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Based on the assumption that a class of objects or data can be represented as a vector
space spanned by a set of examples, we present a general method to estimate vector
components of a novel vector, given only a subset of its dimensions.
We apply this method to recover 3D shape of human faces from 2D image positions of a
small number of feature points. The application demonstrates two aspects of the estima-
tion of novel vector components: (1) From 2D image positions, we estimate 3D coordi-
nates, and (2) from a small set of points, we obtain vertex positions of a high-resolution
surface mesh. We provide an evaluation of the technique on laser scans of faces, and
present an example of 3D shape reconstruction from a photograph.
Our technique involves a tradeoff between reconstruction of the given measurements, and
plausibility of the result. This is achieved in a Bayesian approach, and with a statistical
analysis of the examples.

In vielen Anwendungen können Datensätze, zum Beispiel die Formen von dreidimensiona-
len Körpern, als ein Vektorraum repräsentiert werden, der von einer Menge von Trainings-
beispielen aufgespannt wird. Wir stellen ein allgemeines Verfahren vor, das auf dieser
Grundlage fehlende Vektorkomponenten schätzt, wenn nur wenige der Komponenten gege-
ben sind.
Das Verfahren wird angewendet, um die dreidimensionale Form von Gesichtern aus den
2D Bildpositionen von wenigen Merkmalspunkten zu bestimmen. Dies beinhaltet in zwei-
erlei Hinsicht die Ergänzung unbekannter Vektorkomponenten: (1) es wird aus 2D Positio-
nen auf 3D Koordinaten geschlossen, (2) aus einer geringen Zahl von Punkten wird ein
hochauflösendes Polygonnetz geschätzt.
Die Auswertung des Verfahrens erfolgt auf einer Datenbasis von Laserscans, und wir zei-
gen das Ergebnis der Rekonstruktion eines Gesichts aus einer einzelnen Fotografie. Der
Algorithmus beruht auf einem Kompromiss zwischen der Rekonstruktion der vorgegebenen
Werte und der Plausibilität des Resultats. Er verwendet einen Bayes’schen Ansatz und eine
statistische Analyse der Beispieldaten.

1 Introduction

Arguments by analogy are a useful mode of reason-
ing if we lack sufficient information about a problem
for a rigirous conclusion, but are provided with many
instances of solutions for similar settings. In this pa-
per, we address the problem of estimating the com-
ponents of a vector, given only some of the compo-
nents’ values. More generally, the input may be the
result of any linear mapping to a lower dimensional
space. The prior knowledge that helps to solve this

ill-posed problem is represented by a set of examples
of vectors, and the assumption that any novel solu-
tion is in the span of these examples. Moreover, we
exploit the statistical properties of the examples to
obtain an estimate of prior probability. The correla-
tion of vector components within the set of examples
is the core property that makes an estimate of un-
known vector components possible.

As an example of a vector space of objects, we apply
our method to the geometry of faces. The morphable
face model approach [1] provides a representation of
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facial shapes in terms of shape vectors, such that any
linear combination of vectors describes a realistic
face. Shape vectors are defined by concatenating the
x, y, and z coordinates of a large set of surface
points to a single, high-dimensional vector. The tech-
nique for selecting these surface points on individual
faces ensures that each component of the shape vec-
tor refers to corresponding points on all faces, such
as the tip of the nose.

In this paper, we estimate full 3D structure of a face
from 2D image positions of a subset of the morph-
able model’s vertices. Image positions are taken from
a front view of the face, and with orthographic pro-
jection. However, the system can also be applied to
any other viewing direction, or a combination of
views. Restricted to linear mappings of the original
data, the system cannot handle perspective projection
from close viewpoints. For larger distances, the differ-
ence between perspective and orthographic projec-
tion decreases, and our technique provides realistic
results.

The morphable face model has previously been used
to estimate 3D shape from a single image [1]. Com-
paring color values of the image with those obtained
from the model, this system iteratively matches the
morphable model to the image. Similar to the ap-
proach presented here, the system relies on the vec-
tor space structure of faces for estimating 3D struc-
ture. However, it also exploits shading information
from the image. Matching the entire facial surface to
the image, the result recovers many facial details. In
contrast, the method presented here relies only on a
relatively small set of feature points provided by the
user. However, the matching problem solved here is
computationally much simpler, and can be solved in
a single step in a robust way. Therefore, the algo-
rithm is considerably faster and may be applied in
interactive tools for face reconstruction.

We extend and generalize a method that has been
applied to estimate dense optic flow fields in image
data [4], using a data set of flow vectors obtained by
a 2D projection of a 3D morphable face model. The
modification presented in this paper makes the sys-
tem more robust, which proves to be crucial to
achieve high overall quality of the estimate.

The problem addressed in this study is related to
the statistical problem of regression. In regression, a
set of measurements ðxi; yiÞ of a random variable y
for different values of the known parameter x is
used to estimate the expectation value yðxÞ at any
x. Regression techniques select a function y from a
family of functions, which can be linear mappings,
polynomials, or any other function space. If the ca-
pacity of the function space is too large, some meth-
ods produce overfitting effects (see [2]): the func-
tion fits the measurements precisely, but varies
drastically in between, rather than being smooth.

The desired generalization of yðxÞ to novel values
of x tends to be poor.

As we demonstrate in Section 7, a similar effect may
occur here, if the low-dimensional input vector is sub-
ject to noise or other sources of error, or if the desired
solution cannot be entirely captured by the model.

To overcome the problem of overfitting, most regres-
sion techniques impose a smoothness constraint on
the solution, or restrict the family of functions [7; 2].
In our approach, we restrict solutions to the span of
a set of examples, and impose an additional penalty
on solutions far from the observed average. The re-
sult will be a tradeoff that is both plausible a priori,
and still fits the given measurements well.

In the following section, we give a definition of ob-
ject classes in terms of a probabilistic criterion for
class membership. Section 1.3 presents a direct ap-
proach to estimating vector components from sparse
data. Section 1.4 derives a framework to avoid over-
fitting and accomodate noisy measurements. Sec-
tion 1.5 discusses a special case that relates the theo-
ry to a straightforward projection into the span of
examples. In Section 1.7, we present results obtained
with 3D models of faces.

2 Representation
of Class-Specific Knowledge

We assume that the examples of class elements

vi 2 Rn; i ¼ 1; . . . ; m ð1Þ
are given in a vector space representation such that
linear combinations

v ¼
Pm
i¼1
aivi ð2Þ

describe new elements of the class. However, the
coefficients of the linear combinations must be re-
stricted by additional conditions to ensure realistic
results.1

An estimate of the prior probability of vectors within
the span of examples can be obtained by a Principal
Component Analysis (PCA, see [3]). The original
data are centered around the origin by subtracting
the arithmetic mean

xi ¼ vi � v ; v ¼ 1
m

Pm
i¼1

vi ; ð3Þ
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1 Coefficients might be constrained to the convex hull by

ai 2 ½0; 1� and
Pm
i¼1
ai ¼ 1. The first constraint is replaced here

by a probabilistic measure. The second is enforced implicitly
by forming linear combinations relative to v: Any linear

combination v ¼
Pm
i¼1
bixi þ v can be shown to satisfyPm

i¼1
ai ¼ 1 in terms of (2) and (3).



and concatenated to a data matrix

X ¼ ðx1; x2; . . . ; xmÞ 2 R
n	m: ð4Þ

The covariance matrix of the data set is given by

C ¼ 1
m
XXT ¼ 1

m

Pm
j¼1

xjxTj 2 R
n	n ; ð5Þ

PCA is based on a diagonalization of the covariance
matrix,

C ¼ S 
 diag ðs2
i Þ 
 ST : ð6Þ

Since C is symmetrical, the columns si of
S ¼ ðs1; s2; . . .Þ form an orthogonal set of eigenvec-
tors. s1 � s2 � . . . � sm are the standard deviations
within the data along each eigenvector si. The diago-
nalization of C can be calculated by a Singular Value
Decomposition (SVD, [5]) of X.

Having subtracted the arithmetic mean, the m vec-
tors xi are linearly dependent, so their span is at
most m0 ¼ ðm� 1Þ dimensional, and the rank of X
and C is at most m0. Therefore, sm ¼ 0, and sm is
irrelevant.

In the following, we use the eigenvectors as a basis,

x ¼
Pm0

i¼1
cisisi ¼ S 
 diag ðsiÞ c : ð7Þ

An important property of PCA is that variations
along the eigenvectors are uncorrelated within the
set of examples. Assuming a normal distribution in
each of the directions, the probability density at x is

pðxÞ¼
Qm
i¼1

1ffiffiffiffiffiffi
2p

p
si

e
� 1

2s2
i

hsi; xi2

¼
Qm
i¼1

1ffiffiffiffiffiffi
2p

p
si

e�
1
2 c

2
i ð8Þ

¼ 1

ð2pÞm0=2 Q
i

si
e� 1

2 kck2

: ð9Þ

The probability density for c can be rescaled to

pðcÞ ¼ nc 
 e�
1
2 kck2

; nc ¼ ð2pÞ�m=2 : ð10Þ
The exponent kck2 is often referred to as Mahalano-
bis Distance.

3 Incomplete Measurements

Given a measurement r 2 Rl, l < n, we would like to
find the full vector x 2 Rn such that

r ¼ Lx ð11Þ
with a mapping L : Rn 7!Rl. L can be any linear
transformation, and does not need to be a projection.

If L is not a one-to-one mapping, the solution (11) is
not uniquely defined. Therefore, we restrict the ad-
missible solutions to the span of xi. As we cannot
expect to find a linear combination of the examples
that solves (11) exactly, we compute a vector x that

minimizes

EðxÞ ¼ kLx� rk2 : ð12Þ
Let qi ¼ siLsi 2 Rl be the reduced versions of the
scaled eigenvectors, and

Q ¼ q1; q2; . . .ð Þ ¼ LS 
 diag ðsiÞ 2 R
l	m0

: ð13Þ

In terms of model parameters ci, Equation (12) is

EðcÞ ¼ L
P
i
cisisi � r

��� ���2¼
P
i
ciqi � r

��� ���2 ð14Þ

¼ kQc� rk2 : ð15Þ

The optimum can be found by a Singular Value De-
composition [5]

Q ¼ UWVT ð16Þ
with a diagonal matrix W ¼ diag ðwiÞ, and
VTV ¼ VVT ¼ idm0 .

The pseudoinverse (see [6]) of Q is

Qþ ¼ VWþUT ; Wþ ¼ diag w�1
i if wi 6¼ 0
0 otherwise

� �
:

ð17Þ
To avoid numerical problems, the condition wi ¼ 0
may be replaced by a threshold. The minimum of
(15) is

c ¼ Qþr ; ð18Þ
which is optimal in two respects [6]:
1. c minimizes E, so for all c0, Eðc0Þ � EðcÞ.
2. Among the set of solutions fc0 j Eðc0Þ ¼ EðcÞg, c

has minimum norm kck and thus maximum prior
probability (Equation 10).

By Equation (3) and (7), c is mapped to Rn:

v ¼ S 
 diag ðsiÞ cþ v : ð19Þ
For solving Equation (11), it might seem more
straightforward to compute the pseudoinverse of L
and set x ¼ Lþr. However, among vectors with equal
error kLx� rk, this method would return the solution
with minimum kxk rather than minimum kck. Vector
components xi that do not affect Lx would be zero,
and the result would not be in the span of the exam-
ples.

4 Prior Probability
versus Matching quality

The previous solution will always ensure that E is
minimized, and in particular that E ¼ 0 whenever
this is possible. Prior probability is only considered
within solutions of equal EðcÞ.
However, it may well be that the measurement r can-
not be fully accounted for by an element v of the
object class. First, r may be subject to noise or other
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sources of error, such as wrong assumptions on L.
Moreover, we cannot expect to cover the full range
of the object class with the set of examples.

Therefore, minimizing EðxÞ ¼ kLx� rk2 may lead to
model coefficients far from the average, and a heavily
distorted vector v. To avoid this overfitting, we propose
a tradeoff between matching quality and prior prob-
ability of the solution. This tradeoff will be derived
from a Bayesian approach in the following section.

4.1 Bayesian Approach to Reconstruction

For an element of the model that is defined by mod-
el parameters c, a noiseless measurement would be

rmodel ¼ L
P
i
cisisi ¼

P
i
ciqi ¼ Qc : ð20Þ

We assume that each dimension j of the measured
vector r is subject to uncorrelated Gaussian noise
with a variance s2

N. Then, the likelihood of measur-
ing r 2 Rl is given by

Pðr j rmodelÞ ¼
Ql
j¼1
Pðrj j rmodel; jÞ ð21Þ

¼
Ql
j¼1

nN 
 e
� 1

2s2
N

ðrmodel; j�rjÞ2

ð22Þ

¼ nlN 
 e
� 1

2s2
N

P
j
ðrmodel; j�rjÞ2

ð23Þ

¼ nlN 
 e
� 1

2s2
N

rmodel � rk k2

ð24Þ

with a normalization factor nN. In terms of the model
parameters c, the likelihood is

Pðr j cÞ ¼ nlN 
 e
� 1

2s2
N

Qc� rk k2

: ð25Þ

Given an observed vector r, we are looking for the
estimate c with maximum probability. According to
Bayes Rule [2], this posterior probability is given by

Pðc j rÞ ¼ n 
 Pðr j cÞ 
 pðcÞ : ð26Þ
with a constant factor n ¼ ð

Ð
Pðr j c0Þ 
 pðc0Þ dc0Þ�1:

Substituting (10) and (25) yields

Pðc j rÞ ¼ n 
 nlN 
 nc 
 e
� 1

2s2
N

Qc� rk k2


 e� 1
2 kck2

; ð27Þ

which is maximized if the cost function

E ¼ �2 
 logPðc j rÞ ¼ 1

s2
N

Qc� rk k2þkck2 þ const:

ð28Þ
is minimized.

4.2 Combined Cost Function

In this section, we show that the cost function (28)
can be minimized in a single step. To simplify the
calculation, we introduce a weight factor h ¼ s2

N � 0

and minimize

E ¼ kQc� rk2 þ h 
 kck2 : ð29Þ
This can be expanded to

E ¼ hQc; Qci � 2hQc; ri þ krk2 þ h 
 kck2 ; ð30Þ

E ¼ hc; QTQci � 2hc; QTri þ krk2 þ h 
 kck2 :

ð31Þ
In the optimum,

0 ¼ rE ¼ 2QTQc� 2QTrþ 2hc ; ð32Þ
so

QTQcþ hc ¼ QTr: ð33Þ
Singular Value Decomposition Q ¼ UWVT yields2

QTQ ¼ VWUTUWVT ¼ VW2VT : ð34Þ
From (33), we obtain

VW2VTcþ hc ¼ VWUTr: ð35Þ
Multiplying by VT, this can be solved for c:3

W2VTcþ hVTc ¼WUTr ; ð36Þ

diag ðw2
i þ hÞ 
VTc ¼WUTr ; ð37Þ

VTc ¼ diag
wi

w2
i þ h

� �
UTr ; ð38Þ

c ¼ V diag
wi

w2
i þ h

� �
UTr : ð39Þ

Note that in the special case h ¼ 0, this equivalent to
Equation (18).

The overall result is

x ¼
P
i
cisisi ¼ S diag ðsiÞ c ð40Þ

¼ S diag ðsiÞ V diag
wi

w2
i þ h

� �
UTr ð41Þ

and

v ¼ xþ v : ð42Þ

5 Special case L = idn

In some applications it may be desirable to find the
closest element of the span of examples from a vec-
tor x that is entirely known, or to approximate a giv-
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2 The matrix U 2 Rl	m0
computed by SVD has the following

property [5]: If m0 � l, UTU ¼ idm0 . If m0 > l, only the first
m0 columns of U are orthogonal, while the others are 0, so
UTU is not the full identity matrix. However, wi ¼ 0 for
i > m0, so WUTUW ¼W2 still holds.
3 If ðw2

i þ hÞ ¼ 0, which only occurs if wi ¼ h ¼ 0, we repla-

ce
wi

w2
i þ h

by 0, as we did for the pseudoinverse.



en element of the span by a more plausible solution.
Both cases are covered by the previous results if we
set L ¼ idn.

If L ¼ idn, the Singular Value Decomposition of Q is
trivial

Q ¼ S 
 diag ðsiÞ ¼ UWVT ð43Þ
with the orthogonal matrix U ¼ S, the diagonal ma-
trix W ¼ diag ðsiÞ, and V ¼ idm0 . Then, Equation (41)
reduces to

x ¼ S 
 diag ðsiÞ idm0 
 diag
si

s2
i þ h

� �
STr ð44Þ

¼ S 
 diag
1

1 þ h

s2
i

0
@

1
A STr ð45Þ

¼
P
i

1

1 þ h

s2
i

si; rh i si : ð46Þ

The most relevant dimensions si with large standard
deviation si are affected less by h than those with
small si. In the special case h ¼ 0, x is given by a
simple projection

x ¼
P
i
si; rh i si : ð47Þ

6 Application to Face Data

In the morphable face model [1], facial surface data
that were recorded with a laser scanner are repre-
sented in shape vectors that combine x, y, and z co-
ordinates of all vertices:

v ¼ ðx1; y1; z1; . . . xp; yp; zpÞT 2 R
n; n ¼ 3 
 p :

ð48Þ
Sampled at a spacing of less than 1 mm, surface is
represented by p ¼ 75972 vertices. Linear combina-
tions of shape vectors will only produce realistic nov-
el faces if corresponding points, such as the tip of the
nose, are represented by the same vector compo-
nents across all individual shape vectors. This is
achieved by establishing dense correspondence be-
tween different scans, and forming vectors vi in a
consistent way.

Along with shape, the morphable face model also re-
presents texture. In this study, texture is not consid-
ered, and all images are rendered with the average
texture. The method described in this paper could
also be applied to texture vectors, filling in occluded
regions of the face.

The database of 200 individual faces used in this
study has been randomly split into a training set and
a test set of m ¼ 100 faces each. The training set pro-
vides the examples vi that are available to the sys-
tem. From these, we computed m0 ¼ 99 principal
components which are used throughout the following
evaluation. The test set provides data for perform-
ance assessment on novel faces.

From the vertices of the full model, we selected sets
of f ¼ 17, 50, or 1000 vertices (Figure 2). The smaller
sets are formed by salient points such as the corners
of the mouth, that can be identified in an image. The
set of 1000 vertices was selected at random.

Computed by orthographic projection in a frontal
orientation, the image plane coordinates of these fea-
ture points form the vectors r 2 Rl , l ¼ 2 
 f , that are
used for evaluation.

Projection and orientation also define the mapping
L, which is assumed to be known. For real images, it
is important that the system can automatically adapt
at least to translation and scaling. This is achieved if
vectors

stx ¼ ð1; 0; 0; 1; 0; 0; . . .ÞT ; sty; stz; and ð49Þ
ss ¼ v ð50Þ

are added to the principal components in S.

The evaluation of the algorithm is based on the fol-
lowing quantities, which are averaged across all 100
training or test faces:
• Er ¼ kQc� rk, the image plane matching error for

all feature points, measured in units of pixels in a
300 	 300 image.

• kck, the Mahalanobis distance of the resulting face
from the average.

• The per-vertex average of distances in 3D space
between reconstruction and original, computed
over the entire set of vertices:

Efull ¼
1
p

xp; reconst:

yp; reconst:

zp; reconst:

0
@

1
A�

xp; orig:

yp; orig:

zp; orig:

0
@

1
A

������
������ : ð51Þ

The neck and the top of the forehead are ignored
in this measure, as shown in Figure 2.

For 99 principal components and 50 feature points,
the computation takes 1.6 seconds on an SGI O2 with
R12000 processor. This includes forming Q from the
much larger matrix S, SVD of Q, and computation of
the full face model with 75972 vertices. Computation
time depends mainly on the dimensions of S.
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Figure 1: From 26 feature coordinates manually defined on the ori-
ginal image (top left), the system recovered the overall shape of the
face (top right). With an additional texture extraction, color informa-
tion can be transferred to the 3D model (bottom line) to generate
new views. Vectors for translation and scaling (Equation 49 were
added to the 99 principal components.



6.1 Reconstruction of Novel Faces

In this Section, we examine how the technique per-
forms on the test faces that are not included in the
set of examples. The image coordinates of feature
points provided to the algorithm are computed from
the 3D vertex positions of the 3D faces. For f ¼ 50,
m0 ¼ 99, and different values of h, errors are plotted
in Figure 3, and results are shown in Figure 4. Since
the feature point coordinates of the novel faces may
be difficult to recover exactly by the model, low val-
ues of h lead to overfitting: For h ¼ 0 and
h ¼ 0:0001, the facial surface is heavily distorted, and
the overall error Efull is large. Still, the feature point

coordinates are precisely recovered, as indicated by
the low error Er.

As h increases, Er grows, while kck decreases, indi-
cating that the prior probability of the solution gains
more weight in the optimization. As the shape be-
comes more smooth and more plausible, the overall
reconstruction error Efull decreases, and reaches its
minimum at h ¼ 2.

If h is too large, the output is too close to the aver-
age to fit the data, so both Er and Efull are high. The
values on the right in Figure 3 are the baseline ob-
tained with the average head v.

Table 1 demonstrates how the number of feature
points and principal components affects matching
quality. The reduced set of 40 principal components
is formed by those dimensions si with maximum var-
iance. As expected, the error Efull is lowest with the
largest set of feature points and the full set of 99
principal components.

6.2 Correct Reconstruction of Training Faces

In this section, we verify that the faces of the train-
ing set are exactly recovered by the system, using all
m0 ¼ 99 principal components, if f is large enough,
and if the feature point coordinates are precise.

For f ¼ 50 and f ¼ 1000, the dimension of r is
l ¼ 2 
 f � m0, so the problem Qc ¼ r has a unique
solution. This solution is recovered by the system, as
indicated by the low values of Er and Efull in Table 2,
for h ¼ 0.

In contrast, the solution for f ¼ 17 is not unique.
Within the set of solutions, the method returns a vec-
tor that is closer to the average (smaller kck), yet
produces an error Efull > 0. Still, this is the best
guess, given the ambiguous information.
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Figure 2: The first three images show the sets of 17, 50, and 1000
feature points used for evaluation. The image on the right illustrates
where the error of 3D shape reconstruction was evaluated.
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Figure 3: The effect of h on average reconstruction results for 100
novel faces, given 50 feature points, and using 99 principal compo-
nents. As h increases, the feature points are matched less precisely,
so Er grows. In contrast, kck decreases, as the results become more
plausible. The overall 3D shape error Efull is lowest for a tradeoff
between both criteria.

Figure 4: Given the image coordinates of 50 feature points of a
novel face (top left), 3D shape was reconstructed with 99 principal
components. The result depends on a tradeoff between the precision
of feature point matching, and prior probability. This tradeoff is con-
trolled by the parameter h.

Table 1: The average 3D shape error Efull for reconstruction of 100
novel faces at optimal h depends on the number of principal compo-
nents, and the number of feature point positions available.

Efull f ¼ 17 f ¼ 50 f ¼ 1000

40 principal components 3.21 2.81 2.38

99 principal components 3.16 2.72 2.24

Table 2: Average reconstruction errors for all training faces, given
different numbers of feature points f. With all 99 principal compo-
nents and h = 0, the problem Qc = r is solved exactly, so Er is low.
However, for f = 17, the solution is not uniquely defined.

Training data f ¼ 17 f ¼ 50 f ¼ 1000

Er 8.9e-5 1.4e-4 3.7e-3

kck 5.8 9.9 9.9

Efull 2.1 0.0017 5.6 e-05



6.3 Noisy Feature Point Coordinates

As discussed in the previous section, the shape of
training faces can be recovered prefectly from 50 fea-
ture points if their coordinates are precise. In this
case, h > 0 would impair the quality of the result, as
shown by the solid line in Figure 5.

However, if Gaussian noise is added to the 2D point
coordinates, r becomes more and more difficult to re-
cover, and overfitting occurs. This is demonstrated by
the large errors Efull observed for small h if noise
with a standard deviation of sN ¼ 0:1 and sN ¼ 1
pixels is added to the horizontal and vertical image
coordinates of each feature point.

As we observed previously with novel faces, the va-
lues of Efull in Figure 5 have a clear minimum for
intermediate values of h. In fact, these minima occur
at h ¼ s2

N , so matching quality is best for the vectors
with maximum posterior probability (Section 4.1).

6.4 Robustness with respect to L

A similar effect to noise occurs if the matrix L used
for reconstruction is different from the mapping that
produced the feature coordinates in r. This mismatch
is relevant for real images, since the geometry of the
imaging setup will in general be unknown. In particu-
lar, perspective projection produces results that are
slightly different from what is simulated by the ortho-
graphic projection in L.

Figure 6 shows overall shape errors Efull obtained
with 50 feature coordinates that were computed for a
frontal view. The matrices L used for reconstruction
include rotations of f ¼ 0�, 1�, 2�, and 4� around the
vertical axis. While the training faces are perfectly
recovered with the correct mapping f ¼ 0� for h ¼ 0,
performance at angles f > 0� is improved signifi-
cantly with appropriate values of h.

6.5 Results on Real Images

Figure 1 shows an example of 3D shape reconstruc-
tion from a set of 26 feature points that were se-
lected by the user. With the limited information
about the face, the method cannot capture details of
face shape as precisely as an optimization based on
color values in the image [1]. However, the overall
shape is recovered well, and if texture is extracted
from the image [1], the technique provides realistic
3D head models.

7 Conclusion

We have presented a method that infers vector di-
mensions of data vectors from incomplete measure-
ments. The method is based on a vector space
spanned by a set of examples, and on statistical prop-
erties of the data. Derived from a Bayesian frame-
work, the technique finds the vector with maximum
posterior probability, given the measurement and the
examples.

With the vector space of faces provided by a morph-
able face model, we estimated 3D shape of a high
resolution face model from the positions of a small
set of feature points in an image. We evaluated re-
construction quality in terms of 3D displacements
from the veridical shape of faces, and investigated
sensitivity to noise and misalignments.

Clearly, a small set of feature positions is insufficient
to recover all details of a face, such as the shape of
the nose. However, the technique reliably estimates
the overall shape and aligns the 3D face with the im-
age, which can be useful for many application. Since
the reconstruction is calculated in a single step, the
computation is performed fast enough for interactive
tools.
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Figure 5: The average shape reconstruction errors for 100 training
faces depend on the level of noise sN added to each feature point
coordinate. While noise-free data are best analyzed with h = 0 (solid
line), reconstruction quality is best at h = sN

2 for noisy data.

1001010.10.010.0010.0001 avg.0
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η1000
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Figure 6: Reconstruction from 50 feature coordinates of the training
faces at frontal orientation with an incorrect mapping L that includes
rotations around the vertical axis. 3D shape error Efull is reduced by
choosing appropriate weights h.



In the future, we are planning to develop methods
for choosing the optimal weight factor h by techni-
ques such as cross validation within the training set.
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