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for image coding and synthesis

THOMAS VETTER AND NIKOLAUS F. TROJE

vetter[troje]@mpik-tueb.mpg.de
Mazx-Planck-Institut fiir Biologische Kybernetik,Spemannstr. 38, 72076 Tibingen, Germany

Abstract. Human faces differ in shape and texture. Image representations based on such a separa-
tion have been reported by several authors [for a review, see Beymer and Poggio, (1996)]. This paper
investigates such a representation of human faces based on a separation of texture and two-dimensional
shape information. Texture and shape were separated using pixel-by-pixel correspondence between the
different images, which was established through algorithms known from optical flow computation. The
paper demonstrates the improvement of the proposed representation over well established pixel-based
techniques in terms of coding efficiency and in terms of the ability to generalize to new images of faces.
The evaluation is performed by calculating different distance measures between the original image and

its reconstruction and by measuring the time human subjects need to discriminate them.
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1. Introduction

Human language is organized in terms of hierar-
chical categories that comprise similar objects of
the world into object classes. A natural descrip-
tion of an object typically assumes a priori knowl-
edge about the object class per se and evaluates
only its particularities and deviations with respect
to a prototype. This comparison contains differ-
ences in surface properties as well as in the spatial
arrangement of object features.

For human faces, most attributes used in such a
description are continuous. Faces can have lighter
or darker skin, larger or smaller eyes, a wider or a
narrower mouth. Other image attributes that do
not belong directly to the face itself, such as the
illumination or the viewpoint from which the face
is seen, are also physically continuous and are per-
ceived and described as such. Some of the above
attributes, e.g. the skin colour or the illumina-
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tion, correspond to continuous intensity changes
within parts of the image. Others, such as the size
of the eyes or the shape of the mouth, correspond
to changes in the spatial arrangement between the
parts in the image. They have to be described as
image distortions rather than intensity changes.
In most cases, it is easy to classify an attribute
as having changes in the surface properties only
or changes in the spatial arrangement of the fea-
tures only. We will refer to the information con-
tained in surface properties as the texture of the
face and the information contained in the spatial
arrangement as the shape of the face (since we are
working with images, we mean two-dimensional
shape). Image representations separating shape
and texture information have been introduced by
several authors (for a review, see Beymer and
Poggio, (1996)) They differ in principal from ap-
proaches that do not rely on information about
the feature-by-feature correspondence and subse-



quently do not separate shape and texture infor-
mation (for a review, see Valentin, (1994))

In this paper, we argue that a representation
that separates the information contained in the
image of a face into its texture and shape com-
ponents has several advantages for modelling and
for efficient coding. We will present an algorithm
that separately represents texture and shape. We
will then evaluate the quality of low dimensional
reconstructions using this representation by com-
paring it to the quality of low-dimensional recon-
structions in a pixel-based image space.

We will use the term pizel-based representation
for representations that are based on a code in
which a digitized image of size s = nzm is de-
scribed by a vector of length s by simply concate-
nating all the intensity values in the image. Low-
dimensional representations can then be achieved
by performing a Karhunen-Loeve expansion and
using subspaces spanned by only the first principal
components (Ahmed and Goldstein, 1975). Such
representations were first introduced by Sirovich
and Kirby (1987) and have been applied success-
fully to many different tasks, such as face recog-
nition(Turk and Pentland,1991; O’Toole et al.,
1993; Abdi et al., 1995) and gender classification
(O’Toole et al., 1991). O’Toole, Deffenbacher,
Valentin and Abdi (1994) have used such a rep-
resentation to model the ”other race effect”, a
well known psychophysical phenomena (Feingold,
1914).

As pointed out by several authors( Craw and
Cameron, 1991; Vetter and Troje, 1995,Beymer
and Poggio, 1996) pixel-based face representations
have very unpleasant properties. An important
property of a linear space is the existence of an
addition and a scalar multiplication defining lin-
ear combinations of existing objects. All such lin-
ear combinations are objects of the space. In a
pixel-based representation, this is typically not the
case. One of the simplest linear combinations - the
mean of two faces - will in general not result in a
single intermediate face, but will appear as two
superimposed images. Any linear combination of
a larger set of faces will appear blurry. The set of
faces is not closed under addition. These disad-
vantages can be reduced by carefully standardiz-
ing the faces in the images, for instance by provid-
ing for a common position of the eyes (e.g. Kirby

and Sirovich, 1990) However, even after such a
standardization step the matching error can still
be very large, yielding fuzzy and imprecise images.

Aligning the eyes of two faces requires only
translation and scaling operations. For an align-
ment of all features in a face, such linear image op-
erations are not enough. Nonlinear deformations
have to be used to change the spatial arrange-
ment of the different features. The spatial ar-
rangement, however, might be an important part
of the character of a face and changing it would
mean changing appearance and identity. Align-
ing faces feature-by-feature leads to a shape-free
(Craw and Cameron, 1991) representation, which
is deprived of an important part of the information
contained in the face. On the other hand, a space
spanned by shape-free faces (at least if enough fea-
tures were aligned) is a proper linear space with
the set of faces being convex in the sense that any
point between two faces will result in a sharp face
again. The mean of two ”shape-free” faces will
no longer be qualitatively distinguishable from the
original shape-free faces.

The shape that has been eliminated in the
”shape-free” representation can well be described
in terms of the nonlinear deformation that maps a
given face onto a common face. This common face
serves as a prototype and defines the origin of the
resulting ”shape space”. The ”shape-free” repre-
sentation together with the ”shape” itself contains
all the information that had originally been in the
image. A representation of the shape in terms of
the deformation field with respect to a common
prototype is also convex. The mean of two defor-
mation fields is a valid deformation field.

The crucial step in defining the deformation
fields between different images is to establish
feature-by-feature correspondence between them.
For this reason, we call this kind of representation
a correspondence-based representation in contrast
to pixel-based representations, which are based on
the unprocessed images. As mentioned above, we
will use the terms texture and shape for the two
parts of the correspondence-based representation.

In the past few years, different researchers
have worked with correspondence-based represen-
tations of human faces,(Craw and Cameron, 1991;
Vetter and Troje, 1995; Perrett et al. 1994; Vetter,
1996; Costen et al.,1996; Hancock et al., 1996).
The features used for establishing correspondence
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Fig. 1. An example of a face image (left) mapped onto the reference face (center) using pixel-by-pixel correspondence
established through an optical flow algorithm is shown. This separates the 2D-shape information captured in the corre-
spondence field (lower right) from the texture information captured in the texture mapped onto the reference face (upper

right).

span the whole range between semantic meaning-
ful features, such as the corners of the eyes and
mouth, to pixel level features that are defined by
the local grey level structure of the image. Most
authors have established correspondence by hand-
selecting a limited set of features in the faces.
Beymer, Shashua and Poggio (1993) solved the
correspondence problem by using an adapted opti-
cal flow algorithm that established correspondence
on the single pixel level.

The purposes for using a correspondence-based
face space vary. Beymer and Poggio, (1996)
used this representation to train a regulariza-
tion network to learn image deformations pro-
duced by expression and pose changes. Craw and
Cameron (1991) concentrated on artificial face
recognition and compared recognition systems,
based on principal component analysis (PCA),
that used either pixel-based representations or
correspondence-based representations. Their re-
sults clearly showed the advantage of a correspon-
dence based representation in a recognition task.
Hancock showed that principal components de-
rived from a correspondence-based representation
better reflect psychophysical ratings of distinctive-
ness and memorability than do principal compo-
nents derived from a pixel-based representation.

In this paper, we investigate the advantages of
a correspondence-based representation for mod-
elling, coding efficiency and its generalizability.

How much do we gain in terms of reconstruction
quality when using a correspondence-based repre-
sentation instead of a pixel-based representation?
We will evaluate the quality of low dimensional
reconstructions by means of theoretical consider-
ations and by means of a psychophysical experi-
ment.

Coding efficiency and generalizability was eval-
uated in a cross validation experiment. Faces from
a test set were coded with the faces from a train-
ing set. Reconstructions were thus obtained by
projecting test faces into spaces spanned by dif-
ferent numbers of principal components obtained
from a set of training faces. As Kirby and Sirovich
(1990) pointed out, this allows us to test the cod-
ing abilities of the representation better than we
could by evaluating only reconstructions of faces
that were already used to calculate the principal
components. In the latter case, using all the prin-
cipal components will always result in a perfect
reconstruction, irrespective of the number of faces
used for the calculation. Only if new faces are used
will the relation between the reconstruction qual-
ity and the number of faces used to span the space
be able to be used to draw conclusions about the
dimensionality of the set of faces. The quality of
the reconstructions will be evaluated by calculat-
ing different distance measures between the origi-
nal image and its reconstruction and by means of
a psychophysical experiment.



The paper is organized as follows. First, a prin-
cipal component analysis (PCA) is performed sep-
arately on the shape and texture information as
well as on the images themselves. All technical
details of the implementation used to separate
shape and texture in images of human faces are
described in the Appendix. Following the theo-
retical evaluation of the representations, we de-
scribe a psychophysical experiment that evaluates
the quality of the reconstructions. Finally, the
main properties and possible future extensions of
the representation are discussed.

2. Principalcomponent analysis,
structions and reconstruction errors

recon-

2.1. Separation of texture and shape in images of
faces

The central part of the approach is a representa-
tion of face images that consists of a separate tex-
ture vector and 2D-shape vector, each with com-
ponents referring to equivalent feature points. In
our approach, we treat any single pixel as a ”fea-
ture” and establish pixel-by-pixel correspondence
between a given image of a face and a reference
image. All images of the training set are mapped
onto a common reference face. The correspon-
dences were computed automatically using a gra-
dient based optical flow technique which has al-
ready been used successfully previously on face
images (Beymer et al., 1993; Vetter and Pog-
gio, 1996). Technical details can be found in
Appendices B and C. Assuming a pixel-to-pixel
correspondence to a reference face, a given ex-
ample image can be represented as follows: Its
2D-shape is coded as the deformation field that
has to be applied to the reference image in or-
der to match the example image. This deforma-
tion field is defined at each single pixel. So the
shape of a face image is represented by a vector
S = (Azy, Ayy, Azy, Ays, ... Az, Ay,)T, that is
by the Az, Ay displacement of each pixel with re-
spect to the corresponding pixel in the reference
face. The texture is coded as a difference map be-
tween the image intensities of the exemplar face
and its corresponding intensities in the reference
face. This normalized texture can be written as

a vector T = (A, Al,...AI,)T, which contains
the image intensity differences AT of the n pixels
of the image (Fig. 1).

2.2.  Linear analysis of texture, shape and pizel-
represented images

We performed a PCA separately on both the tex-
ture and the shape part of the correspondence-
based representation. In addition, we calculated
the principal components from the images them-
selves (i.e. on the pixel-based representation).
The database of images contained 100 faces. For
details, see Appendix A.

Principal components were obtained by calcu-
lating the eigenvectors of the covariance matrix of
the data. Figure 2 and 3 show variations of the
shapes and the textures along the first four prin-
cipal components of the two subspaces. To the
average face we added the respective normalized
principal component with weights corresponding
to two, four and six standard deviations in both
directions. The center row in both Figures 2 and
3 always shows the same image: the average face
consisting of the average texture and the average
shape. Although six standard deviations widely
exceed the range of naturally occurring images,
even the most extreme faces still look rather nor-
mal. The first few principal components clearly
mark important characteristics. The first compo-
nent of the shape shows a size effect that seems to
correspond with the perceived gender. The sec-
ond component captures the size of the forehead.
Component three accounts for rotations around
the horizontal axis in the image plane. The fourth
component shows the transition from a narrow
head to a wide head and thus accounts for the
”aspect ratio” of the face.

The first principal component of the textures
clearly captures the variability in illumination
that is still present in our data base. The light
source is moving from below to above and changes
in its intensity. The second texture component
accounts for facial hair. Although the data base
contained no people with beards, some males were
better shaved than others. Extrapolating six stan-
dard deviations away from the mean recovers the
beard. This correlates with the strength of the
eyebrows. People with pronounced eyebrows also



have a more pronounced beard-growth. However,
variations of the strength of the eyebrows also oc-
cur in women and carefully shaved men. They
show up in the third and fourth principal compo-
nent. The higher components (not shown) are not
so clearly characterizable. A lot of them code for
very small changes in the intensity distribution in
the eyes.

Figure 4 illustrates the first four principal com-
ponents as calculated from the images themselves.
To make them comparable with the principal com-
ponents derived from the correspondence-based
representation, we also show the images corre-
sponding to locations that were either two, four, or
six standard deviations away from the mean. The
images are more blurry, in particular in the cen-
ter of the space. The faces in the periphery carry
strange features, such as the white ghost mouth in
component 2 or the white outline in component 3.

The first principal component in the pixel-based
representation mainly captures illumination dif-
ferences. The second component captures the
position of the mouth and the ears. The third
component captures the size of the face which,
as in the first component of the shape subspace,
goes along with a shift in perceived gender. Note
that this size change occurs here in the form of
adding or subtracting a ring around the face. If
too much is added, this ring becomes unnaturally
white. The fourth component seems to account for
left /right illumination changes. However, this im-
pression is misleading. The database did not con-
tain any horizontal variability in the direction of
the light source. The fourth principal component
rather accounts for a slight rotation around a ver-
tical axis. In the pixel-based representation, this
means that there has to be a little bit added onto
the left side of the face if it is turned to the right
side and vice versa. If too much is added (six stan-
dard deviations away from the mean), this leads
to a white edge that is than interpreted as being
due to illumination.
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Fig. 2. 'Training error. In this diagram one minus the
relative cumulative variance is plotted. The cumulative
variance is equal to the mean of the squared Euclidian
distance between the original face and reconstructions de-
rived by truncating the principal component expansion.
The calculation was performed for the two parts of the
correspondence-based representation and for the pixel-
based representation.

2.8. Reconstructions and reconstruction errors

PCA yields an orthogonal basis with the axes or-
dered by means of their overall variance. In Fig-
ure 5, we plotted for the three different PCAs
described in the previous section one minus the
relative cumulative variance covered by the first
k principal components. The relative cumulative
variances were calculated by successively summing
up the first £ eigenvalues v; and dividing them by
the sum of all eigenvalues:
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Note that this term is equivalent to the expected
value for the mean squared distance between the
reconstruction X, and the original image X di-
vided by the overall variance o2

2)

training errory =1 —

training errory = 1—%: Z: = -1 ; Xk —
3)

It is thus an appropriate measure for the recon-
struction error. Since it refers to the set of faces
that was used to construct the principal compo-
nent space from which the reconstructions were
made we call this kind of error the training error.
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Fig. 3. Images along the four first principal components of the shape. The coefficients for the respective axis have values
corresponding to two, four, and six standard deviations away from the mean face in both directions. All other coefficients
(including the ones coding for the texture) are set at zero.
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Fig. 4. Images along the four first principal components of the texture. The coefficients for the respective axis have values
corresponding to two, four, and six standard deviations away from the mean face in both directions. All other coefficients
(including the ones coding for the shape) are set at zero.
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Fig. 5. Images along the first four principal components derived from the pixel-based representation. The coefficients for
the respective axis have values corresponding to two, four, and six standard deviations away from the mean face in both
directions. All other coefficients are set at zero.
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Fig. 6. Testing error (A). The relative mean squared Eu-
clidian distance between the original and its reconstruc-
tions. In this case, the reconstruction was derived by pro-
jecting the data into spaces spanned by principal compo-
nents computed from the set of remaining faces which did
not contain the original face. The calculation was per-
formed for the two parts of the correspondence-based rep-
resentation and for the pixel-based representation.

For a training error of 10% (i.e. to recover
90% of the overall variance), the first 47 principal
components are needed in the pixel-based repre-
sentation, 22 principal components are needed in
the texture representation and 15 are needed in
the shape representation. Because the test face
was contained in the set from which the principal
components were derived the training error ap-
proaches zero when using all available principal
components for the reconstruction. To evaluate
the generalizability to new faces of the represen-
tation, we performed a different computation. Us-
ing a leave-one-out procedure, one face was taken
out of the data base and PCA was performed
on the remaining 99 faces yielding 98 principal
components. Then, the single face was projected
into various principal component subspaces rang-
ing from dimensionality k=1 to 98 to yield the
reconstruction Xy, .

In Figure 6, the evaluation of this procedure
is illustrated. The plot shows the generaliza-
tion performance of the different representations
in terms of the testing error. Very much like the
training error, the testing error is defined by the
mean squared difference between reconstruction
and original image divided by the variance o2 of
the whole data set:
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Fig. 7. Training error (B). As for the calculation of testing
error A the faces were projected into principal component
spaces derived from the remaining faces. The error for the
pixel-based representation is the same as the one plotted in
Figure 5. The error corresponding to the correspondence-
based representation is measured by the squared Euclid-
ian distance in the pixel space after combining the recon-
structed shape with the reconstructed texture to yield an
image (for details, see text).

The testing error using the pixel-based repre-
sentation is never smaller than 28%, even if all
98 principal components are used for the recon-
struction. A testing error of 28% is reached with
only 5 principal components for the texture space
and 5 principal component for the shape space.
If all principal components are used, the test-
ing error can be reduced to 6% for the shape
and to 12% for the texture. A single image of
a face can be used to code either one principal
component in the pixel-based representation or
one principal component of the shape subspace
and one principal component of the texture sub-
space of the correspondence-based representation.
Thus the information contained in five images
is enough to code for 72% of the variance in a
correspondence-based representation, whereas 98
images are needed in the pixel-based representa-
tion.

The reconstruction error in Figures 5 and 6 was
measured in terms of the squared Euclidian dis-
tance between reconstruction and original in the
respective representation. To make the three dis-
tances comparable, we normalized them with re-
spect to the overall variance of the data base in
the respective representation. Texture and shape



Fig. 8. An example of the different kind of reconstruc-
tions used. We chose an example for which the reconstruc-
tions in the correspondence-based space are relatively poor
to illustrate what kind of errors still occur. a. Original
face. b. Reconstructed texture combined with the original
shape. Each texture was reconstructed by projecting it into
the set of the 99 other textures. c. Reconstructed shape
combined with the original texture. d. Reconstructed tex-
ture combined with reconstructed shape. e. Reconstruc-
tion using a the pixel-based representation.

part of the correspondence-based representation
were treated separately.

To directly compare the reconstruction qual-
ities achieved with the pixel-based and with
the correspondence-based representation, we com-

bined reconstructed texture and reconstructed
shape (see Appendix D) to yield a reconstructed
image. The distance between this reconstruction
and the corresponding original image can be mea-
sured by means of the squared Euclidian distance
in the pixel-based image space, and thus in the
same space, and with the same metric as the re-
construction error of the pixel-based representa-
tions. Figure 7 shows the results of such a cal-
culation. To reach a reconstruction error of 28%
— the best that can be reached with 99 faces us-
ing a pixel-based representation — only 12 princi-
pal components have to be used in the correspon-
dence based representation. If all principal com-
ponents of the correspondence-based representa-
tion are used, a reconstruction error of 13% can
be achieved.

Figure 8 gives an example of different kind of
reconstructions. All are using the full set of avail-
able principal components in the respective rep-
resentation. We picked out a bad example to il-
lustrate the differences still present between the
original and the different kind of reconstructions.
The majority of the faces are reconstructed so well
that the slight differences could not be seen in the
small reproductions of Figure 8.

3. Psychophysical evaluation of the recon-
structions

3.1.  Purpose

The above distance measures are all based on
the Euclidian distance in the different face spaces
used. These distances, however, might only ap-
proximately reflect the perceptual distance used
by the human face recognition system. Consider,
for instance, the fact that human sensitivity to dif-
ferences between faces is not at all homogeneous
within the whole image. Changes in the region
of the eyes are more likely to be detected than
changes of the same size (with respect to any of
our distance measures) in the region of the ears.
Since it seems to be very difficult to formulate an
image distance that exactly reflects human dis-
crimination performance, we use human discrim-
ination performance directly and evaluate the re-
construction quality by means of a psychophysi-
cal experiment. In the experiment, subjects were



simultaneously presented with three images on a
computer screen. In the upper part of the screen,
an original face from our data base was shown.
Below this target face, two further images were
shown. One of them was again the same target
face, the other was a reconstruction. The subject
was told that one of the two lower images is iden-
tical to the upper one and was instructed to find
out which one it was. We measured the time they
needed for this task and their accuracy.

3.2. Methods

Stimuli. The reconstructions used in this experi-
ment were all made by projecting faces into spaces
spanned by the principal components derived from
all the other faces in our data base. We thus
used the same ”leave-one-out” procedure as de-
scribed in the context of calculating the testing
error (section 2.3). Four different kinds of recon-
structions were used. To investigate the recon-
struction quality within the texture subspace we
combined reconstructed textures with the origi-
nal shape. Similarly, we showed images with re-
constructed shape in combination with the origi-
nal texture. The third kind of reconstruction was
made from a combination of reconstructed shape
and reconstructed texture. Finally, we used recon-
structions using the principal components derived
from the pixel-based representation. In any of the
four reconstruction modes, reconstructions using
the first 5, 15 and all 98 principal components
were shown. We chose these values because 5 and
15 principal components cover approximately one
and two thirds, respectively, of the overall vari-
ance.

Design: A two-factor mixed block design was
used. The first factor was a within-subject fac-
tor named QUALITY coding for the quality of
the reconstruction. It had the levels RECO5,
REC15 and REC98, corresponding to reconstruc-
tions made by using either only 5, 15 or of all 98
principal components. The second factor was a
between-subjects factor named MODE that had
the four levels TEX, SHP, BTH, and PIX. TEX
corresponds to trials using images with only the
texture reconstructed, SHP to trials with only the
shape reconstructed, BTH to trials with both re-
constructed texture and shape, and PIX to trials

using reconstructions in the pixel-based space (see
also Fig. 9). Twenty four subjects were randomly
divided into four groups, each assigned one of the
levels of factor MODE. Each subject performed
3 blocks. Each block contained 100 trials using
either REC05, REC15 or REC98 reconstructions.
The order of the blocks was completely counter-
balanced. There are six possible permutations and
any of them was used once for one of the six sub-
jects in each group. Each of the 100 faces was
used exactly once in each block.

Procedure: Each stimulus presentation was pre-
ceded by a fixation cross that was presented for
1 sec. Then, three images were simultaneously
presented on the computer screen. Together they
covered a visual angle of 12 degrees. One of the
two lower images was identical with the single up-
per image. The subject had to indicate which one
by pressing either the left or the right arrow key on
the keyboard. Subjects were instructed to respond
”as accurately and as quickly as possible”. The
images were presented until the subject pressed
one of the response keys.

3.3.  Results

Figure 9 illustrates the results of this experiment.
Accuracy is generally very high as expressed by
the low error rates (mean: 5.9%) and differences
due to factor MODE do not reach significance
(two-factor ANOVA on the error rate,F(3,20) =
1.49,p > 0.05). In all four conditions of factor
MODE, we find an increase in the error rate with
the number of principal components used for the
reconstruction (main effect of factor QUALITY:
F(2,40) = 14.05,p < 0.01).

The response times are effected strongly by both
factor MODE (F(3,20) = 10.9,p < 0.01) and fac-
tor QUALITY (F'(2,40) = 21.8,p < 0.01). The
mean response time needed to discriminate be-
tween an original image and its reconstruction in
the pixel-based representation (condition PIX) is
606 msec. The mean response times in condi-
tions TEX and SHP were 3488 msec and 3385
msec, respectively. In condition BTH the mean re-
sponse time was 1872 msec. In all four conditions
of factor MODE, response times increased with
the number of principal components, although
only very slightly in condition PIX. Note that the



time needed to identify the worst reconstruction
in the correspondence-based representation (BTH,
RECO05) from the original is still almost twice the
time needed for the best reconstruction in the
pixel-based space (PIX, REC98).

4. Discussion

The results clearly demonstrate an improvement
in the coding efficiency and generalization to
new face images of the correspondence based im-
age representation over pixel based techniques
previously proposed (Sirovich and Kirby, 1987;
Turk and Pentland, 1991). The correspondence,
here computed automatically through an opti-
cal flow algorithm, allows the separation of two-
dimensional shape and texture information in im-
ages of human faces. The image of a face is repre-
sented by its projection coeflicients in separate lin-
ear vector spaces for shape and texture. The im-
provement was demonstrated theoretically as well
as in a psychophysical experiment. The results of
the different evaluations indicate the importance
of the proposed representation for an efficient cod-
ing of face images. We have demonstrated the cod-
ing efficiency within a given set of images as well as
the generalizability to new test images not in the
data set from which the representations were origi-
nally obtained. In comparison to a pixel based im-
age representation, the number of principal com-
ponents necessary for the same image quality is
strongly reduced. The expected error for coding a
new image is less than half.

Human observers could discriminate a recon-
struction derived from the pixel-based represen-
tation much faster from the original face than a
reconstruction derived from the correspondence-
based representation. The image quality, using a
large number of basis faces, is sufficient for recog-
nition tasks and demonstrates the importance of
the representation for image synthesis and com-
puter graphics applications. The results from the
psychophysical experiments are important, since
it is well known that the Euclidian distance used
to optimize the reconstructions as well as to com-
pute the principal components by itself does not
in general reflect perceived image distance (Xu
and Hauske, 1994). Clearly, the crucial step in
the proposed technique is a dense correspondence

field between images of faces seen from one view
point. The optical flow technique used on our
data set worked well; however, for images ob-
tained under less controlled conditions a more
sophisticated method for finding the correspon-
dence might be necessary. New correspondence
techniques based on active shape models (Cootes
et al., 1995; Jones and Poggio, 1995) are more
robust against local occlusions and larger distor-
tions when applied to a known object class. Their
shape parameters are optimized actively to model
the target image. This technique incorporates ob-
ject class specific knowledge directly into the cor-
respondence computation step. Similarly, Halli-
nan (1995) demonstrated an improvement by us-
ing a low-dimensional, linear illumination model
as prior knowledge.

In this paper, we used a PCA for a parameteri-
zation of the face space. Such a parameterization
is optimal in the sense that the mean squared er-
ror introduced by truncating the expansion is at
a minimum. The perceptual interpretation of sin-
gle principal components, however, should not be
overrated. A situation in which the direction of
single axes is apparently arbitrary emerges when
two or more Eigenvalues have about the same size.
But even without this situation occurring, there
is no reason to assume that the principal compo-
nents are corresponding to semantically meaning-
ful "features”. The benefit of PCA is rather that
it provides an orthogonal basis for the face space
with the axes ordered by means of their contribu-
tion to the overall variance. The variance is based
on the Euclidian distance in the face space and
must not necessarily reflect perceptual distance.

Additionally, it is not clear yet how much redun-
dant information is kept in the principal compo-
nents of shape and texture. The proposed image
representation, separating shape and texture in-
formations, is not at all dependent on a PCA. A
future reduction of this redundancy, based on a
more extended example set of images, might lead
to an even more efficient parameterization of im-
ages of faces. The main result of this paper proves
that an image representation in terms of separated
shape and texture is advantageous over a pixel-
based image representation in any comparison we
performed. These results complement other find-
ings in which a separate texture and shape repre-
sentation of three-dimensional objects in general
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Fig. 9. Psychophysical evaluation of the different kinds of reconstructions. Error rates (a) and response times (b) are
plotted. TEX: Reconstructed texture combined with original shape. SHP: Reconstructed shape combined with original
texture. BTH: Reconstructed texture combined with reconstructed shape. PIX: Reconstruction in the pixel-based space.
REC05: Reconstructions based on the first 5 principal components. REC15: Reconstructions based on the first 15 principal
components. REC98: Reconstructions based on all 98 principal components.

was used for visual learning]l and enabled the syn-
thesis of novel views from a single image (Beymer
et al., 1993; Vetter and Poggio, 1996). Finally,
based on our psychophysical experiments, we sug-
gest that the correspondence based representation
of faces is much closer to a human description of
faces than a pixel-by-pixel comparison of images,
ignoring the spatial correspondence of features.

Appendix A. Images

Images Images of 100 caucasian faces were avail-
able. The images were originally rendered for
psychophysical experiments (Troje and Biilthoff,
1995) from a data base of three-dimensional hu-
man head models recorded with a laser scanner
(Cyberware™ ). All faces were without make-
up, accessories, and facial hair. Additionally, the
head hair was removed digitally (but with man-
ual editing), via a vertical cut behind the ears.
The images were rendered from a view point 120
cm in front of the face and using ambient light
only. There was still a little bit of shading present
that resulted from the scanning procedure. The
scanner uses approximately cylindrical illumina-
tion and the resulting texture map contains some
shadows below the chin. From each face one
frontal-view was rendered. The resolution of the
grey-level images was 256-by-256 pixels with 8 bits

per pixel. The images were aligned to a common
position at the tip of the nose.

Appendix B. Image matching

The essential step in our approach is the compu-
tation of the correspondence between two images
for every pixel location. That means we have to
find for every pixel in the first image, e.g. a pixel
located on the nose, the corresponding pixel lo-
cation on the nose in the other image. Since we
controlled for illumination, and since all faces are
compared in the same orientation, a strong sim-
ilarity of the images can be assumed and prob-
lems attributed to occlusions should be negligible.
These conditions make an automatic mechanism
for comparing the images of the different faces fea-
sible (Beymer et al., 1993). Algorithms for finding
correspondence between similar images are known
from optical flow computation, in which points
have to be tracked from one frame of a series
of images to another. We used a coarse-to-fine
gradient-based optical flow algorithm (Bergen et
al., 1992) applied to the Laplacians of the im-
ages and following an implementation described
in Bergen and Hingorani (1990). The Laplacian
of the images were computed from the Gaussian
pyramid adopting the algorithm proposed by Burt
and Adelson (1983). Beginning with the lowest
level of a resolution pyramid for every pixel (x;)
in the first image, the error term
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( B. Image matchingl)
is minimized for Az and Ay with I, and I, be-
ing the spatial derivatives of the Laplacians and
AT the difference of the Laplacians of the two im-
ages. The resulting vector field (Ax, Ay) was then
smoothed and the procedure was iterated through
all levels of the resolution pyramid. The final re-
sulting vector field was used as the correspondence
pattern between the two images.

Appendix C. Reference face

For a consistent representation, the correspon-
dence fields between each face and a single ref-
erence face had to be computed. In theory, any
face could be used as a reference. However, small
peculiarities of a face can influence the automated
matching process strongly. We thus used a syn-
thetic face as a reference face, namely the average
face of our data base. This average could not be
determined in one single step, but had to be cal-
culated in an iterative procedure: Starting from
an arbitrary face as the preliminary reference, the
correspondence algorithm established correspon-
dence between all other faces and this reference.
The correspondence fields were only satisfying for
a part of the faces. We selected these faces, cal-
culated the mean face out of them and used it as
the new reference. Repeating this procedure twice
resulted in a face that was taken as the final ref-
erence face. Further iteration did not improve the
correspondence fields.

Appendix D. Synthesis of an image

To generate the original image from its correspon-
dence based representation, each pixel in the tex-
ture map had to be shifted to the new location
given by the shape vector. The new location gen-
erally did not coincide with the equally spaced
grid of pixels on the destination image. A com-
mon solution of this problem is known as forward
warping (Wolberg, 1990). For every new pixel, we
used the nearest three points to linearly approxi-

mate the pixel intensity. Not only can the images
of the original faces be reproduced in this way, but
also new, synthetic faces can be generated. New
textures can be generated from any linear com-
bination of already existing textures. The same
can be done for the shapes. A new image can be
generated combining any texture with any shape.
This is possible because both are given in the co-
ordinates of the reference image.

References

1. H. Abdi, D. Valentin, B. Edelman and A.J. O’Toole.
More about the difference between men and women:
Evidence from linear neural networks and the prin-
cipal component approach. Perception, 24:539-562,
1995.

2. N. Ahmed and M. H. Goldstein. Orthogonal Trans-
forms for Digital Signal Processing. Springer Verlag,
New York, 1975.

3. J. A. Bergen, P. Anandan, K. J. Hanna, and R. Hin-
gorani. Hierarchical-model-based motion estimation.
In Second European Conference on Computer Vision,
G. Sandini, ed., (Springer Verlag, Berlin, 1992), pp.
237-252.

4. J.R. Bergen and R.Hingorani. Hierarchical motion-
based frame rate conversion. Technical report, David
Sarnoff Research Center Princeton NJ 08540, 1990.

5. P.J. Burt and E.H. Adelson. The Laplacian pyra-
mid as a compact image code. IEEE Transactions on
Communications, 31:532-540, 1983.

6. D.Beymer and T.Poggio. Image representation for vi-
sual learning. Science 272:1905-1909, 1996.

7. D.Beymer, A.Shashua, and T.Poggio, Example-based
image analysis and synthesis. A.I. Memo No. 143 1,
Artificial Intelligence Laboratory, Massachusetts In-
stitute of Technology, 1993.

8. T.F. Cootes, C.J. Taylor, D.H. Cooper, and
J.Graham. Active shape models - their training and
application. Computer Vision and Image Under-
standing, 61:38-59, 1995.

9. N. Costen, I. Craw, G. Robertson and S. Akamatsu.
Automatic face recognition: What representation. in
Computer Vision - ECCV’96 Lecture Notes in Com-
puter Science 1064, B. Buxton and R. Cippola, ed.,
(Springer, Berlin, 1996), pp. 504-513.

10. I. Craw and P. Cameron. Parameterizing images for
recognition and reconstruction. in British Machine
Vision Conference, P. Mowforth, ed., Springer Ver-
lag, 1991 pp. 367-370.

11. C. A. Feingold. The influence of environment on iden-
tification of persons and things. Journal of Criminal
Law & Police Science, 5:39-51, 1914.

12. M.Jones and T.Poggio. Model-based matching of line
drawings by linear combination of prototypes. in Pro-
ceedings of the 5th International Conference on Com-
puter Vision, IEEE Computer Society Press, Los
Alamitos, CA, 1995, pp. 531-536.



14.

15.

16.

17.

18.

19.

P. W. Hallinan. A deformable model for the recog-
nition of human faces under arbitrary illumination.
Doctoral Dissertation. Harvard University, 1995.

P. J. B. Hancock, A. M. Burton, and V. Bruce. Face
processing: Human perception and principal compo-
nents. Memory & Cognition, 24:26-40, 1996.

M.Kirby and L.Sirovich. Application of
the Karhunen-Loewe procedure for characterization
of human faces. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 12:103-109, 1990.

D. I. Perrett, K. A. May and S. Yoshikawa. Facial
shape and judgements of female attractiveness. Na-
ture , 368:239-242, 1994.

L. Sirovich and M. Kirby. Low-dimensional procedure
for the characterization of human faces. Journal of the
Optical Society of America A, 4:519-554, 1987.

A.J. O’Toole, H. Abdi, K.A. Deffenbacher, and
D.Valentine. Low-dimensional representation of faces
in higher dimensions of the face space. Jounal of the
Optical Society of Amerika A, 10:405-411, 1993.

A. J. O’Toole, H. Abdi, K. A. Deffenbacher and J. C.
Barlett. Classifying faces by face and sex using an au-
toassociative memory trained for recognition. In Pro-
ceedings of the thirteenth annual conference of the
Cognitive Science Society, K. J. Hammond and D.
Gentner, eds. (Lawrence Erlbaum Associates, Hills-
dale, NJ, 1991), pp.847-851.

20.

21.

22,

23.

24.

25.

26.

27.

28.

A. J. O’Toole, K. A. Deffenbacher, D. Valentin and H.
Abdi. Structural aspects of face recognition and the
other-race effect. Memory & Cognition, 22:208-224,
1994.

N. Troje and H. H. Biilthoff. Face recognition under
varying pose: The role of texture and shape. Vision
Research, 36:1761-1771, 1995.

M. Turk and A. Pentland Eigenfaces for recognition.
Journal of Cognitive Neuroscience, 3:71-86, 1991.

D. Valentin, H. Abdi, A. J. O’Toole, and G. W. Cot-
trell. Connectionist models of face processing: A sur-
vey. Pattern recognition, 27:1209-1230, 1994.

T. Vetter and N. F. Troje. Separation of texture and
two-dimensional shape in images of human faces. in
Mustererkennung 1995, S. Posch, F. Kummert, and
G. Sagerer, eds, Springer Verlag, 1995, pp. 118-125.
T. Vetter. Synthesis of novel views from a single face
image. Technical Report No.26, Max-Planck-Institut
fr biologische Kybernetik Tbhingen, Germany, 1996.
T. Vetter and T. Poggio. Image synthesis from a single
example image. in Computer Vision - ECCV’96 Lec-
ture Notes in Computer Science 1064, B. Buxton and
R. Cippola, ed., (Springer, Berlin, 1996), pp. 652-659.
Georg Wolberg, Image Warping. IEEE Computer So-
ciety Press, Los Alamitos CA, 1990.

W. Xu and G. Hauske. Picture quality evaluation
based on error segmentation. Visual Communications
and Image Processing, 2308:1-12, 1994.



