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Abstract

3D Morphable Models, as a means to generate images
of a class of objects and to analyze them, have become in-
creasingly popular. The problematic part of this framework
is the registration of the model to an image, a.k.a. the fitting.
The characteristic features of a fitting algorithm are its ef-
ficiency, robustness, accuracy and automation. Many accu-
rate algorithms based on gradient descent techniques exist
which are unfortunately short on the other features. Re-
cently, an efficient algorithm called Inverse Compositional
Image Alignment (ICIA) algorithm, able to fit 2D images,
was introduced. In this paper, we extent this algorithm to fit
3D Morphable Models using a novel mathematical notation
which facilitates the formulation of the fitting problem. This
formulation enables us to avoid a simplification so far used
in the ICIA, being as efficient and leading to improved fit-
ting precision. Additionally, the algorithm is robust without
sacrificing its efficiency and accuracy, thereby conforming
to three of the four characteristics of a good fitting algo-
rithm.

1. Introduction

3D Morphable Models, as a means to generate images
of a class of objects and to analyze them, have become in-
creasingly popular (e.g [19, 6, 16]). For instance, Blanz et
al., use a 3D Morphable Model to analyze human face im-
ages across wide variations of pose and illumination [5, 20].
It was shown in [5] that, provided the fitting of the model to
the face image is accurate, the identification performances
are very high (more than 97% across large variations of
pose and illumination). A fitting algorithm, i.e. an algo-
rithm aiming at registering the model with an input image,
is characterized by the following four features:

• Efficient: The efficiency of the fitting is clearly de-
pendent on applications. Security applications, for in-
stance, requires fast algorithm (i.e. near real time).

• Robust against non-Gaussian noise. The assumption
of normality of the difference between the image syn-
thesized by the model and the input image is generally
violated due to the presence of accessories or artifacts
(glasses, hair, specular highlight).

• Accurate, as we have already pointed out, the accu-
racy is crucial for the application which is to use the
fitting results (and, generally, the level of accuracy re-
quired depends thereon.)

• Automatic: The fitting should require as little human
intervention as possible, optimally, no initialization.

An algorithm capable of any of the four aforementioned
features is difficult to set up. An algorithm capable of all
four features is the holy grail of model based computer vi-
sion. Accurate algorithms exist already since a few years
(e.g. [5]) but they are short on the three other features. Re-
cently, Baker and Matthews [2] presented an efficient al-
gorithm for fitting 2D correspondence-based models, called
Inverse Compositional Image Alignment (ICIA). They de-
rived a first order approximation thereof to fit Flexible Ap-
pearance Models (i.e. sparse correspondence based 2D
models). In this paper, we extent this algorithm to 3D Mor-
phable Models. This 3D extension requires the introduction
of a new notation (see Section 2) which separates the image
frame from an object centered reference frame. The algo-
rithm presented in Section 3 has several advantages over
the original ICIA: Due to the new formalism for describing
correspondence based models, the algorithm is not a first
order approximation of the ICIA as was presented in [2].
This leads to a different inverse shape composition which
is more accurate. We also present a method for making the
algorithm robust without sacrificing its efficiency and its ac-
curacy (Section 4). So, our algorithm is capable of the first
three features, leaving its automation for future improve-
ments.



2. 3D Morphable Models

Morphable Models are not new in computer vision [8, 9]
and originated from the understanding that any object is
characterized by two entities: its shape and its color. This is
the main difference between Morphable Models and older
approaches such as Eigenfaces [23] which only model the
color. In Morphable Models, the shape and the color are
modeled separately. 2D as well as 3D Morphable Models
parameterize in a consistent manner the 2D surface of the
whole set of modeled objects (e.g. human faces). The ob-
ject centered reference frame, on which both the shape and
the texture of the 2D surface are parameterized, is denoted
by (u, v). As the objects are parameterized on the same ref-
erence frame, the set of objects is closed under addition: the
addition of two valid objects is a valid object. Hence we can
form linear combinations of objects and the class of objects
is said to form a Linear Objects Class [24]. Then the
3D shape of an object is defined by a function s(u, v) map-
ping the (u, v) coordinate system into the three-dimensional
(x, y, z) coordinate system. Similarly the color, also called
texture, is defined by the function t(u, v) mapping the (u, v)
space into the RGB color space. The distinction, which is
lacking in [2], between the reference frame (u, v) and the
(x, y, z) coordinate system helps clarifying the explanation
of the fitting algorithm. In the remaining of this section the
shape and texture models are detailed.

2.1. Generative Shape Model

3D Shape modeling The representation of the 3D shape
is discrete: it is a mapping from (ui, vi) to (xi, yi, zi) for
i = 1, . . . , Nv , where Nv is the number of vertices of
the model. We represent this shape by the matrix S

3×Nv

for which each column corresponds to one of the reference
points (ui, vi). The shapes of the Linear Object Class are
modeled by a linear combination of modes of variation Sk

obtained by applying PCA on a set of example shapes:

S
3×Nv

= S0 +

Ns
∑

k=1

αk · Sk, (1)

where Ns, the number of shape dimensions, is typically in
the region of one hundred. A continuous shape is obtained
by interpolation across neighboring vertices defined by a
triangle list as is common in Computer Graphics.

Shape projection to the image frame The projection of
the vertices of a 3D shape to the 2D image frame (x, y),
using a weak perspective transformation with focal length
f , rotation matrix R, and translation t, is denoted by P:

P
2×Nv

= f ·R
2×3

·

(

S0 +

Ns
∑

k=1

αk · Sk

)

+t
2×1

·1
1×Nv

(2)

A weak perspective is required, as opposed to a full per-
spective projection, to facilitate the second step of the shape
composition (i.e. the recovery of α and the projection pa-
rameters from P) explained in Section 3.1. For ease of ex-
planation, the weak perspective transformation parameters
are denoted by the vector ρ = [f vec(R)TtT]T, where vecR

vectorizes R by stacking its columns, and α is the vector
whose elements are the αk. In the remaining of the paper,
the projection of the vertex i to the image frame (x, y) is de-
noted by the vector valued function p(ui, vi;α,ρ) = P·,i.
This function is clearly continuous in α, and ρ. To pro-
vide continuity in the (u, v) space as well, we use a triangle
list and interpolate between neighboring vertices. Note that
only Nvv vertices, a subset of the Nv vertices, are visible
after the 2D projection (the remaining vertices are hidden
by self-occlusion). We call this subset the domain of the
shape projection p(ui, vi;α,ρ) and denote it by Ω(α,ρ).

In conclusion, the shape modeling and its projection pro-
vides a mapping from the parameter space α,ρ to the image
frame (x, y) via the reference frame (u, v).

2.2. Shape Inverse

So far, we detailed the generative shape projection, i.e.
the mapping from the parameter space α,ρ to the image
frame (x, y). In a fitting algorithm, we are interested in
solving the inverse problem, i.e. recovering the parame-
ters from an image. We will see in the next section, that
the fitting algorithm requires two tools: the inverse shape
projection and an algorithm which separates the model pa-
rameters α and ρ from a set a vertices projection, P (i.e.
the inversion of Equation (2)).

Inverse shape projection and Projections Composition
The inverse shape projection maps an image point (x, y)
to the reference frame (u, v). Let us denote the compo-
sition of a shape projection and its inverse by the sym-
bol ◦, hence, p(u, v;α,ρ) ◦ p−1(x, y;α,ρ) is equal to
p(p−1(x, y;α,ρ);α,ρ), but we prefer the former notation
for clarity. The inverse shape projection is defined accord-
ing to the following axiom, which specifies that under the
same set of parameters the shape projection composed with
its inverse is equal to the identity:

Axiom 1

p(u, v;α,ρ) ◦ p−1(x, y;α,ρ) = (x, y),

p−1(x, y;α,ρ) ◦ p(u, v;α,ρ) = (u, v),

Due to the discretization of the shape, it is not easy to ex-
press analytically p−1 as a function of p, but it can be com-
puted using the triangle list: The domain of the plane (x, y)
for which there exists an inverse under the parameters α and
ρ, denoted by Ψ(α,ρ), is the range of p(u, v;α,ρ). Such
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a point of (x, y) lies in a single triangle under the projection
p(u, v;α,ρ). So, the point in (u, v) under the inverse pro-
jection has the same relative position in this triangle in the
(u, v) space. This process is depicted in Figure 1.
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Figure 1. The inverse shape function
p−1(x, y;α,ρ) maps the point q (defined in the
(x, y) coordinate system), onto the point q′ in
(u, v). This is done by recovering the trian-
gle which would contain the pixel q under the
mapping p(u, v;α,ρ). Then the relative posi-
tion of q in that triangle is the same as the
relative position of q′ in the same triangle in
the (u, v) space.

Baker et al., in [2], do not make the distinction between
the reference and the image frames. A consequence of this,
is that they require the set of warps to be closed under inver-
sion (which is not required for our formulation). This leads
them to a first order approximation of the inverse shape
projection (called inverse warping in their nomenclature):
p−1(x, y;α) = p(u, v;−α) (Note that there are no projec-
tion parameters ρ, as they use a 2D model). This does not
agree with our Axiom (1): As shown in Figure 2, a point
from (u, v), q′, is mapped under p(u, v;α) to q in (x, y).
Hence, to agree with the axiom, this point q must be warped
back to q′ under p−1(x, y;α). So, the displacement in q

which should be inverted is the one from q′. However, in
Baker et al. [2], the displacement function p is inverted at
the point q, leading to the point b, instead of q′. This is due
to the fact that the distinction between the two coordinates
systems is not made. This approximation is less problem-
atic for a sparse-correspondence model as used by Baker for
which the triangles are quite large (see Image (b) of Figure
2 of [2]), because the chances that both q and q′ fall in the
same triangle are much higher than in our dense correspon-
dence model for which the triangles are much tinier. When
q and q′ fall in the same triangle, then their displacements
are similar to a first order approximation, due to the lin-
ear interpolation inside triangles, and the error made during
composition is small. This explains the good result obtained
by Baker.

Recovery of α and ρ from P To recover the model pa-
rameters, α, f,R and t from correspondences between a set
of model vertices and their projection in the image frame,

PSfrag replacements q

q′

a

b
p(q′;α)

p(q;α)

p(q;−α)

Figure 2. First order approximation of the in-
verse shape projection defined by Baker and
Matthews in [2] which violates Axiom 1.

Equation (2) must be inverted. Because it is a weak per-
spective projection, this equation is a bilinear combination
between the shape parameters α and the 3D rotation matrix
R. The recovery is performed by the closed form solution
detailed in [21] which presents a novel selective approach
addressing this problem more accurately than the former
method based on SVD factorization [3]. The rotation ma-
trix and the focal length are recovered using Equation (15)
of [21], the translation using Equation (16) of [21], and then
the shape parameters α are recovered by inverting the linear
system of equations using the estimated rotation matrix and
focal length.

2.3. Texture mapping and its inverse

Similarly to the shape model, the texture (or color) model
is also defined on the same (u, v) reference frame. The
RGB texture is discretized in the same manner, and again
assuming that the set of textures back-warped on the refer-
ence shape form a Linear Object Class and after applying
PCA to a set of example textures:

T
3×Nv

= T0 +

Nt
∑

k=1

βk · Tk, (3)

where Nt is the number of texture dimensions (again in the
region of one hundred) and each rows of the matrix T holds
the values of one color channel. Also, similarly to the shape
we denote the color of a vertex i by the vector valued func-
tion t(ui, vi;β), which is extended to the continuous func-
tion t(u, v;β) by using the triangle list and interpolating.
In the fitting algorithm, a texture inverse, t−1(u, v;β), is
required:

t−1(t(ui, vi);β) = t(ui, vi) −

Nt
∑

k=1

βk · Tk
·,i, (4)

where Tk
·,i denotes the ith column of the matrix Tk.

This definition is chosen for the texture inverse be-
cause then a texture composed with its inverse, under
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the same set of parameters is equal to the mean texture:
t−1(t(ui, vi;β);β) = T0

·,i.
Synthesizing the image of an object is performed by

warping a texture from the reference to the image frames
using a shape projection:

I(xj , yj ;α,ρ,β) = t(u, v;β) ◦ p−1(xj , yj ;α,ρ) (5)

where j runs over the pixels for which a shape inverse exist
as defined in Section 2.1.

3. Image alignment algorithm

In this section, we extent the iterative Inverse Compo-
sitional Image Alignment (ICIA) algorithm of Baker and
Matthews [2] to fit 3D Morphable Models, using the formal-
ism stated in Section 2. The key feature of this algorithm is
its efficiency due to the pre-computation of the derivatives.
As our definition of the inverse shape projection is different
from [2], its composition with the current shape estimate
is also different. For brevity, we denote by γ the stacking
of the shape and projection parameters, γ = [αTρT]T. The
cost function iteratively minimized in the ICIA algorithm is
a sum of squares of the difference between two textures. It
is, hence, defined in the reference frame (u, v). The first
texture is the model texture. It is the result of a shape pro-
jection update (with parameters ∆γ) composed with a tex-
ture update (with parameters ∆β). The second texture of
the difference is extracted from the input image to be fitted
I(x, y) using the shape projection with the current shape
parameters γc. This texture then undergoes an inverse tex-
ture mapping using the current texture parameters βc. The
cost function to be minimized is the following:

C(∆γ,∆β,γd,γc,βc, I) =
1

2
·

∑

ui,vi∈Ω(γd)
(

t(u, v;∆β) ◦ p−1(x, y;γd) ◦ p(ui, vi;γ
d + ∆γ)

− t−1(I(x, y) ◦ p(ui, vi;γ
c);βc)

)2
(6)

where the parameters superscripted by d refer to the param-
eters at which the derivatives are computed and the param-
eters superscripted by c refer to the current parameters. The
cost function C is to be minimized with respect to the model
parameters update ∆γ and ∆β. There are two novelties
with respect to Baker’s formulation: The first is the pres-
ence of the inverse shape projection p−1(x, y;γd) between
the shape update and the texture update. This inverse shape
projection must be present because it is not possible to com-
pose a shape (projecting to the image frame) with a texture
(whose domain is the reference frame). The second novelty
is the update of the texture parameters as well, ∆β.

For comparison, the cost function of the common addi-
tive approach, used for instance by Blanz et al. [6] follows:

C(∆γ,∆β,γc,βc, I) =
1

2
·

∑

xj ,yj∈Ψ(γc)

(

I(xj , yj)

− t(u, v;βc + ∆β) ◦ p−1(xj , yj ;γ
c + ∆γ)

)2
(7)

Let us now compute the derivative of the ICIA cost function
(Equation (6)) with respect to the shape and projection pa-
rameter update ∆γ at the point (0, 0,γd,γc,βc, I). In the
remaining, we will omit the dependent variables, assuming
that it is clear that the dependents of p and t are (u, v) and
the dependents of p−1 and I are (x, y).

∂C

∂∆γk

=
∑

i

∂(t(0) ◦ p−1(γd) ◦ pi(γ
d + ∆γ))

∂∆γk

∣

∣

∣

∣

T

∆γ=0

· [t(0) ◦ p−1(γd) ◦ pi(γ
d) − t−1(I ◦ pi(γ

c);βc)] (8)

Note that, using Equation (5) and the chain rule:

t(0) ◦ p−1(γd) = Id(x, y;αd,ρd, 0) (9)

∂(t(0) ◦ p−1(γd) ◦ pi(γ))

∂γk

= ∇Id ·
∂pi(γ)

∂γk

(10)

We refer to the second factor of the right member of Equa-
tion (8) in squared brackets as the texture error at the vertex
i, ei. The texture error, e, is a column vector of length
3Nvv; it is a difference of two terms: The first one is the
mean texture (the projection and inverse projection cancel
each other using Axiom 1). The second term is the image
to be fitted mapped to the reference frame (u, v) using the
current shape and projection parameters and inverse-texture
mapped with the current texture parameters. At the opti-
mum (and if the face image can be fully explained by the
model), this term is equal to the mean texture, and hence
the texture error is null. The first factor of (8) is the element
of the shape Jacobian, Js, at the row i and column k. The
dimensions of the shape Jacobian matrix are 3Nvv × Ns.
The key feature of the ICIA algorithm is that the Jacobian
depend only on γd which is constant across iterations, as
opposed to the Jacobian of the additive formulation (Equa-
tion (7)) that depends on the current parameter estimate γc

and βc.
The derivatives with respect to the texture parameters up-

date ∆β take a similar form to those of the shape parame-
ters. They are simpler, however, as the texture Jacobian is
simply equal to the linear texture model: Jt

·,k = vec(Tk).
The combined Jacobian of the shape and texture model is
then: J = [JsJt]. The Gauss approximation of the Hessian
is H = JTJ, leading to the Gauss-Newton update:

(

∆γ

∆β

)

= −H−1 · JT · e (11)
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3.1. Shape projection composition

In the ICIA algorithm the shape projection update is
composed with the current shape projection estimate. This
composition, detailed in this section, is performed in two
steps. The first step computes the correspondences after
composition between the model vertices and the image pix-
els, i.e. it yields a mapping from (ui, vi) to (x, y), de-
noted by p∗(ui, vi). The second step maps this set of
vertices-pixels correspondence to the shape model, yielding
the model parameters after composition, α∗ and ρ∗.

Correspondences after composition The update ob-
tained after an iteration is a transformation of the reference
frame (u, v): p−1(x, y;γd)◦p(ui, vi;γ

d+∆γ) (see Equa-
tion (6)). It is this transformation that must be composed
with the current shape projection to obtain the new corre-
spondences: The result of the shape projection composition
is a shape projection, p∗(ui, vi), mapping the points of the
reference frame (ui, vi) to the image frame, (x∗

i , y
∗

i ), equal
to:

p∗(ui, vi) = p(u, v;γc)◦p−1(x, y;γd)◦p(ui, vi;γ
d+∆γ)

(12)
Under the first shape projection, the rightmost on the above
equation, the vertex i is mapped to the image frame, say
the point (x+

i , y+
i ), under the parameters γd + ∆γ using

Equation (2). Then, under the inverse shape projection, this
point (x+

i , y+
i ) is mapped to the reference frame, say the

point (u+
i , v+

i ), using the procedure described in the third
paragraph of Section 2.1. Finally, (u+

i , v+
i ) is mapped to

(x∗

i , y
∗

i ) using the shape projection with the parameters γc.

Correspondences mapping to the shape model The first
step of the composition yields a set of correspondences be-
tween the model vertices (ui, vi) and the points in the im-
age frame (x∗

i , y
∗

i ) (represented by the matrix P in Equa-
tion (2)). To recover the model parameters, α, f,R and t

explaining these correspondences, the algorithm presented
in the second paragraph of Section 2.2 is used.

3.2. Inverse Compositional Image Alignment Alg.

The main advantage of the ICIA algorithm over the for-
mer fitting algorithms is its efficiency: The Jacobian used
in the computation of the update does not depend on the
current estimate γc. Hence the Jacobian, J, and the inverse
of the Hessian, H−1, can be pre-computed. What is left
to do during the iterative fitting is a matrix-vector product
(Equation (11)) and a shape projection composition.

Due to the inverse shape projection introduced in this pa-
per, our algorithm is more general than the original ICIA de-
tailed in [2], for two reasons: (i) The extension of the ICIA

to Flexible Correspondence based Models in [2] is a first
order approximation (i.e. a simplification that yields gener-
ally reasonable results when the model is based on sparse
correspondences). This is because the inverse shape pro-
jection proposed in [2] does not agree with the Axiom 1.
The exposition of the ICIA algorithm applied to Morphable
Models presented here is not based on a first order approx-
imation. Hence, the shape projection composition of large
displacement is more accurate for the algorithm presented
in this paper. (ii) ICIA requires that the set of shape projec-
tion deformations is closed under composition. This means
that two valid shape projections composed with one another
must form a valid shape projection. A valid shape projec-
tion is a set of correspondences between vertices and image
frame points for which there exist a set of α and ρ param-
eters that can exactly satisfy Equation (2). However, the
whole fitting process can and should be performed without
this requirement. Indeed, the input to each iteration is a
set of correspondences between the vertices (ui, vi) and the
image frame. However, it is not required that this set of cor-
respondences is within the span of the shape model. There-
fore the whole fitting algorithm can be performed by apply-
ing only the first stage of the composition and not the sec-
ond. We call this scheme Deferred Correspondences Map-
ping. Under DCM, there are no current shape parameters
γc, but a current set of correspondences, pc(u, v), hence
Equation (12) is rewritten as:

p∗(ui, vi) = pc(u, v)◦p−1(x, y;γd)◦p(ui, vi;γ
d +∆γ)

(13)
DCM has two advantages: Firstly, it is more accurate. In-
deed, due to our inverse shape projection, Equation (13)
can be exactly satisfied. However, if p∗(ui, vi) was to be
mapped to the shape model (thereby extracting γc), then
the mapped correspondences could not satisfy this equation
anymore: The mapping introduces an error in the compo-
sition because the set of correspondences after composition
generally does not lie within the span of the shape model.
When the result of the composition is not mapped to the
shape model, then no error is introduced, i.e. the compo-
sition is exact. However it is shown in the experimental
section that the error introduced by the projection to the
shape model is very small. The second advantage is that
it makes the algorithm more efficient as the most time con-
suming part of the composition is not applied during the
iterative process. If, at the end of the fitting, the shape pa-
rameters are needed (for identification, for instance), then
the correspondences are mapped and the shape parameters
recovered. It must be noted that this introduces an error
in the set of correspondences, which usually increases the
value of the cost function C. This algorithm is, hence, a
mixture between model constrained correspondence finding
algorithms (a.k.a. fitting algorithms) and unconstrained cor-
respondence finding algorithms (such as [4]). Indeed, the fi-
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nal set of correspondence is not in the span of the model, but
each step of the iteration is constrained by the model. So, it
combines advantages of both world: The correspondences
obtained are indirectly constrained by the model, but if the
model is not general enough, the correspondence estimates
depart from the model in order to minimize the cost func-
tion. An advantage of this feature, is that the shape residual
could be used to augment the object description.

The third modification of this version of the ICIA algo-
rithm with respect to the one of Baker in [2] lies in the re-
covery of the texture parameters. The algorithm proposed
in [2] is invariant to the texture parameters (this idea orig-
inates from [12]). This is performed by making the col-
umn of the shape Jacobian orthogonal to the ones of the
texture Jacobian. We empirically verified, on images from
the PIE face database which require the utilization of a ro-
bust cost function (see Section 4), that this introduces a
non-negligible perturbation on the shape Jacobian which
decreases the accuracy of the shape recovery. We there-
fore favor recovering the texture parameters as well, as ex-
plained in Section 3.

In an implementation of ICIA, the parameters at which
the derivatives are computed γd = [αdT

ρdT

]T must be se-
lected. A natural choice for the shape parameters is αd = 0.
The selection of ρd is not as trivial, because the derivatives
of the shape projections are computed in a particular image
frame (see Equation (10)) set by Rd. Therefore, Rd should
be close to the optimal R (depending on the input image).
Hence, a set of Jacobians is computed for a series of differ-
ent Rd. During the iterative fitting, the derivatives used are
the ones closest to the current estimation of R. Note that, at
first, this approach might seem very close to the View-based
approach [18, 17, 7]. The difference is, however, fundamen-
tal. In this approach, the extraneous (rotation) parameters
are clearly separated from the intrinsic (identity, i.e. α,β)
parameters. They are, however, convolved with one another
in the View-based approach.

To summarize, the algorithm takes the following steps:

1. Start from the initial parameters αc = 0, βc = 0 and
ρc sufficiently close to the optimum.

2. Compute the current correspondences: pc(ui, vi) =
p(ui, vi;α

c,ρc).

3. Compute the texture error ei = t(ui, vi; 0) − t−1(I ◦
pc(ui, vi);β

c).

4. Compute the update ∆α,∆β and ∆ρ using Equa-
tion (11).

5. Set the new correspondences pc(ui, vi) to the com-
posed shape projection obtained by Equation (13), and
the new texture parameters βc to βc + ∆β (The com-
position of two textures is equivalent to the addition of
their parameters).

6. Go back to step 3 until convergence, i.e. until the cost
function C does not decreases significantly.

7. If the optimal shape parameters are needed, then map
pc(ui, vi) to the shape model.

4. Robustness and Efficiency

The ICIA algorithm is very efficient due to the fact that
the Jacobian is constant and hence can be pre-computed.
Then, the only iterative computation is a matrix-vector
product and a shape composition (Equation (13)). The com-
plexity of an iteration is of the order O(Nvv · (Ns + Nt)).
We have also shown that our version of the ICIA is accu-
rate. As mentioned in the Introduction, robustness is also an
important property of any fitting algorithm. The challenge
is to attain a robust algorithm without sacrificing the effi-
ciency and the accuracy. We propose to move toward this
goal by two methods: (i) using a Maximum A Posteriori op-
timization rather than the Maximum Likelihood presented
in Section 3, and (ii) alleviating the Gaussian noise assump-
tion behind the least squares optimization of Section 3.

Maximum A Posteriori MAP optimization is performed
when the prior of the model parameter is taken into account.
As the shape and texture models are constructed by PCA,
the model parameters have a Gaussian distribution with a
diagonal covariance matrix Σ and a null mean (We also as-
sume such a distribution for the projection parameters for
which their variance depends on their units). The shape
prior is introduced in the cost function by augmenting it
with the term λγ∗Σ−1

γ γ∗, where λ is the variance of the
noise. As the shape parameters after composition, γ∗, can-
not be easily derived from ∆γ and from γc, we approxi-
mate the prior term by λ∆γΣ−1

γ ∆γ. Then, the MAP up-
date is:
(

∆γ

∆β

)

= (H + λ · Σ−1)−1 ·
(

JT · e + λΣ−1
β · βc

)

(14)

where Σ is the covariance matrix of the shape and tex-
ture parameters. As λ is rather difficult to estimate, it is
tuned in a similar scheme to the Levenberg-Marquardt al-
gorithm [11]. To keep the same efficiency, the new inverted
Hessian is pre-computed for a series of characteristic λ.

Robustness toward Outliers The Morphable Model is
not meant for modeling such things as glasses, specu-
lar highlights, facial hair, and the background surround-
ing the face. Their presence perturbs the fitting algorithm,
as their residual dominates the least-squares cost function.
M-estimator [15] is a standard technique for increasing
the robustness of a fitting, by using a cost function which
grows less that the square with respect to the residual. The
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cost function that we use is the Talwar [13] cost function
which is a weighted least squares which gives a weight
of 1 to inliers and 0 to outliers. A pixel is given the in-
lier or outlier status depending on its residual adjusted by
the MAD, median of absolute deviations, and its leverage
(i.e. down-weighting high leverage points) [10]. This opti-
mization is efficiently implemented by Iterative Reweighted
Least-Squares [14]. This method sacrifices little of the effi-
ciency of the algorithm: The Jacobian is constant, hence
the leverages can be also pre-computed. By use of the
Talwar cost function, the Hessian is also constant as it
does not depend on the image being fitted (and hence on
the outlying pixels). So, Equation (11) can be iteratively
solved by just discarding the rows of J corresponding to
the outlying pixels. So, the complexity of this algorithm
is O((Ns + Nt) · Nvv + Nvv log Nvv). The second term
of this complexity is due to the computation of the MAD
which requires the sorting of the residuals.

5. Experiments

We present, in Figure 3, a typical fitting result obtained
on one of the CMU-PIE images [22]. The Morphable
Model that we used was constructed on 100 example heads,
the dimension of both the shape and texture model was cho-
sen to 50. The model includes 18404 vertices. The example
heads originate from individuals which are not present in
the CMU-PIE database [22] used for testing. The selected
photograph of the database is rather not ’easy’ to fit due to
the presence of glasses, which are not accounted for by the
model. The average time used for fitting is 30s. on a C im-
plementation on a P IV running a 2.8 GHz. The image (b)
shows which pixels (in white and black) are sampled from
to form the texture error e. This image is taken at an early
stage of the fitting, therefore the faces estimated with the
current parameters overlaps some of the background. The
white pixels are detected as outliers and are not taken into
account in the fitting by the use of the Talwar cost func-
tion. Note that the glasses, the background pixels and the
hair are properly detected as outliers. Therefore the fitting
is very moderately perturbed by the presence of the glasses
(see images (c) and (d)). It can be seen that the contour be-
tween the visible and invisible part of the face is not accu-
rately matched (specially in the chin and ear areas). This is
a common problem to the approaches based on a minimiza-
tion of color differences (as [6]). Naturally the background
color is not modeled (see image (d)) and hence the gradients
of the input image and of the synthetic image are different
on the contour, which explains the lack of fit. The contour
of the synthetic image is the most probable one given the
face interior. One way to improve the contour fitting, is to
detect the visible contour in the image (either manually or
automatically) and to add a cost function depending only on

the shape to the current cost function. Further fitting as well
as identification experiments are available at [1].

(a) Input Image (b) Inlier and Outlier Pixels

(c) Overlaid Fit (d) Synthetic Image

Figure 3. Fitting result of an image of the
CMU-PIE set. The image (b) shows, at an
early stage of the fitting, in black and white,
the pixels that the texture error e is sampled
from and in white the outlier pixels thereof.

Deferred Correspondence Mapping We conducted a set
of experiments aiming at comparing the fitting with DCM
(i.e. the correspondences at each iteration are not con-
strained to lie within the shape model) and without DCM.
68 images from the PIE face database [22] were fitted (front
view at a neutral expression). Figure 4(a) shows the cost
function per iteration averaged over the 68 fittings. The
value of the cost function is averaged over the vertices used.
The graphs shows that the results with or without DCM are
essentially similar. Hence the fact that the shape model is
not closed under composition has not a strong influence on
the result. As a result, we favor DCM for its runtime per-
formances.

Influence of using a constant Rd Ideally the azimuth
and the elevation angles at which the derivatives are com-
puted should be the same as the angles of the optimum. In
this paragraph, we experiment on the error in correspon-
dences obtained by using derivatives computed on a dif-
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Figure 4. (a) Left: Comparison of the cost
function per iteration with and without DCM.
(b) Right: Error in correspondence when the
derivatives are computed in a different az-
imuth than the optimum.

ferent azimuth angle than the optimum. We generated a
synthetic face with one 3D Morphable Model and fitted it
with another 3D Morphable Model. As the optimum face
image is synthetic, we know exactly its pose and the 2D po-
sition of its vertices. Figure 4(b) shows a plot of the error of
correspondences obtained after different fittings, each using
derivatives computed at different azimuth angles. The fig-
ure shows that if a set of derivatives is pre-computed at 20◦

interval, the error in correspondences is less than a pixel.

6. Conclusions

After introducing a new mathematical formalism for de-
scribing Morphable Models, we used it to formulate the ex-
tension of the Baker’s Inverse Compositional Image Align-
ment algorithm to 3D Morphable Models. We believe that
this formalism is interesting in its own right, as it is rigorous
and general to correspondence based models, and hence can
be used to describe and compare different fitting strategies.

Our algorithm is more accurate than the original ICIA
algorithm as it is not a first order approximation (no error is
introduced in our inverse shape composition). We also pre-
sented a method which makes the algorithm robust without
losing much of its efficiency and accuracy. A further ad-
vantage of our algorithm is that the correspondences are al-
lowed to leave the span of the model in order to decrease
the cost function.

One problem left to be addressed is the automation of the
algorithm. This is difficult because making an algorithm
both robust and fully automatic is contradictory in nature:
An algorithm is robust because it down-weights outlier pix-
els detected by their high residual. However, far from the
optimum, many pixels have a high-residual and yet they
are inliers which should not be down-weighted. This is the
challenge that we will address in the future.

Acknowledgment We thank Simon Baker for his enlightening
views on the algorithm and his helpful comments. This material
is based upon work supported by the European Research Office of
the US Army under contract No. N68171-01-C-9000.

References

[1] http://informatik.unibas.ch/personen/romdhani sami/icia. 5
[2] S. Baker and I. Matthews. Equivalence and efficiency of im-

age alignment algorithms. In CVPR, 2001. 1, 2, 2.2, 2, 3,
3.2, 3.2

[3] B. Bascle and A. Blake. Separability of pose and expres-
sion in facial tracking and animation. In Sixth International
Conference on Computer Vision, 1998. 2.2

[4] J. Bergen and R. Hingorani. Hierarchical motion-based
frame rate conversion. Technical report, David Sarnoff Re-
search Center Princeton NJ 08540, 1990. 3.2

[5] V. Blanz, S. Romdhani, and T. Vetter. Face identification
across different poses and illuminations with a 3d morphable
model. In Auto. Face and Gesture Recognition, 2002. 1

[6] V. Blanz and T. Vetter. A morphable model for the synthesis
of 3D-faces. In SIGGRAPH 99, 1999. 1, 3, 5

[7] T. Cootes, K. Walker, and C. Taylor. View-based active ap-
pearance models. In Automatic Face and Gesture Recogni-
tion, 2000. 3.2

[8] I. Craw and P. Cameron. Parameterizing images for recogni-
tion and reconstruction. In Proc. BMVC, 1991. 2

[9] I. Craw and P. Cameron. Face recognition by computer. In
Proc. British Machine Vision Conference, 1992. 2

[10] W. H. DuMouchel and F. L. O’Brien. Integrating a robust
option into a multiple regression computing environment. In
21st Symposium on the Interface, American Statistical Asso-
ciation, 1989. 4

[11] P. E. Gill, W. Murray, and M. H. Wright. Practical Optimiza-
tion. Academic Press, 1981. 4

[12] G. D. Hager and P. N. Belhumeur. Efficient region tracking
with parametric models of geometry and illumination. PAMI,
1998. 3.2

[13] M. J. Hinich and P. P. Talwar. A simple method for robust
regression. J. Amer. Statist. Assoc., 1975. 4

[14] P. W. Holland and R. E. Welsch. Robust regression using
iteratively reweighted least-squares. Commun. Stat. (Theory
& Methods), 1977. 4

[15] P. J. Huber. Robust Statistics. John Wiley & Sons, 1981. 4
[16] V. P. Kumar and T. Poggio. Learning-based approach to es-

timation of morphable model parameters. Technical report,
MIT - A.I., 2000. 1

[17] H. Murase and S. Nayar. Visual learning and recognition of
3d objects from appearance. IJCV, 1995. 3.2

[18] A. Pentland, B. Moghaddam, and T. Starner. View-based and
modular eigenspaces for face recognition. In CVPR, 1994.
3.2

[19] T. D. Rikert and M. J. Jones. Gaze estimation using mor-
phable models. In Automatic Face and Gesture Recognition,
1998. 1

[20] S. Romdhani, V. Blanz, and T. Vetter. Face identification by
fitting a 3d morphable model using linear shape and texture
error functions. In Computer Vision – ECCV’02, 2002. 1

[21] S. Romdhani, N. Canterakis, and T. Vetter. Selective vs.
global recovery of rigid and non-rigid motion. Technical re-
port, CS Dept, University of Basel, 2003. 2.2

[22] T. Sim, S. Baker, and M. Bsat. The cmu pose, illumination
and expression (pie) database of human faces. Technical re-
port, CMU, 2000. 5, 5

[23] L. Sirovich and M. Kirby. Low-dimensional procedure for
the characterization of human faces. Journal of the Optical
Society of America A, 1987. 2

[24] T. Vetter and T. Poggio. Linear object classes and image
synthesis from a single example image. PAMI, 1997. 2

8


	1 . Introduction
	2 . 3D Morphable Models
	2.1 . Generative Shape Model
	2.2 . Shape Inverse
	2.3 . Texture mapping and its inverse

	3 . Image alignment algorithm
	3.1 . Shape projection composition
	3.2 . Inverse Compositional Image Alignment Alg.

	4 . Robustness and Efficiency
	5 . Experiments
	6 . Conclusions

