible. Further, the topology
might even di�er between two acquired data sets. Therefore, the method's ability to
handle arbitrary and complex topologies as well as topological changes is the main driving
force here.
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The document is structured as follows: Section 2 gives an overview of related work in
surface and image registration. We proceed by a short summary of di�erent mathematical
methods used in this paper in Section 3. Moreover, a detailed derivation of Thirion's
Demons algorithm is provided. In section 4 we derive our extension to Demons algorithm.
We discuss brie�y the importance of the optical �ow constraint. In section 5 we illustrate
the performance and improvements of our formulations for di�erent synthetic examples
as well as application to medical data sets. We also discuss the applicability of the method
for registration of CT-Images. A discussion of the results and an outline of future work
is given in section 6.

2 Previous and related work

The registration problem is a central problem for many tasks in computer graphics, com-
puter vision, and medical imaging. Therefore, a large amount of di�erent registration
methods can be found in the literature. For an overview of surface registration algo-
rithms, we refer the reader to the comprehensive survey by Audette et al. [1]. A detailed
treatment of image registration methods can be found in the recent books of Terry S.
Yoo [32], Hajnal et al. [12] and Modersitzki [17]. Re�ecting its popularity, Thirion's
Demons algorithm has been studied particularly well [21, 31, 10, 13]. In [3], Cachier et
al. showed how the Demons algorithm can be interpreted as a gradient descent scheme.
They introduced a weighting scheme that improves numerical stability and leads to a
smoother solution. Further, the method improves the solution in case the optical �ow
constraint is violated. Wang et.al. introduced a new �active force� in the algorithm, and
they show that this force leads to faster convergence compared to the original formulation
[30].

Level set methods have been widely used for image segmentation and shape representa-
tion [15, 6, 18, 4]. Recently, this representation also gained momentum for the registration
problem. In [29], Vemuri et al. proposed a level-set registration method that moves the
contour of a surface along its normal, until it matches the new shape. Maurel et al.
[16] showed how landmark guided registration can be used within a level-set framework.
[26, 25], Steinke, Schölkopf and Blanz use Support Vector Machine regression to ap-
proximate the distance function. The registration is performed using a gradient descent
algorithm to minimize a cost function consisting of several terms, including a localization
cost, a curvature term as well as a landmark term.

Closest to our work is the series of articles by Paragios et al. [23, 19, 20, 14]. Like
Vemuri et al. they formulate a curve evolution algorithm. They extend the algorithm
by a landmark term and use a gradient �ow with respect to a specially tailored metric
in order to favor translations, rotations and scalar motions. Their formulation of the
registration problem di�ers from ours in the detail that they calculate a curve evolution
while we calculate a deformation �eld, or warp, of the image domain. However, both
methods are essentially equivalent and their extensions could be applied to our algorithm
and vice versa.
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3 Background

3.1 Surface versus Image Registration

There have traditionally been two approaches to the registration of medical images. Ei-
ther the anatomical structure is segmented and the three dimensional surface extracted,
or the registration is performed directly on the acquired image. In the �rst approach,
the two surfaces are registered either by warping the surface-mesh or by choosing a suit-
able parametrization and performing the registration in the parameter-domain. In the
second approach, the image-grid (i.e. the coordinate system) is warped such that the
image intensities become similar.

For both approaches a great number of algorithms have been developed. Although the
basic ideas are similar, their formulations di�er greatly. In surface-registration, the
prevalent approach is to de�ne an admissible class of transformations, that depends
only on a �nite number of parameters. A cost function is formulated that consists
usually of a similarity measure between the two surfaces and a regularization term.
Registration is then performed by minimizing the cost-functions over the parameter
domain.

Most image-based registration methods can be formulated in a variational framework.
The images are assumed to be continuous functions de�ned on a given rectangular do-
main. Similar as in surface registration, an energy function is formulated, consisting of
a similarity term and a regularizer. However, in this case the minimizer is a dense vec-
tor �eld de�ned over the whole domain and not only on the surface. Minimization is
performed using methods from the calculus of variations, that is, a partial di�erential
equation is solved. In both methods, the registration can be assisted by de�ning (man-
ually or automatically) a set of landmark points to be match.

In the method proposed here, we use the Demons algorithm, which is an algorithm
for image-based registration, for the registration of surfaces. The idea is to apply the
algorithm to a distance image of the surfaces. By registering the images, the surfaces (i.e.
the zero level set of the distance-images) are implicitly registered.

In this way, we unite some of the advantages of surface and image registration. We
can take advantage of the focus on the relevant structures given by the prior seg-
mentation, while keeping the topology-independence and e�ciency of image registra-
tion.

3.2 Implicit Surfaces, Level Sets

In computer science and mathematics, there are several possible ways of representing
a hypersurface Γ ⊂ Rn. The most obvious and common representation is by specify-
ing a parametrization F : U → Γ from some parameter domain U ⊂ Rn to Γ. Usu-
ally, a whole collection of parametrizations has to be given to parametrize the whole
surface. For topologically complex surfaces, it is often very di�cult to explicitly �nd
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Figure 1: A level set function with its zero level set.

such parametrizations and many calculations are often rather di�cult in the parametric
case.

Another common way to describe a hypersurface is by representing it as the level set
of an auxiliary function φ : Rn → R. This means that the hypersurface Γ is given
as:

Γ = {φ = c} := {x ∈ Rn | φ(x) = c},

for some value c ∈ R, in which case we call Γ the c level set of φ. An example of a
level-set function with its zero level set is shown in �gure 1.

In the computer science community, this representation is called implicit surface because
the surface is implicitly de�ned by the function φ. In the applied mathematics commu-
nity, it is known as the level set representation and the function φ is called the level set
function.

In principal, any function φ : Rn → R can be used to represent the hypersurface Γ as
long as Γ = {φ = c} for some c ∈ R. In order to be sure that the c level set is actually a
hypersurface and has no interior, we require φ to be non-constant in a neighborhood U
of Γ. In our algorithms, we also need to calculate the gradient and curvature of φ so we
require φ ∈ C2(U).

The representation by a level set function is independent of the hypersurface's topology.
For our application in image registration this is a great advantage, because it allows us
to compare two hypersurfaces whose topology is not exactly the same. For instance, one
surface can have more holes than the other one, but the level set functions can still be
compared, whereas their parametrizations would have to be very di�erent and therefore
hard to compare.

Another advantage of the level set representation is the fact that many calculations
become much less complicated than in the parametric case. In the parametric case, all
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calculations are performed in the Rn−1-dimensional parameter domain, and to be able to
correctly calculate quantities like scalar products, norms and curvature, we have to work
with the Riemannian metric of the parametrization. In the level set case, all calculations
are performed in the space surrounding the surface, so the Riemannian metric is simply
the regular scalar product in Rn.

The main disadvantage of the level set representation of a hypersurface, both mathe-
matically and from a practical computer science point of view, is that by representing an
Rn−1-dimensional surface by a Rn-dimensional function we turn an (n− 1)-dimensional
problem into an n-dimensional one. As a result, the algorithmic complexity, especially
the memory requirement poses many additional challenges.

In practice, the most common choice of a level set function to represent a given Γ ⊂ Rn

is to use the signed distance function to Γ:

φ(x) := dΓ(x) =


dist(x, Γ) x ∈ outside(Γ)

0 x ∈ Γ

−dist(x, Γ) x ∈ inside(Γ),

(1)

where dist(x, Γ) is the Euclidian distance from x to Γ and the inside and outside of Γ
have to be assigned in some meaningful way. Γ is then given as the zero level set of dΓ.
It is well known that d is globally Lipschitz-continuous and that for φ ∈ C2(U) there
exists a δ > 0 such that dΓ ∈ C2(Γδ), where Γδ = {x ∈ Rn | |dΓ(x)| < δ}. In addition,
|∇dΓ| ≡ 1 in Γδ, and for a point x ∈ Γ, the outer unit normal vector ν(x) is given
by

ν(x) = ∇dΓ(x).

The distance function is usually calculated on a rectangular domain Ω ⊂ Rn with Γ ⊂ Ω.
Apart from the convenient properties outlined above, the main reason for using the
signed distance function is that level set algorithms are usually calculated on all of Ω
and not just on the zero level set that represents Γ. When the distance function is used
to represent Γ, all other level sets essentially carry the same information as the zero
level set and e�ectively guide the algorithm towards a meaningful solution both close to
and away from the zero level set Γ. Further, the distance image exhibits �ridges� at the
median of the structure. These �ridges� will be automatically registered by the algorithm.
An example of the distance function for a two-dimensional slice through the femur is
given in �gure 2.

3.3 Thirion's Demons

In his landmark paper, Thirion [27] proposed a method for three-dimensional, non-rigid
image registration. The basic idea Thirion formulated was inspired by Maxwell's demons
in thermodynamics. Due to its excellent performance and relative ease of implementa-
tion, the algorithm became quickly one of the most widely used registration methods in
medical imaging. Some of the ideas in his original paper were initially derived heuristi-
cally, and were later rigorously studied and formalized.
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Figure 2: The distance image of a 2D outline of a femur. The yellow line represents the zero
level set. The ridges through the median are a useful feature for the registration algorithm.

The general scheme is outlined in Algorithm 1. It iteratively calculates a displacement
�eld u. In each iteration, u is updated with an update term v and subsequently smoothed
with a Gaussian kernel.

We describe here two di�erent derivations of the algorithm, due to Modersitzki [17],
that are especially well suited to motivate our proposed extension of the algorithm. In
particular we derive an explicit expression for the update term v.

3.3.1 Demons algorithm as Optical Flow

In this �rst derivation, we interpret the Demons algorithm as a special case of optical
�ow, a well-known image processing technique. Let I0 : Ω ⊂ Rn → R be an image.
We assume that I0 is continuously deformed over the time interval [0, 1] and call the
resulting image I1. The intermediate images are denoted by It with t ∈ (0, 1). We admit
only deformations that are given by a warp of the image domain Ω. Every such warp
can be represented by a �ow �eld

γ = γ(x, t) : Ω× [0, 1] → Ω,

and so the image deformation is given as:

It = I(x, t) : Ω× [0, 1] → R

I(x, t) := I0(γ(x, t)). (2)

Algorithm 1 An outline of the demons algorithm

u(x0) = 0, ∀x0 ∈ Ω {Set the initial displacement to 0}
for k = 0 to N do

For each grid-position x0 calculate v(k+1)(x0) from I0(x0 + u(k)(x0)) and I1(x0)
u(k+1) = u(k) + v {Sum up the displacements}
u(k+1) = Gσ ?u(k+1) {Smooth the displacement �eld with the a Gaussian kernel Gσ}

end for
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Figure 3: A particle x0 moves along its trajectory γ(x0, t)

In this formulation, the registration task consists of �nding a warp γ(·, t) such that the
deformation It, de�ned by γ, deforms two given images I0 and I1 into each other. If we
assume that we have found such a γ, the value γ(x, 0) = x represents the position of a
pixel x ∈ Ω in the image I0 and γ(x, 1) the position of the corresponding pixel in the
image I1. More precisely:

I0(x) = I(x, 0), ∀x0 ∈ Ω and (3)

I1(x) = I(x, 1), ∀x0 ∈ Ω, (4)

The curve γx := γ(x, ·) : [0, 1] → Ω then describes the trajectory from x to its corre-
sponding point γ(x, 1) as illustrated in �gure 3.

The assumption that it is possible to �nd a homotopy It between the two given im-
ages I0 and I1 implies the requirement that I0 and I1 have the same intensity val-
ues, i.e. I0(Ω) = I1(Ω). It follows that this is also the case for each It, t ∈ [0, 1],
and that the intensity values It(γ(x0, t) of the trajectory γ(x0, t) are constant for each
x0 ∈ Ω.

Now consider an arbitrary but �xed x0. To simplify the notation, write x(t) = γ(x0, t)
and di�erentiate (2) with respect to t. We get

0 =
d

dt
I(x(t), t) =

∂

∂t
I(x(t), t) +∇I(x(t), t) · ∂

∂t
x(t). (5)

This equation is commonly known as the optical �ow constraint. While it may seem to be
unrealistic to assume that it holds for most image pairs, it is nevertheless used to derive
the Demons Algorithm.We shall see in the next section that the Demons algorithm can
also be formulated as a minimization problem, that is well-de�ned even if the optical
�ow constraint is not strictly satis�ed.

The term ∂
∂t

x(t) can be interpreted as the velocity of the particle and is hence denoted
v(t). Using a �nite di�erences to approximate the time derivative in the optical �ow
constraint (5), we get:

0 ≈ I(x(t), t + τ)− I(x(t), t)

τ
+∇I(x(t), t) · v(t). (6)
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By choosing t = 0 and τ = 1 we obtain

−∇I0(x(0), 0) · v(0) ≈ (I(x(0), 1)− I(x(0), 0))

and since x(0) = γ(x0, 0) = x0 and by using (3) this simpli�es to

−∇I0(x0) · v(0) ≈ (I1(x0)− I0(x0)).

Premultiplying both sides by∇I0(x0), we get an explicit expression for the approximated
velocity ṽ ≈ v(0) that depends only on the given two images:

ṽ = − I1(x0)− I0(x0)

∇I0(x0) · ∇I0(x0)
∇I0(x0) + w = −I1(x0)− I0(x0)

|∇I0(x0)2|
∇I0(x0) + w. (7)

Here w ∈ span(∇I0(x0))
⊥ is any term orthogonal to ∇I0(x0). We stress that any such w

ful�lls the optical �ow constraint (5).1 Thirion suggests to choose w = 0, which means
that the calculated �ow �eld can only move in the direction of ∇I0. This is a rather
strong restriction.

To prevent numerical instabilities when |∇I0(x0)| is small, an additional regularization
term κ2 = (I0(x0)− I1(x0))

2 is introduced and we de�ne:

ṽ := − I1(x0)− I0(x0)

|∇I0(x0)2|+ κ2
∇I0(x0). (8)

As an approximation of the time derivative v(0) = ∂
∂t

x(0) = ∂
∂t

γ(x0, 0), ṽ is used for a
�rst order Taylor series approximation of γ:

γ(x0, 1) ≈ γ(x0, 0) +
∂

∂t
γ(x0, 0) ≈ x0 + ṽ

Obviously, this approximation by itself is rather crude, but it can be exploited in a
�xed-point iteration scheme:

In the �rst step, ṽ =: ṽ(0) is calculated for the two given images I0 and I1 to give a �rst
approximation of γ(x, 1). This in turn yields a �rst approximation of the deformation of
I0 into I1, since I0(x0 + ṽ0) ≈ I0(γ(x0, 1)) = I1(x0).

Proceeding iteratively, in the k-th iteration step, ṽ(k+1) is calculated as in equation
(8), but with I0(x0 +

∑k
i=0 ṽ(i)) =: I0(x0 + u(k)) as the source images, or more for-

mally

ṽ(k+1) = − I0(x + u(k)(x))− I1(x)

|∇I0(x + u(k)(x))|2 + κ2
∇I0(x + u(k)(x)). (9)

The approximation of γ(x0, 1) ≈ x0 +
∑k

i=0 ṽ(k) = x0 + u(k) becomes more accurate
in each iteration. We de�ne ṽ(k+1) as the update vector v(k+1) in the Demons algo-
rithm 1.

These calculations, which we have de�ned for a �xed but arbitrary x0 ∈ Ω are carried out
for all x ∈ Ω. To get a coherent deformation �eld γ(x, 1) = x + u(x), the displacement
�eld u(k+1) is smoothed in each step of the Demons algorithm.

1In the optical �ow literature, the fact that v is only determined up the its orthogonal component

is known as the aperture problem. It means that motion perpendicular to the gradient cannot be

determined by this algorithm.
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3.3.2 Variational formulation of the demons algorithm

Next we present the derivation of the algorithm using the variational framework intro-
duced in [17]. Although the resulting algorithm is the same, it provides an alternative
view on the algorithm, which will later be useful to interpret our extension.

As before, we are looking for a domain warp

γ = γ(x, t) : Ω× [0, 1] → Ω,

in order to deform two given images I0 and I1 into each other via the homotopy It(x) =
I0(γ(x, t)). Without loss of generality, we assume γ(·, 1) to be given in the form

γ(x, 1) = x + u(x),

with a displacement �eld
u = u(x) : Ω → Ω.

We now de�ne a distance measure between two images I and J :

D(I, J) :=
1

2

∫
Ω

(I(x)− J(x))2

‖∇I(x)‖2 + κ2
dx. (10)

In this setting, the registration problem consists of �nding the displacement �eld u such
that the distance

D[u] := D(I0(·+ u), I1) =
1

2

∫
Ω

(I0(x + u(x))− I1(x))2

‖∇I0(x)‖2 + κ2
dx (11)

is minimized. Clearly, this optimization problem is ill-posed. In the spirit of Tikhonov
optimization [28], we add a regularization term

S[u] :=
1

2

d∑
l=1

∫
Ω

|∇ul|2 dx (12)

to D, where d denotes the dimension of the image. The goal is now to �nd a minimizer
u : Rn → Rn of the functional

J [u] := D[u] + αS[u]. (13)

Intuitively, such a minimizer will displace each x0 ∈ Ω such that the images are sim-
ilar in terms of the distance measure D. The regularization term S will favor smooth
displacements.

It is not assumed, as in the previous section, that the deformed image I0(x + u(x)) is
exactly equal to I1(x) and that they share the same intensity values. In this formulation,
we are simply asking for the distance between I0(x+u(x)) and I1 to be minimal, according
to the distance measure D. The optical �ow constraint is not necessary in this variational
interpretation of the Demons algorithm.

12



From the calculus of variations (see e.g. [8]), we know that a minimizer of the func-
tional (13) is given by the solution to the Euler-Lagrange equation

(I0(x + u(x))− I1(x))

‖∇I0(x)‖2 + κ2
∇I0(x + u(x))− α∆u(x) = 0, ∀x ∈ Ω. (14)

The partial di�erential equation (14) can be approximately solved by employing a �xed-
point iteration scheme (see [17] for details)

uk+1(x)− u(k)(x)

τ
− α∆u(k) = −(I0(x + u(k)(x))− I1(x))

‖∇I0(x)‖2 + κ2
∇I0(x + u(k)(x)).

Setting τ = 1, assuming for the moment that α = 0 and interpreting u(k) as a sum of
previous updates, i.e. u(k) =

∑k
i=0, ṽ

(i), we arrive at

ṽ(k+1) = −I0(x + u(k)(x))− I1(x)

‖∇I0(x)‖2 + κ2
∇I0(x + u(k)(x)).

Comparing this equation to equation (9), we see that the only di�erence is that in (9) the
terms in the denominator are evaluated at the new position x + u(k)(x). Assuming that
the initial images are roughly aligned, and noticing that the denominator can be regarded
as a scalar controlling the step length, this di�erence is negligible. In particular, if the
two images are the distance images of two surfaces, ‖∇I(x)‖ = 1 almost everywhere.
Alternatively, one can consider the interpretation of Pennec et al. in [22] ‖∇I0(x +
u(x))‖2 + κ2.

If α 6= 0, the e�ect of the term α4u(k) can be seen as the smoothing of u(k) by heat
di�usion, which can be calculated by a convolution with a Gaussian kernel in each
iteration [9]. Hence this numerical scheme corresponds to the one outlined in algo-
rithm 1.

3.4 Mean Curvature

The mean curvature of a hypersurface in Rn is de�ned as the mean of its principal
curvatures. For more insight, we refer to a book on elementary di�erential geometry,
such as [5].

If the hypersurface Γ is given as a level set of a level set function φ : Ω ⊂ Rn → R,
the mean curvature of Γ at a point x ∈ Γ is given by the very compact expres-
sion:

H(x) = H(φ(x)) = div
( ∇φ(x)
|∇φ(x)|

)
. (15)

The sign of the mean curvature depends on the choice of the in- or outward pointing
unit normal vector, which in this form is determined by the level set function φ. Here, we
assume that φ < 0 on the inside of the shape outlined by Γ so that

ν(x) =
∇φ(x)

|∇φ(x)|
(16)
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is the outward pointing normal vector. This means that the sign of H is chosen so that
a circle has positive mean curvature.

As outlined above, we represent the hypersurfaces to be registered by level set functions.
While we are only interested in the hypersurfaces itself, which are given as the zero
level sets of the functions, the algorithm is evaluated on all of Ω, the domain of the
level set functions. In a similar fashion, we wish to evaluate H not only on Γ but on
all of Ω. So as an additional input to our algorithm, we need to compute the function
H : Ω ⊂ Rn → R.

Here, several practical and theoretical problems arise. First of all, there may be points
at which ∇φ vanishes or is not de�ned. For instance, if we use φ = dΓ as the level
set function, there may be points, which are equidistant to two di�erent parts of Γ, at
which ∇φ is not de�ned, cf. �gure 2. In practice, this is not a grave problem, because
the gradient can be de�ned in a weak sense and the numerical approximation ∇φh can
be calculated in any case. However, this numerical approximation may very well be zero
at these points. So to be able to calculate H everywhere, we introduce a regularizing
parameter ε and replace H by

Hε = Hε(φ(x)) = div
( ∇φ√

ε2+|∇φ|2

)
.

The next problem is of a more practical nature. The direct numerical calculation of
Hε for a discrete function φ produces many artifacts and cannot be used for further
analysis. This e�ect is much worse if we wish to use a CT-scan or X-ray image as
input.

To overcome this problem, we calculate Hε on a smoothed version of φ. While the most
obvious possibility for smoothing φ is the convolution with a Gauss kernel, we use a
di�erent approach. In image processing, several methods for edge-preserving smoothing
have been studied. One of the most successful methods has a close connection to our
problem: the mean curvature �ow. Starting from an initial image, or level set function
φ0, the time dependent partial di�erential equation

∂

∂t
φ(x, t) = |∇φ(x, t)|Hε(φ(x, t)) in Ω× R+

0 (17)

is solved. The time-dependent solution φ : Ω×R+
0 → R is equal to the original image at

time 0, i.e. φ(x, 0) = φ0(x). For each t ∈ R+, φ(x, t) is a smoothed version of the image.
The larger t is, the more the image is smoothed.

The time derivative in equation 17 can be discretized by a di�erence quotient:

∂φ

∂t
≈ φm − φm−1

τ
,

where φm = φ(·, mτ) and m ∈ N. If the timestep size τ is chosen small enough, the equa-
tion (17) can thus be time-discretized by an explicit Euler scheme:

φm = φm−1 + τ |∇φm−1|Hε(φ
m−1). (18)
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Figure 4: The curvature image for the level set function from Figure 1

This means that in each time step, φm−1 is updated by τ |∇φm−1|Hε(φ
m−1).

For this update term, the mean curvature of the previous timestep Hε(φ
m−1) has to

be calculated. To obtain the mean curvature of a mildly smoothed version of φ0, we
calculate the algorithm for a few timesteps with a small timestep size and keep the mean
curvature from the last timestep's update term. This is the mean curvature feature
function H : Ω → R we use in our registration algorithm. Figure 4 shows the function
Hε(φ

m−1), the result of running this algorithm for m = 10 timesteps with timestep size
τ = 0.05, with the level set function from Figure 1 as input.

For the rest of the registration algorithm, we have the choice to use either the smoothed
version φm−1 or the original version φ0 of our level set function.

Remark. If the level set function φ is given as the signed distance function dΓ of Γ, we
have |∇φ| ≡ 1, and so the mean curvature of the level sets of φ is given by the Laplacian
of φ:

H(x) = div∇φ(x) = 4φ(x).

This means that at least for small t, the mean curvature �ow is essentially the same as
the heat equation:

∂φ

∂t
= 4φ in Ω× R+

0 .

As is well known [9] the heat equation can be solved by a convolution with a Gauss
kernel, so at the expense of some precision, the calculation of the curvature image can
be signi�cantly sped up by simply calculating the Laplacian of the distance map φ after
it has been smoothed with a Gauss kernel.

4 Curvature Demon

As has been shown in section 3.3.1, the demons algorithm can be interpreted as a special
case of an optical �ow algorithm. A main point of criticism of optical �ow algorithms,
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Figure 5: A registration result using the demons algorithm. The shapes are well matched.

is that the optical �ow constraint is usually not appropriate for real images. The aim of
a registration algorithm is to �nd corresponding points in two images. The optical �ow
constraint is the assumption that corresponding points have exactly the same intensity
value. (i.e. the image intensities are not the same in the two images). Since we register the
distance images, the optical �ow constraint always holds in the vicinity of the zero-level
set (i.e. the surface). Figure 5 shows, that the images are indeed registered such that the
shape of the zero level set matches perfectly. However, for the purpose of establishing
meaningful point-to-point correspondence, matching the shape well is a necessary but
not su�cient criterion. Figure 5 also shows that the deformation �eld tends to point in
the direction orthogonal to the shape, but does not necessarily match features such as
corners or bumps in a surface.

To gain more insight into the algorithm's behavior, we recall equation (8), where the
velocity is computed at a point x0:

v =
I1(x0)− I0(x0)

|∇I0(x0)2|+ κ2
∇I0(x0) + w.

We de�ned w to be an arbitrary vector orthogonal to the gradient at x0, that is w ∈
span(∇I0(x0))

⊥. In the original formulation, this term was chosen to be the zero vector.
Note that since we register two distance images, the gradient at x0 (and thus v) is
orthogonal to the level set at this point. Hence the level sets move mainly in their
normal direction, and the only forces in di�erent directions are due to smoothing. Our
goal is to choose a suitable vector w at each point x0, such that, in addition to the
intensity-matching, points with similar curvature are matched.

By considering the equivalent variational formulation introduced in section 6.1.1, the
derivation of a term w that has this e�ect becomes almost trivial. As discussed above,
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we look for a minimizer of the functional

J [u] := D[u] + αS[u].

where D is the similarity measure

D[u] :=
1

2

∫
Ω

(I0(x + u(x))− I1(x))2

|∇I0(x)|2 + κ2
dx

and S the regularization term. We notice that similarity is only de�ned in terms of
the intensity di�erence of the images. We extend the functional to include a curvature
term

C[u] :=
1

2

∫
Ω

(H0(x + u(x))−H1(x)2)

|∇H0(x)2|+ κ2
H

dx.

where H0(x) and H1(x) is the mean curvature at point x for I1 and I2 respectively.
κ2

H = (H0(x) − H1(x))2 is introduced to prevent numerical instabilities when ∇H0 is
small. The new functional is de�ned as

J [u] := D[u] + βC[u] + αS[u]. (19)

Following the procedure outlined in section 6.1.1, we minimize the functional (19) by for-
mulating the Euler-Lagrange equation and solve it using a �xed-point iteration scheme.
In addition to the update term

v = −I0(x + u)− I1(x)

|∇I0(x)|2 + κ2
∇I0(x)

corresponding to the similarity measure D, the new functional yields an additional up-
date

w = −H0(x + u)−H1(x)

|∇H0(x)|2 + κ2
H

∇H0(x).

from the curvature term C, that excerts a force towards the points with similar curva-
ture.

By projecting w onto (∇I0)
⊥,

w⊥(x0) := w(x0)− (∇I0(x0) · w(x0)) ·
∇I0(x0)

|∇I0(x0)|

and coming back to the optical-�ow formulation, we can interpret w⊥ as being the orthog-
onal term in (4) that pulls v towards matching points with similar curvature.

4.1 The importance of the optical �ow constraint

In the computer vision community, optical �ow algorithms have been around for a long
time. However, they were rarely applied directly to the original images, but rather
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to the corresponding gradient images. The main reason is that the optical �ow con-
straint is violated in almost all practical situations (e.g. due to di�erent light conditions,
etc.).

In our formulation, the optical �ow constraint is clearly satis�ed for the distance im-
ages. For the newly added curvature term, this is unfortunately not the case. However,
we argue that this is not a big drawback of our method. By interpreting the Demon's
algorithm in the variational framework, the optical �ow constraint does not appear in
the derivation, but the more general problem of �nding the minimum distance between
two images is solved. This problem has a meaningful interpretation even for images
that violate the optical �ow constraint. Furthermore, we use the forces from the curva-
ture term to move the correspondences in the direction tangential to the surface, that
is to establish the e�ective point-to-point correspondences. These correspondences can
not unambiguously be de�ned pointwise. Therefore an approximate solution is usually
su�cient.

Figure 6 shows the registration results for two one-dimensional images, where the optical
�ow constraint is violated almost everywhere. We observe that one image has been shifted
to the left, such that the extreme values coincide. The experiment illustrates a typical
situation for the curvature images. The curvature at corresponding points is not exactly
the same, but in both images a local maximum is attained. Thus the algorithm �nds
meaningful correspondences for the curvature images.

5 Examples

5.1 2D Synthetic Example

In order to exhibit the improvement of our algorithm over Thirion's original Demons algo-
rithm, we �rst consider a synthetic example. We try to register two squares with rounded
corners. As described before, each shape is represented by its signed distance function.
One of the two distance functions, for this speci�c example can be seen in Figure 1. The
shape is given as the zero level set of this function, marked in black.

When we use Thirion's Demons algorithm to register the two distance images these
simple shapes are matched perfectly. That is, the �rst image is warped so that it is
indistinguishable from the other. This deformation implies a correspondence between
the two shapes. As the deformation is calculated in the form of a deformation �eld, we
can display the transformation of the points on the �rst shape and see to which point
on the other shape they are deformed to.

The result can be seen in Figure 7a. We observe that the arrows indeed go exactly from
one shape to the other, which is equivalent to an exact match. However, we cannot
be satis�ed with the correspondence results. In this example, it is quite clear that it
does not make sense to match the corner of one shape to the edge of the other. Obvi-
ously, we would expect corners to be matched to corners and edges to edges. Figure 7b
shows that our extended Demons algorithm does just that. The improvement is due
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Figure 6: Registration of two one-dimensional images, where the optical �ow constraint is
violated almost everywhere

to the additional matching of the curvature images. One of these images is shown in
Figure 4.

We observe that, apart from a small in�uence from the smoothing of the deforma-
tion �eld, the original Demons algorithm admits only deformations in the direction
of the image gradient, i.e. normal to the shape outline. This can be observed in Fig-
ure 8, which shows the complete dense deformation �elds calculated by the algorithms.
While the original Demons' deformation �eld is mostly normal to the level sets of the
�rst shape's distance function, the extended version admits a tangential component
for matching the curvature. The resulting �eld looks like a combination of a rotation
and a translation, which is in fact the most plausible transformation to match the two
shapes.

5.2 2D Medical Example

In this example we exhibit the application of our algorithm on a 2-dimensional regis-
tration problem. We will try to register two 2-dimensional slices of a 3D bone shape.
Figure 9a shows how the �rst of the two slices from Figure 9b is obtained as the inter-
section of the bone with a plane. The second slice is obtained in the same way, but from
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(a) Correspondence found by Thirion's Demons algo-

rithm

(b) Correspondence found by the curvature guided

Demons algorithm

Figure 7: Comparison of the original and enhanced Demons registration

(a) Deformation �eld found by Thirion's Demons al-

gorithm

(b) Deformation �eld found by the curvature guided

Demons algorithm

Figure 8: Comparison of the dense deformation �elds calculated by the original and the en-
hanced Demons registration
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a di�erent bone. In order to thoroughly test the algorithm, we purposely selected two
slices with di�erent topologies.

When seen as part of the 3-dimensional registration of the two complete bones, this
particular di�erence in topology of the two slices is not signi�cant, because both bones
are simply connected. The topology would be the same for both slices, if we took the
slice at a slightly di�erent position. In this isolated 2-dimensional registration problem
however, one of the shapes is connected and the other one is not and yet they have to
be registered.

(a) A slice of the bone (b) Two slices as binary images

Figure 9: Illustration of the process of taking a �slice� of a 3D bone. The �rst slice is to be
registered to the second slice. The second slice is not only taken from another position but from
another bone.

In order to register these shapes, one could try to directly register the binary images seen
in Figure 9b. But they are discontinuous and contain no information inside or outside
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of the boundary. A much better approach is to register the distance functions of the
boundaries. These distance functions can be interpreted as �mountains�, whose contour
line at height zero is the boundary of the shapes. The �mountains� for this example are
shown in Figure 10.

(a) The �rst mountain (b) The second mountain

Figure 10: The level set functions of the binary images in �gure 9b.

It now becomes clear how the di�erence in topology can be handled in this setting. It
is not at all clear how to de�ne correspondence between the two shapes with di�er-
ent topology. But it is obviously possible to �nd a deformation from one function into
the other in such a way that the cost functional is minimized. The results show that
this minimal solution gives a reasonable registration of the two shapes with di�erent
topology.

As outlined in Section 4, we aim at matching not only the distance maps but also the
curvature maps. They are shown in Figure 11.

The resulting registration can be interpreted in a number of di�erent ways. First, in
Figure 12, we show the result of registering the connected to the non-connected shape.
Warping the non-connected shape with the resulting deformation �eld yields the shape
shown in Figure 12a. It looks like the connected shape, only cut in two so that it best
matches the blue non-connected shape. The arrows show the correspondences. Figure 12b
visualizes the same registration. Here, the arrows show the correspondence between the
connected and non-connected shape. Wherever there is a meaningful correspondence, it
is found. Points that simply have no correspondence, are registered to the space where
a connection could be in the blue shape.

Figure 12 shows the opposite registration, from the non-connected to the connected
shape. In Figure 13a, the most reasonable connection is added and in Figure 13b the
non-connected is matched to the connected as good as possible.
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(a) The �rst curvature map (b) The second curvature map

Figure 11: Two curvature maps.

(a) The �invented� cut (b) The best match

Figure 12: Two ways of looking at the same registration.
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(a) The �invented� connection (b) The best match

Figure 13: Two ways of looking at the same registration.
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5.3 3D Medical Examples

5.3.1 Skull

As previously mentioned, the main motivation for the level-set representation of the
surfaces is to be able to register surfaces of arbitrary topology. In one particular project,
we need to register hand-segmented surfaces of human skulls. The structure of a skull is
extremely complex and contains many �ne structures. It is unavoidable that some data
is lost during the acquisition process, because of the limited resolution of the acquisition
devise or due to segmentation artifacts. Therefore, our data-sets are usually noisy and
often do not share the same topology. An example of two typical skull-surfaces is given
in �gure 14. It can be seen that, especially in the area around the orbita, the data is
extremely noisy.

Figure 15 shows a registration result using our algorithm. To illustrate the deformations
induced on the surface, we applied a checkerboard texture to the reference skull. We
observe that the deformation appear to be very smooth. Visual inspection also reveals
that the algorithm found reasonable correspondences, that is corresponding structurs
are well matched.

Figure 14: Two examples of hand segmented skulls.

5.3.2 Femur

In this example, we use our extended Demons algorithm to register 3D surfaces of femur
bones. Obviously, the visualization and analysis of the registration result is much harder
than in the 2D example 5.2. So in Figure 16a, we show only the deformation �eld
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Figure 15: A reference skull (left) is registered onto another skull (center) and deformed to
match the other's shape (right)
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calculated by the registration algorithm. One bone can be made out as outlined by the
tails and the other by the tips of the arrows.

In Figure 16b, only the tangential components of the vector �eld are shown. As we have
explained before, in the original Demons algorithm the tangential component of the
deformation �eld is very small everywhere. Clearly, a su�cient match of the interesting
functional feature points is not possible with a deformation �eld that does not admit a
component tangential to the bone surface.

(a) The deformation �eld (b) The tangential component

Figure 16: Two ways of looking at the same registration.
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6 Conclusion

We have presented a method for the registration of two surfaces by representing the
surfaces as the level-set of a distance function and applying Thirion's Demons algorithm
for image registration. We showed that the algorithm leads to a very close match of the
surfaces. However, our experiments also showed that due to the lack of features on the
surface, the correspondences are not always the required ones. Therefore we extended the
algorithm to include a curvature term that matches points with similar curvature. We
showed that this additional term can be seen as a particular choice of the, so far arbitrar-
ily de�ned, tangential component of the velocity �eld in Thirion's Demons algorithm. We
also provided an additional interpretation in the variational framework, where the new
term becomes an additional cost term in the energy functional.

Further, our experiments also con�rmed that the algorithm can be used to register
arbitrary complex objects, such a the human skull, and is able to handle topological
changes in a natural way.

The largest concern when using level set functions to represent surfaces is that in or-
der to register two n-dimensional surfaces, we have to deal with an n + 1-dimensional
registration problem. In our current implementation, both the distance and curvature
maps are stored as 3-dimensional images, which requires large amounts of memory and
computation time.

6.1 Future Work

We plan to extend the presented algorithm in two ways, namely to reduce the memory
overhead and to investigate additional cost-terms in the energy functional to guide the
registration on the surface.

6.1.1 Function Representation

In order to reduce the memory overhead of our method, we to plan implement a more
e�cient representation of the functions to be registered, in terms of both memory con-
sumption and computation time.

The formulation of the Demons Algorithm as a variational problem, see , leads very
naturally to a �nite element formulation of the algorithm. An implementation using the
�nite element method would allow us to represent the functions as adaptive �nite element
functions, see [2], [24], which could be re�ned, even to sub-pixel resolution around the zero
level-set which represents the surface, while remaining very coarse further away. In this
way memory consumption and computation time would be focused on a neighborhood
of the surface.
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6.1.2 Gradient Fields

In our current algorithm, we aim at simultaneously minimizing the L2-distance between
the two distance maps and of their curvature maps. The curvature maps can be inter-
preted as the second derivative of the distance functions. We plan to investigate how the
�rst derivative, i.e. the gradient �eld of the distance maps can also be incorporated into
our registration algorithms. The use of gradient �elds in a distance measure for image reg-
istration has been studied by Droske and Rumpf [7] as well as Haber and Modersitzki [11].
However, their focus lies mostly on multimodal image registration.
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