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Abstract

We describe an algorithm for automatically learning discriminative parts
in object images with SVM classifiers. It is based on growing image parts
by minimizing theoretical bounds on the error probability of an SVM.
Component-based face classifiers are then combined in a second stage to
yield a hierarchical SVM classifier. Experimental results in face classi-
fication show considerable robustness for rotations in depth and suggest
performance at significantly better level than other face detection sys-
tems. Novel aspects of our approach are: a) an algorithm to learn from
examples component-based classification experts and their combination,
b) the use of 3D morphable models for training and c) a MAX operation
– on the output of each component classifier within a search region –
which may be relevant for biological models of visual recognition.

1 Introduction

We study the problem of automatically synthesizing hierarchical classifiers by learning
discriminative object parts in images. Our motivation is that most object classes (e.g. faces,
horses, cars) seem to be naturally described by a few characteristic parts or components and
their geometrical relation. Greater invariance to viewpoint changes and robustness against
partial occlusions is the two main potential advantages of component-based approaches.

The first challenge in developing component-based systems is how to choose automatically
a set of discriminatory object parts. Instead of manually selecting the components, it is
desirable to learn the components from a set of examples based on their discriminative
power and their robustness against pose and illumination changes. The second challenge is
to combine the component-based experts by learning implicitly their geometrical configu-
ration.
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2 Background

Global approach by detecting object as a single template was successfully applied to tasks
where the pose of the object was fixed. In [5] Haar wavelet features were used to detect
frontal and back views of pedestrians with a SVM classifier. Learning-based system for
detecting frontal faces based on a gray value features are described in [14, 12, 9, 2].

Component-based techniques promise to provide more invariance since the individual com-
ponents vary less while the variations induced by pose changes occur mainly in their geom-
etry. A component-based method for detecting faces based on the empirical probabilities
of overlapping rectangular parts of the image was proposed in [10]. Another probabilis-
tic approach, which detects small parts of faces, is proposed in [3] by using local feature
extractors to detect the eyes, the corner of the mouth and tip of the nose. The geometrical
configuration of these features is matched with a model configuration by conditional search.
A related method using statistical models is published in [8]. Local features are extracted
by applying multi-scale and multi-orientation filters to the input image. The responses of
the filters on the training set are modeled as Gaussian distributions. In [4] pedestrian de-
tection was performed by a set of SVM classifiers each of which was trained to detect a
specific part of the human body. Other approaches similar to ours select components on the
basis of information-based criteria [13, 17].

In this paper we present a technique for learning relevant object components. It starts
with a set of small seed regions that are gradually grown by minimizing a bound on the
expected error probability of an SVM. Once the components have been determined, we
train a system consisting of a two-level hierarchy of SVM classifiers. First, component
classifiers independently detect facial components. Second, a combination classifier learns
implicitly the geometry of the components.

3 Learning Components with Support Vector Machines

3.1 Linear Support Vector Machines1

Linear SVMs [15] perform pattern recognition for two-class problems by determining the
separating hyperplane with maximum distance to the closest points of the training set.
These points are called support vectors. The decision function of the SVM has the form:���������
	� � ���� ������� � ��� �����

(1)

where � is the number of support vectors, and

�����
� ��! � ! � is the class label of the training

point, � � some positive parameters and
� �#"%$

. They are the solution of a quadratic pro-
gramming problem. Let & be twice the distance of the support vectors to the hyperplane.
This quantity is called margin and is given by:& � '( ) 	 ��* + �� � � � +,�����-+�� � �.� � + �0/ (2)

The margin is an indicator of the separability of the data. In fact, the expected error proba-
bility of the SVM, 132�46575 , satisfies the following bound [15]:132�46575�8 !� 1:9<;>=& =@? � (3)

where ; is the diameter of the smallest sphere containing the data points in space

"A$
and

the expectation 1 is taken with respect to the probability of the training set.
1For simplicity we deal with linear SVMs (in the separable case) only but the algorithm discuss

below can be applied to non-linear SVMs as well.



3.2 Learning Components

We describe a method that automatically determines rectangular components from a set of
object images. The algorithm starts with a small rectangular component located around
a pre-selected (possibly at random) point in the object image (e.g., in the case of face
images, this could be the center of the left eye). The component is extracted from each
object images to build a training set of positive examples1. We also generate a training set
of non-face patterns that have the same rectangular shape as the component. After training
an SVM on the component data we estimate the performance of the SVM based on the
upper bound on the error probability. According to Eq. (3) we estimate:

� � ;>=& = � (4)

As shown in [15], this quantity can be computed by solving a quadratic programming
problem. After determining � we grow the component by expanding the rectangle by one
pixel into one of the four directions (up, down, left, right). Again, we generate training data,
train the SVM and compute � . We do this for expansions into each of the four directions
and continue the process until � increases. The same greedy process can then be repeated
by selecting each time a new seed region. The set of extracted components is then ranked
according to the final value of

�� and the top � are then chosen. Bounds such as the one
in Eq. (3) have been recently used for feature selection [18].

4 Learning Facial Components

We applied the above algorithm for extracting and selecting components from a training
set of face images. We used � textured 3-D head models [16] acquired by a 3-D scanner
and set in voxel-wise correspondence, to obtain the training data. By rendering the 3-D
head models we could automatically generate large numbers of faces in arbitrary poses and
with arbitrary illumination. We also knew the 3-D correspondences for a set of reference
points shown in Fig. 1a. These correspondences allowed us to automatically extract facial
components located around the reference points in the images. Additional head models
were generated by 3-D morphing between all pairs of the original � head models. The
heads were rotated between

�����
	
and

����	
in depth. The faces were illuminated by ambient

light and a single directional light pointing towards the center of the face, some examples
are shown in Fig. 1b. The position of the light varied between

������	
and

����	
in azimuth

and between
���
	

and  ��	 in elevation. Overall, we generated 2,457 face images of size
58 � 58. The negative training set consisted of 10,209 58 � 58 non-face patterns randomly
extracted from 502 non-face images. We then applied bootstrapping to enlarge the training
data by non-face patterns difficult to classify [12]. To do so we trained a single, linear
SVM classifier and applied it to the previously used set of 502 non-face images. The false
positives (FPs) were added to the non-face training data to build the final non-face training
set of size 13,654. All images were normalized in the � � � !�� interval.

We started with 100 random seed regions of size 5 � 52. Most of the top-ranked components
were found in the vicinity of the eyes, nose and mouth.

1We suppose that the point-by-point correspondences between object images are given. We have
this information for our training set (see later). It is also possible to bootstrap the point-by-point
correspondence from just a few images already in correspondence to the rest of the training set.

2In the experiments we replaced ��� in Eq. (4) by the dimensionality � of space ��� , since our
data points lay within an � -dimensional cube of length 1 and thus the smallest sphere containing the
data had radius equal to � ����� . This approximation was motivated by computational reasons.



a) b)

Figure 1: a) Reference points on the head models, which were used for 3-D morphing and
automatic extraction of facial components. b) Examples of synthetic faces.

5 Combining Components

An overview of our two-level component-based classifier is shown in Fig. 2. On the first
level, component classifiers independently detect components of the face. only

�
compo-

nents out of
! �

) these components are the eyes, the nose and the mouth. Each classifier
was trained on a set of facial components and on a set of randomly selected non-face pat-
terns. On the second level the geometrical configuration classifier performs face detection
by combining the component classifiers. The maximum real-valued outputs of each com-
ponent classifier within its rectangular search region3 around the expected positions of the
components are used as inputs to the combination classifier. The size of the search regions
was estimated from the mean and the standard deviation of the locations of the components
in the training images. The MAX operation is performed done both during training and at
run time. Interestingly it turns out to be similar to the key pooling mechanism postulated
in a recent model of object recognition in visual cortex [7].

The information flow is as follows: we denote the input image as
�

and the extracted
components as

� ��� ���� �� . The decision function of a component classifier is then given by:��� ����� � � ) 	 � �� � � � � �� � ��� � � ����� /
Then the maximum of each component classifier within its search region is selected and its
value together with the associated image locations
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sifier – a linear SVM. Thus �� ������� )
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	�� � � . The coefficient vectors
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6 Experiments

The component ”experts” consisted of 14 linear SVM classifiers for component detection
and a single linear SVM as geometrical classifier (see Section 5). For reference, we trained
a whole face classifier (single linear SVM) on gray values of the whole face pattern. The
training data for all classifiers consisted of 2,457 synthetic gray face images and 13,654
non-face gray images of size 58 � 58 (see 4. The positive test set consisted of 1,834 gray
images of real faces from the 41,368 images of faces + background of the new CMU
PIE test set[11]. We manually extracted images suitable for testing a face classifiers:
some examples are shown in figure 3. We plan to make this database available on our
web site http://www.ai.mit.edu/projects/cbcl/software-datasets/index.html. The database
includes faces rotated between about

������	
and

����	
. The negative test set consists of

3To account for changes in the size of the components, the outputs were determined over multiple
scales of the input image. In our tests, we set the range of scales to � ��� ����� ��� ��! .



Figure 2: System overview of the component-based classifier. At the first level, each of
component classifiers is run at multiple positions within its search region. The maximum
of its outputs is selected and fed, together with the associated position, to the combination
classifier.

24,464 non-face patterns selected by a combination of low-resolution SVM classifiers as
the most similar to non-faces from background images collected on the web. The test
was performed in the following way: An image of the face test set was scaled down 13
times to be in a range from

��� � ���
to

!�� � � !�� �
pixels. Images of the non-face test set

was all processed at scale 1.0. After rescaling the images, a window of size 58 � 58 was
shifted pixel-by-pixel over each of the scaled images. As proposed in [12] we applied two
preprocessing steps to the 8 bit gray values within the 58 � 58 window. First, a best-fit
intensity plane was subtracted from the gray values to compensate for cast shadows.
Then histogram equalization was applied to remove variations in the image brightness
and contrast4. The resulting pixel values were scaled to be in a range between 0 and 1.
We generated the ROC curve by considering only the maximum outputs for each patterns
(faces and non-faces) as the detection result for every scales and positions within the
pattern. The comparison between a

��� � ���
linear SVM and the new component-based

system is shown in Fig. 4a.

A natural question that arises is about the role of geometrical information. To begin answer
this question – which has relevant implications for models of cortex – we tested another
system in which the combination classifier receives as inputs only the output of each com-
ponent classifier but not the position of its maximum (within the search region). In this case
��� ������� )

�� �� ��� � � � ��� ����� � � � . The coefficient vectors ��� � are learned from the examples:� � � � ��� �� � � / / / � � � ��� �� ��� ��� � 	 � �� , where the label

� �
is
!

for faces and
��!

for non-face exam-
ples and � is the number of examples. This system, with more limited position information,

4For components the histogram equalization was performed on a 58 � 58 which was positioned
such that the component window was at the expected position of the component.



Figure 3: Faces from the new CMU PIE test set detected by the 14 component-based
classifier.

also outperforms the whole face system but is significantly inferior in performance to our
basic hierarchical classifier that uses position information.

The classification results show that the component-based system is significantly more ro-
bust against rotations in depth than comparable systems trained on whole face patterns.
Because of the resolution required by the component-based system, a direct comparison
with other published systems on the standard MIT-CMU test set [9] is impossible. For an
indirect comparison, we used the

! � � ! � '���� degree SVM whole face classifier [2] of
which we know the performance on both the MIT-CMU test set and also on the new CMU
PIE test set. At

� ���
correct (see Fig. 4b) that system has 75 FPs (see [2]) on the CMU-

MIT test set; the same system has about 5 times more FPs than our best component-based
system on the new CMU PIE test set. If the relative performances between the two systems
remains the same on the MIT-CMU test set, we would expect about 15 FPs on the MIT-
CMU database for our component-based system. This number should be compared with
the 33 FPs at

� � / � � correct of [10] which is so far the best face detection system.

a) b)

Figure 4: a) ROC curves for a 58 � 58 single template linear SVM classifier and the
component-based system. For comparison a component-based classifier trained without
use of direct position information has been added. The FPs are given relative to the number
of total patterns. b) Comparison with a reference

! � � ! � ' ��� degree polynomial SVM
classifier and the component-based system.

7 Open Questions

An extension under way of the component-based approach to face identification is already
showing good performances [1]. Another natural generalization of the work described here
involves the application of our system to various classes of objects such as cars, animals
and people. Still another extension regards the question of view-invariant object detection.
As suggested by [6] in a biological context and demonstrated recently by [10] full pose



invariance in recognition tasks can be achieved by combining view-dependent classifiers.
It is interesting to ask whether the approach described here could also be used to learn
which views are most discriminative and how to combine them optimally. Finally, the
role of geometry, and in particular how to compute and represent position information
in biologically plausible networks is an important open question at the interface between
machine and biological vision.
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