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Abstract. The recovery of the threedimensional structure of faces with
conventional stereo methods still proves difficult. In this paper we in-
troduce a higher order constraint based on linear object classes, which
supplies a standard stereo algorithm with prior knowledge of the gen-
eral structure of faces. This constraint has been learned by exploiting
the similarities between 200 faces in a database and is represented in a
morphable face model.

This combined approach has been tested and compared against an al-
ready existing method for estimating depth information using only prior
knowledge and against the standard stereo algorithm.

1 Introduction

The reconstruction of a threedimensional model of a face from two (or more)
images has interesting applications in many areas such as face recognition, video
conferencing or even in the film industry. This threedimensional model can be
obtained with a stereo approach. Stereo is a vision problem that has recieved
much attention over the past few decades. Since the Marr and Poggio classic
paper [10] numerous other approaches for solving this difficult problem have
been proposed. To follow ([5,12], see also [3] for a good overview) one can divide
these into two broad main categories: intensity-based and feature-based methods.

Intensity-based methods measure pixel properties and correlate these to find
corresponding points. There are approaches matching single pixels [2] and others
matching windows consisting of a small patch around the pixel [4,9]. Two pixels
are said to be matched when a maximum in correlation is found.

Feature-based methods first process the images to extract higher order fea-
tures such as lines, edges, or even surfaces which are then matched. This is done
in order to provide a very reliable and robust estimation of depth, which is less
sensitive to noise. Both types of approaches need to impose constraints to solve
this highly ambigous problem. Typical constraints are:

1. epipolar constraint: based on the projective geometry corresponding points
must lie on epipolar lines
2. uniqueness constraint: every point has at most one corresponding match



3. ordering constraint: the order of the matches is the same in both images
4. smoothness constraint: the change in disparity® is limited

The last three constraints are lower order constraints which are valid for a wide
range of objects (opaque and ’smooth’ objects). One of the situations which
proves difficult for stereo is - as mentioned - the reconstruction of faces. First,
these differ widely between individuals in properties such as texture and shape
and second, for a given face, properties such as the reflective behaviour of the
skin change over the whole face. ’Classic’ features as lines are only present in
very prominent facial areas such as the mouth, the eyes and wrinkles or resulting
from illumination at the edges of shadows. But of course this information can
only be used for very sparse depth reconstruction. Due to the lack of texture on
the other hand, intensity-based algorithms which are capable of producing dense
disparity data usually fail in areas such as the cheeks or the forehead. In addition,
scenes with a large range of disparity make the search for correspondence more
difficult as more ’similar’ points can be found within the search range.

In order to overcome these difficulties it seems natural to impose higher order
constraints to facilitate the search. This can for example be prior knowledge
about the specific shape of the objects which are to be reconstructed. To go
one step further one can base the search for corresponding points on a generic
model of the objects. In recent years a method was developed which is purely
based on prior knowledge and is able to estimate the 3D-structure of a face
given only a single image [1,13]. This method uses a morphable face model
which was learned from a database of 200 faces. This morphable model is first
fitted to the two stereo images and then serves as a guideline for the search for
correspondences in a conventional stereo algorithm. There are similar approaches
with a face model (most notably [7] and [8]); however, these models are restricted
to points on a wire-mesh, whereas our model is capable of producing very dense
and flexible shape and texture data.

For the rest of the paper we will proceed as follows: First, we present the
outline of the algorithm we use. The two main parts of the algorithm - the fitting
of the model to a stereo image pair and the stereo algorithm running on this
data - are described. We will touch briefly on the problems encountered when
putting the result of the stereo algorithm back into the model. In the third part
the results we obtained with this approach are presented, and the final part
summarizes these and gives an outlook on future work.

2 Stereo with Prior Knowledge

First an overview of the algorithm we use (see Fig.1):

We first fit the linear face model to the two stereo images. Then a standard
stereo algorithm takes the resulting disparity map as input and corrects it. The
output disparity map is then triangulated to obtain the 3D-data of the face.

! In the simplest case disparity is just the x-coordinate difference for corresponding
points in the two images.
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Fig. 1. Overview of the Algorithm. The left part shows the combination of a standard
stereo algorithm with our morphable face model. The right part shows the fitting of
the reconstruction back into the model.

In addition it is possible to fit the morphable model to this threedimensional
reconstruction to obtain a model-based representation of the face (Fig.1, right).
The test-data consisted of pictures of 14 persons (8 men and 6 women) which
we took with two off-the-shelf high resolution digital cameras. The resulting
images are of size 1024x1024 pixel (due to the camera architecture this is an
interpolated resolution) and thus able to show very fine details all over the face.
To test our approach, the persons were scanned immediately after taking the
two stereo pictures by a Laser - Scanner (CYBERWARE”M), which provides a
very accurate threedimensional model of the face. This scanner was also used to
generate the face database from which the linear model was learned [1,13].

2.1 Fitting a Linear Face Model to a Pair of 2D Images

The morphable face model exploits prior knowledge from a database of 200
laser scans of human faces (not containing the 14 test faces), and explicitly
captures the range of variations that occurs within this class of objects [13].
Each face is represented by a shape vector S = (X,Y1,71,...,7Z,) € R¥",
that contains the XY, Z-coordinates of its n vertices, and a texture vector
T = (R1,G1, By, ..., B,) € R®", that contains the R,G, B color values of the
same vertices. The morphable model is defined as the shape space spanned by
E;’Tiol a;S;, and the texture space spanned by E;’Tiol b;T; of all face prototypes
j. Linear combinations within shape and texture space will describe new pos-
sible faces only if correspondence between all prototypes has been established.
Corresponding points on each of the prototype faces, such as the tip of the nose,
have to be described by the same vector component ¢ in all vectors S; and T},
which is achieved by a gradient-based optic flow algorithm [13].



For any set of model parameters a; and b;, and head orientation, position
and illumination parameters, we can compute a 2D image I,,4¢- In a gradient
descent algorithm, these parameters can be optimized such that the difference
between Ip,o4e; and a given input image i pye is minimal [1]. In a similar way,
the model can be matched to several images I} inpy: simultaneously by using
independent variables for position and orientation in each view k, and minimizing
the sum of image differences || I moder — Ik, input||-

2.2 The Stereo Algorithm

A simple intensity-based stereo algorithm is used. To find corresponding points

in the left and right image a window is placed at a position = and an according

window is then slid along the epipolar line in the right image. For each disparity

value d the normalized cross-correlation between these two windows is evaluated:
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where 2(w + 1) is the width and height of the window, 7(1,2) and o(y,9) are
the mean and the variance of the intensity data in the left and right window,
respectively. The use of the normalized cross-correlation has the advantage that
intensity differences in the pictures due to different illumination can be accounted
for. A second advantage is that the calculation of the variance for the window
provides an estimate of how much change in the intensity values there is, which
relates to the amount of ’texture’ in the window.

For a robust estimation of disparity the window size has to be large enough
in order not to be disturbed by the image noise. On the other hand, it has to be
small enough to accurately capture the finer details in the images and to take
into account the assumption of a frontoparallel surface with constant disparity
in this window. The second point stems from the fact that for simplification
purposes the search windows are assumed to be rectangles, whereas the correct
form of the window in the right image is an affine transformation of a rectangle
depending on the surface normal at the given point (e.g. [6]).

To increase robustness and reduce calculation time a hierarchical matching
strategy is employed. Since the disparity range we are working with is rather
large (well over 130), some outliers still exist. To reduce these a second run
of the stereo algorithm is made, but this time with the left and right image
swapped. Since the cross-correlation formula (1) is asymmetric with respect to
the intensity values I; and I only disparity values which are the same in both
directions are taken to be correct (this can be seen as an explicit implementation
of the uniqueness constraint). This stereo algorithm also needs initialization of
the search range (which is available via the camera geometry) to avoid massive
outliers and to further reduce calculation time.

2.3 Combining Stereo with the morphable Face Model

In the first stage, the stereo algorithm uses the predicted disparity map of the
model to reduce its search range. The advantages are that:



the calculation time decreases

no prior initialization is needed since this is supplied by the model

a disparity value can be assigned to a higher number of points

the number of outliers is reduced, thus increasing accuracy

a dense disparity map is obtained, since in regions where stereo fails the
model estimates can be used

CUk

The resulting disparity map is then triangulated to obtain the 3D-reconstruction.

Since in some cases the changes made by the stereo algorithm are quite drastic
with respect to the first model estimate, the resulting 3D-reconstruction has
bumps and peaks in it. To obtain a smooth face which again is part of the span
of the model, the correspondence between the 3D-data and the morphable model
has to be computed. For this we tested a similar strategy as outlined in section
2.1, whereas this time the matching process is calculated on a parametrized
surface [1]. Currently, this algorithm matching the morphable 3D-model to the
3D-data smoothes the data too much, but we hope to improve on that in the
future. Some of these additional improvements will be outlined in the last section.

3 Results

The ground truth for the images is only approximately available (the Laser-
scans were taken right after the two stereo images) due to slight changes in
expression and pose of our subjects. For this 'ground truth’ we took the disparity
image resulting from a model matching process of the original Laser-scan to the
corresponding stereo images. We then calculated the mean disparity error per
pixel from the difference of this disparity map and the disparity maps obtained

1. using only prior knowledge, i.e. the morphable model
2. using only the stereo method
3. after running the stereo algorithm on the model data

where only points with disparity values in all three disparity maps were taken
into consideration. It has to be said that this error measure should not be taken
as the ’absolute’ truth, since the matching of the scan to the two images itself is
prone to errors. Furthermore, slight rotations of the face result in drastic changes
in disparity in regions with high disparity gradient (such as the chin or the jaw
line), so that the errors tend to be biased by this effect. Rather, these values
should give a general idea of the performance of the three algorithms. We are
using the disparity error measure because an error estimate in 3D-space would
- again - require the calculation of the full correspondence between the ground
truth model and the stereo data.

The table below lists the mean disparity error per pixel for all subjects show-
ing that stereo alone improves on the model prediction while the combined ap-
proach yields the best overall performance. These results are discussed in the
next three sections.

‘ Model‘ Stereo‘ Stereo+Model

disparity error per pixel ‘ 7.72 ‘ 6.06 ‘ 5.35




3.1 Only Prior Knowledge

The disparity map as predicted by fitting the linear face model to the two stereo
images (independently) is shown in Fig.2a. This is of course very smooth and
provides a disparity value at each point in the face. All model predictions have in
common that - due to a lack of a suitable constraint when fitting to two images
- the resulting profile of the 3D-Model is only an estimate (see also Fig.3a), so
that this method yields the highest error.

3.2 Only Stereo

As expected the algorithm performs better on the relatively well textured faces
of the male subjects (mean of accepted points for male subjects: 35.6 percent,
for female subjects: 32.5 percent). In Fig.2b? the reconstruction of the stereo

a) model prediction b) without check c) with check d) smoothed disparity

Fig. 2. The model provides a dense estimate. Without the consistency check stereo
produces many outliers and false matches; the check mostly eliminates these. The
smoothed disparity map supplies disparity only in some areas.

pair of Fig.1 with the stereo algorithm without consistency check is shown. The
reconstruction suffers -as expected- from the typical artifacts. First, the corona
effect occurs at depth boundaries. This is an effect due to the window-matching
method, where the position of the disparity maximum at object boundaries in
the worst case is moved half the window size [4]. The multi-resolution approach
causes a further smearing of the boundary from one level to the next (see region
around the chin in Fig.2b). Second, if the search range for the coarse-fine algo-
rithm is too large, it tends to run into other local minima leading to outliers, as
similar points exist in many regions of the face. Third, points in the left image
which are hidden in the right image are of course assigned arbitrary disparity
values (see for example black patch at the left ear in Fig.2b). The consistency
check removes most -but not all- of these errors (Fig.2c). To obtain dense data for
reconstruction this disparity map has to be smoothed and interpolated. This was
done by putting the estimated points into a physical spring- or membrane-model
(corresponding to a quadratic potential function), where a global minimum in

2 to facilitate comparison the stereo data is clipped by the model data from Fig.2a;
the disparity maps encode depth with intensity - the lighter the farther away



the potential energy of the model is sought. The result is shown in Fig.2d. It
is obvious that in regions with high change in disparity (ears) or regions with
insufficient texture (neck, nose) no reliable estimation can be obtained so that
these remain undetermined. The error of this method is lower than with the
model-only approach, but due to still existent outliers not optimal.

3.3 Combined Approach

a) Only Model b) Model + Stereo  ¢) matching 3D-Model  d) 'Ground Truth’
to 3D-Data

Fig. 3. Comparison of the model prediction, the combined approach and the algorithm
matching the model to the 3D-data with the original scan.

Again the algorithm performs better on the male subjects (mean of accepted
points for male subjects: 38.3 percent, for female subjects: 36.0 percent, which
is &3 percent more than with stereo alone). In Fig.3a we show the reconstructed
face as predicted by the model approach, Fig.3b is the reconstruction after per-
forming stereo on this data. There is considerable improvement - especially in
the profile - if you compare both faces to the ’ground truth’ data (Fig.3d). This
method improved all of the model predictions considerably, which we checked
visually by comparison with the 14 original scans (such as in Fig.3d) and which
is reflected in the lowest error of all three approaches.

Fig.3c shows the face after the matching algorithm fitting the 3D-model to
the 3D-data at a higher resolution. Notice that in this image the full shape was
predicted by the model. Here you can see that again a smooth face with less
peaks is obtained, but at the price of countermanding some of the changes made
by the stereo algorithm (e.g. the mouth region and the nose).

4 Summary and Outlook

We presented a novel stereo algorithm for the reconstruction of faces that in-
corporates a higher order constraint based on a linear object class model. By
combining stereo with the model prior knowledge about the face is used, which



makes the search for corresponding points in the two stereo images more ro-
bust and results in a dense estimation of disparity. By comparing the results
obtained with this new approach with the stereo-only or model-only approach
we could show significant improvements. The comparison with stereo shows that
the accuracy of the disparity estimation is improved by reducing the numbers of
outliers and that a higher number of points can be put into correspondence. The
comparison with the model-only approach shows that the combined approach
successfully corrects the error in the threedimensional estimation of the face.

Since the combination of the resulting stereo data with the model proved dif-
ficult, we hope to improve on that in future work. To further improve the results
of the algorithm matching the 3D-model to the 3D-data an iterative technique
would be possible, where at each iteration step the stereo data is ’slowly in-
jected’ into the model and then the matching is done. Another possibility we
are pursueing is an approach following [11], where a dense reconstruction can be
achieved via a local interpolation of the sparse disparity data (such as in Fig.2b)
generated by the stereo algorithm.
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