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Abstract

We measured the three-dimensional shape and two-dimensional surface reflectance contributions to human recognition of faces
across viewpoint. We first divided laser scans of human heads into their two- and three-dimensional components. Next, we created
shape-normalized faces by morphing the two-dimensional surface reflectance maps of each face onto the average three-dimensional
head shape and reflectance-normalized faces by morphing the average two-dimensional surface reflectance map onto each
three-dimensional head shape. Observers learned frontal images of the original, shape-normalized. or reflectance-normalized faces,
and were asked to recognize the faces from viewpoint changes of 0, 30 and 60°. Both the three-dimensional shape and
two-dimensional surface reflectance information contributed substantially to human recognition performance, thus constraining
theories of face representation to include both types of information. © 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

As a visual stimulus. the human face consists of a
three-dimensional surface with an overlying reflectance
function at each point on the surface. The three-dimen-
sional information is determined by the structure of the
human skull and by the shape and texture of the
overlying skin and tissue. The reflectance function at
any given point on the surface is simply a measure of
how efficiently the skin at that point reflects light of
various wavelengths1. The information that reaches

one’s eye from this stimulus is, therefore, a complicated
function of the three-dimensional structure of the facial
surface, the reflectance function of the face at each
point, and the illumination and viewpoint conditions.

Despite the complicated nature of the information in
faces and the complexity of the tasks required to
achieve some constancy in representing this informa-
tion, human observers are remarkably good at recog-
nizing and categorizing faces. A primary question of
interest for psychologists is to understand the nature of
the information humans use in accomplishing these
tasks. In recent years, both in the object and face
recognition literatures, much attention has been paid to
the issue of whether the human representation of faces
and objects is based more predominantly on the two- or
three-dimensional features of the stimulus (e.g. Bieder-
man, 1987; Bülthoff & Edelman, 1992). Although there
is reasonably good evidence that many aspects of the
two-dimensional image-based structure of faces relate
to human performance recognizing (O’Toole, Deffen-
bacher, Valentin & Abdi, 1994; Hancock, Burton &
Bruce, 1996) and categorizing faces (O’Toole, Deffen-

* Corresponding author. Fax: +1-972-8832491.
E-mail address: otoole@utdallas.edu (A.J. O’Toole)
1 The term reflectance is not always used in precisely the same way.

Horn (1986) in his book on robot vision states, ‘Often reflectance
properties can be described in terms of the product of two factors: a
geometric term expressing the dependence on the angles of light
reflection, and another term that is the fraction of light reemitted by
the surface. This latter is called the albedo (pp 224).’ In fact. it is the
albedo that we are interested in here. though we have not used this
term because it may be unfamiliar to may readers and is not used
more consistently than reflectance across different literatures.
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bacher, Valentin, McKee, Huff & Abdi, 1998) from
within a single viewpoint, the problem of generalizing
recognition across viewpoint shifts seems to require
better information about the three-dimensional shape
of the face (though cf. O’Toole & Edelman, 1996;
Valentin & Abdi, 1996, for a discussion of the issues).

In previous work, experiments aimed at understand-
ing the nature of representations, used by human ob-
servers for objects and faces, have often measured the
extent to which recognition and perceptual matching
tasks generalize over viewpoint. Although good view-
point generalization (view invariance) is considered sup-
port for a three-dimensionally-based representation,
and poor viewpoint generalization (view dependence) is
considered support for a two-dimensionally-based rep-
resentation, some ambiguity still remains. For example,
view dependence can be consistent with a three-dimen-
sional representation if we make the assumption that
the creation of an accurate three-dimensional represen-
tation of a face requires a great deal of experience with
the face. Likewise, view invariance can be consistent
with a two-dimensional representation if we make the
assumption that familiarity with a face comes after we
have experienced it from many viewpoints.

In the present study we have taken a more direct
approach to the representation issue by varying the
information in the stimulus and by measuring its effects
on human performance in a face recognition task. In
fact, the major problem encountered in studying the
extent to which human observers encode faces in terms
of their two- or three-dimensional features is that it is
difficult to isolate the three-dimensional shape informa-
tion in faces from the two-dimensional images com-
monly available2. It is equally difficult to get a pure
measure of the reflectance information in a face from
an image of the face3. Further, to investigate the psy-
chological validity of a posited representation of faces,
one must be able, not only to isolate this information,
but also to selectively manipulate it in ways that enable
an estimate of the extent to which human observers rely
on two- versus three-dimensional information for suc-
cessfully completing different face processing tasks.
Thus, we have a two-part problem that consists of
separating the three-dimensional shape and two-dimen-
sional surface reflectance components of faces and se-

lectively manipulating these components for use in an
experiment.

1.1. Separating the surface and reflectance components
of faces

The recently available technology of laser scanning
enables a solution to the problem of separating the two-
and three-dimensional information in faces, but does
not solve the problem of the selective manipulation of
these two kinds of information in faces. More precisely,
commercially available laser scanners operate by simul-
taneously sampling the three-dimensional surface of the
face and the pixel-based reflectance values (i.e. usually
rgb) at these same points. The scanner we used rotates
horizontally around the head, sampling the surface at
each of 512 equidistant steps. Each such sample is made
along a vertical line projected onto the head. The
three-dimensional surface structure and reflected light
along these vertical line samples are also measured in
512 equidistant steps. Thus, for both the surface and
the reflectance data we have a 512×512 map of mea-
surements. More formally, this sampling process trans-
forms shape and reflected light into a cylindrical
coordinate system with an imaginary vertical axis at the
center of the head. The three dimensional surface code,
then, consists of the lengths of radii from the central
vertical axis of the cylinder to the surface points on the
face. We will refer to this three-dimensional geometrical
representation as the surface map. The reflectance code
consists of the rgb values at these same surface sample
points. We will refer to this representation as the reflec-
tance map.

It is worth noting that the laser scan measuring
process leads to some limitations because the sampling
is performed only perpendicular to the surface of a
cylinder. Consequently, the geometrical structure of
occluded areas behind the ears and sometimes beneath
the chin cannot be resolved. Rarely, however, are the
internal facial features such as the nose adversely af-
fected by this sampling. The reason for this is that
variations of the reflected light at steps of the structure
perpendicular to the surface of the cylinder are aver-
aged and so, the tiny internal regions of the faces that
might be susceptible to this kind of sampling artifact,
are generally not problematic.

An example of the surface and reflectance data from
a laser scan, separately and in rendered combination,
appear in Fig. 1.

Before proceeding, we must digress briefly to note
some difficulties in our choice of terminology for this
paper. As noted, the intensity and spectral composition
of the light that reaches the eye from a face is deter-
mined by the three-dimensional structure of the head,
the spectral reflectance function of the skin, hair,
cornea, etc., and the relative positions of the light

2 Directly recovering the three-dimensional surface information
from an image is a notoriously difficult problem in computer vision.
The problem is classically ill-posed and has never been solved in a
completely general way. However, when prior knowledge can be
used, e.g. as for faces, more specific but satisfactory solutions can be
found (Vetter & Blanz, 1998).

3 This latter problem is due to the fact that photographs of faces
confound two-dimensional reflectance information with information
about the three-dimensional surface in the form of shape-from-shad-
ing cues, which depend on viewpoint and illumination conditions.
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Fig. 1. Output of the laser scan consists of a three-dimensional shape combined with its reflectance map, which is rendered from three viewpoints
(row 1), a reflectance map, unrolled here so that all sides of the face are seen (row 2), and the pure three-dimensional shape rendered from three
viewpoints (row 3).

source and the viewer. In short, what reaches the eye
from a face at any given point in time is a view or
two-dimensional image of the face that confounds all
three kinds of information. The three-dimensional sur-
face map from the laser scanner is a relatively pure
measure of the three-dimensional structure of the entire
object (i.e. more than one can see with a single view).
Likewise, the two-dimensional surface reflectance map

from the laser scanner is a relatively pure measure of
the spectral reflectance function of the entire face4.
These representations exist, therefore, independent of
particular viewpoints. Indeed, software that wraps the
reflectance map over the surface map of the face and
rotates the face model to a particular viewpoint is
needed to render a standard image of the face, based on
the combined surface and reflectance data that would
be visible from that viewpoint. Illumination conditions
would, of course, need to be specified in the rendering
software (see again Fig. 1 for a face rendered with and
without its reflectance map).

4 It should be noted that in computer science applications this
reflectance component of the laser scan data is sometimes referred to
as a texture map. The computer science use of the term texture is
totally unrelated to the use of the term by vision scientists.
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A final note on terminology concerns the role of the
shape information that is normally confounded with
the surface reflectance information in an image of a
face. First, because the laser scanner’s reflectance com-
ponent comes from a set of localized images, one might
expect that information about the surface orientation
(shape) would be confounded in the reflectance map.
The use of ambient illumination by the laser scanner
eliminates (or at least strongly limits) the contribution
of surface orientation to the reflectance component of
the laser scan data. Thus, the reflectance map we refer
to here contains relatively pure information about the
two-dimensional reflectance properties of the facial sur-
face. Although the term reflectance map is still not a
perfect description of the information we are referring
to, we have tried to define it here as precisely as we can.

The ability of laser scanner technology to solve the
problem of separating the surface and reflectance infor-
mation in a face has been put to good use in a recent
experiment by Hill, Bruce and Akamatsu (1995) who
assessed observers’ ability to make sex and race judg-
ments about faces using different components of the
laser scan stimuli. They found that both kinds of
information contributed to these categorizations. They
used pure 3D surface information and unrolled color
reflectance maps5 from laser scans and found that the
surface information dominated for the race decisions
and that the color reflectance information dominated
for the sex decisions. Combined, the relative advantages
of shape and color varied with viewpoint. The color
information was more important for the frontal images
and the shape information was more important for the
angled views.

1.2. Selecti6ely manipulating the surface and reflectance
components of faces

The problem of selectively manipulating the surface
and reflectance information can be solved, in theory, by
simply exchanging the surface and reflectance maps
among arbitrary pairs of faces, or in the present case,
between individual faces and the average face. How-
ever, this presents a technical problem because the
reflectance map of one face may not fit properly onto
the shape of another face6. Thus, for example, it may be
that the pupils of the eyes are captured at different
sample points for two faces. This would yield a com-

posite face in which the reflectance values of the pupils
get mapped onto incorrect parts of the face surface, for
example, onto the eyelid region. In short, before one
can selectively manipulate the surface and reflectance
information from the laser scan data, one must put
both the surface and reflectance data into a comparable
coordinate system.

The same kind of problem must be solved, also,
before applying a morphing algorithm to two images.
Because morphing is currently a very popular technique
for blending images of objects, we use it as an analogy
for understanding the approach we have taken with the
laser scans. In order to morph images of two faces
together, one must first locate a set of corresponding
points on the faces. These points include the fiducial
points but are often supplemented with additional com-
parable points to obtain a high quality morph. In
standard two-dimensional morphing software these
points are located and marked on each face image by a
human operator, prior to applying the morphing
procedure.

In the present work, we have taken a somewhat
different approach. We have made use of an automated
correspondence algorithm for solving the problem of
putting the surface and reflectance information from
laser scan data on faces into a comparable coordinate
system for all of the faces (Vetter & Blanz, 1998). In
this algorithm, the problem of matching is cast into the
more general computer vision form in which one at-
tempts to match all of the data points in two images/
surfaces, rather than just a subset of the facial
landmark points7. This is the approach taken most
commonly in solving the classical correspondence prob-
lems in stereopsis and motion analyses. Although this
problem is far from solved in a perfectly general form,
a great deal of progress has been made recently on the
problem with faces. Specifically, several methods have
been applied successfully to the task of automating a
correspondence finding procedure for images of human
faces (Beymer, Shashua & Poggio, 1993; Beymer &
Poggio, 1996; Lanitis, Taylor & Cootes, 1997; Vetter &
Poggio, 1997). These approaches have been extended
successfully to the laser scan data by Vetter and Blanz
(1998), (cf. also O’Toole, Vetter, Volz & Salter, 1997
for an application). Full details of how the correspon-
dence algorithm works can be found in Vetter and
Blanz (1998). We also include the implementation de-
tails of this algorithm as they apply to the present study
in Appendix A.

5 Hill et al. (1995) refer to these as colour data and the process of
adhering these to the facial surface as texture mapping.

6 The data formats of laser scans are obviously pre-determined to
take the same number of surface and reflectance samples from faces,
and so by fit we do not mean sample points per se but rather mean
the (non)correspondence between the features captured at spatially
identical places in the surface code for one face and the reflectance
code for another face.

7 This complete correspondence approach is a difference of degree
rather than of kind to the hand-placing of points on the faces.
Software to do three-dimensional morphing on laser scans using
hand-placed corresponding points is not, to our knowledge, commer-
cially available. The morphs we have made are of a higher resolution
and quality than those that would result from hand-placing a subset
of points on three-dimensional surface, but would not be qualitatively
different in any way.
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Fig. 2. Column 1 contains four normal faces. Column 2 contains the shape-normalized versions of the faces, and column 3 contains the
reflectance-normalized versions of the faces.

For present purposes, once a comparable coordinate
system is established for the surface and the reflectance
data for the laser scans, it is then easy to exchange the
surface and reflectance data for arbitrary pairs of faces.
Thus, we are now able both to separate the surface and
reflectance information in faces and to selectively ma-
nipulate these two components in real faces.

The purpose of the present study was very straight-
forward. We wished to measure the relative contribu-
tions of three-dimensional shape versus two-dimens-
ional surface reflectance information in a task of face
recognition across viewpoint change. We did this by
creating stimuli that varied exclusively in either three-
dimensional shape or in two-dimensional surface reflec-

tance information. The simplest approach was to make
two sets of stimuli from the original face scans by: (a)
Mapping each face’s reflectance map onto the average
shape; and by (b) mapping the average reflectance map
onto the shapes of each of the available faces. Samples
of these stimuli appear in Fig. 2. The left column
contains four normal faces, the middle column contains
the shape-normalized versions of the faces and the right
column shows the reflectance normalized versions of
the faces. As can be seen, the head shapes of the faces
in column 2 are identical and the reflectance infor-
mation varies. In column 3, the head shapes vary,
but the reflectance information remains the same.
Readers may notice that the shape information, e.g.
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thick lips etc., are still visible here. The morphing
algorithm fits the average reflectance map to the shapes
of the original faces, by warping where necessary to
adhere properly to the correct parts of the face (e.g.
being certain not to map eye reflectance information
onto the forehead or cheek).

Finally, although not part of our original purpose,
interesting differences between male and female faces
were evident in the data, and so we have included this
as a factor.

We first report a control experiment using the origi-
nal faces to set a baseline for recognition performance
across viewpoint with these faces. Next, we measured
recognition performance as a function of the stimulus
type (reflectance-normalized versus shape-normalized
faces), viewpoint generalization conditions (0, 30, and
60° viewpoint change), and sex of the face. From the
observer data we address the following questions: (1)
Do observers rely more on shape or reflectance varia-
tions in recognizing faces?; and (2) does the relative
reliance on shape versus reflectance information change
as a function of the added complexity of the viewpoint
generalization requirements? For example, it may be
the case that one kind of information proves more
reliable when no viewpoint change is involved, and the
other when viewpoint changes of varying degrees occur
between learning and test.

2. General methods for stimulus creation

We present first a brief description of the stimulus
creation methods that are common to both
experiments.

2.1. Description of laser scan head stimuli

Laser scans (Cyberware™) of 100 heads of young
adults (50 male and 50 female) were used as stimuli.
The mean age of faces in the data base was 26.9 years
(standard deviation=4.7 years). The subjects were
scanned wearing bathing caps, which were removed
digitally. The laser scans provided surface map data
consisting of the lengths of 512×512 radii from a
vertical axis centered in the middle of the subject’s head
to sample points on the surface of the head. This is a
cylindrical representation of the head surface, with
surface points sampled at 512 equally-spaced angles
around the circular slices of the cylinder, and at 512
equally spaced vertical distances along the long axis of
the cylinder. Additionally, further pre-processing of the
heads was done by making a vertical cut behind the
ears, and a horizontal cut to remove the shoulders. A
subset of 48 (24 male and 24 female) faces was selected
randomly from this data base to serve as stimuli in the
experiment.

2.2. The correspondence problem

The procedures applied to solving the correspon-
dence problem for this particular set of laser scan
stimuli are complex but the basic principles are de-
scribed in detail in Vetter and Blanz (1998). Addition-
ally, as noted previously, to make this manuscript
self-contained, we describe the implementation details
of the algorithm in Appendix A. For present
purposes, we give only a basic overview of the
procedure and representation achieved here and refer
interested readers both to the Appendix A and to the
sources cited.

The basic idea behind the procedure used here is to
match the data points in each individual face with the
corresponding feature points in the average face and
hence to represent each face as a deformation field
from the average. Thus each data point in the face
representation would contain a pointer to the
analogous data point in the average. This was done
by applying optic flow algorithms optimized in this
case to deal with the continuous surface and
reflectance data found in faces.

2.3. Stimuli

Two sets of stimuli were made from the original
surface and reflectance maps of 48 faces. Reflectance
normalized faces were created by wrapping the
average reflectance map onto the surface map of each
individual face. Shape normalized faces were made by
mapping the reflectance maps of each individual face
onto the average shape. Thus, all faces existed in
three versions: (1) Normal with the original shape and
reflectance information intact; (2) shape normalized
faces with the three-dimensional shape set to the
average shape and the original reflectance information
intact; and (3) reflectance normalized faces with the
two dimensional reflectance information set to the
average reflectance and the original three-dimensional
shape information intact. From these versions of the
face models, we created stimuli for our experiment by
using computer graphic software to render each face
in each of its three versions (normal, shape
normalized, and reflectance normalized) from three
viewpoints (0, 30, and 60°). An example stimulus
appears in Fig. 3.

3. Experiment 1: baseline recognition for normal faces

This first experiment was carried out to provide
baseline data on the normal faces and to be sure that
we could replicate the common finding of viewpoint
dependency found for face recognition with these
stimuli.
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Fig. 3. A sample face in its normal (row 1), shape-normalized (row 2) and reflectance-normalized (row 3) versions rendered at 0, 30, and 60°.

3.1. Obser6ers

A total of 30 volunteers from the University of Texas
at Dallas community participated in the experiment.
Some of the participants were students who were com-
pensated with a research credit in a core course in the
psychology program.

3.2. Apparatus

All experimental events were controlled by a Macin-
tosh computer programmed with PsyScope (Cohen,
McWhinney, Flatt & Provost, 1993).

3.3. Procedure

Observers read standardized instructions that indi-
cated the purpose and course of the experiment. These
instructions indicated that the test faces might be seen
from a different viewpoint than the learned faces, and
that the observers were to respond old to any views of
the people pictured in the learning part of the experi-
ment. In the learning session. observers viewed 24
frontal faces (half male and half female) presented on a

computer screen for 5 s each. After a short break, they
viewed all 48 faces, as in a total of 16 from each of the
three view conditions, (0, 30, and 60°). Of the 16 faces
in each view, eight were old and eight were new. Each
face was presented on the computer screen until the
observer responded old or new by pressing the appro-
priately labeled key on the computer keyboard. Coun-
terbalancing was done so that across the complete set
of observers, all faces appeared equally often as old and
new, and all faces were tested equally often in each of
the view conditions. The order of presentation of the
learning and test faces was randomized individually for
each observer.

3.4. Results

For each observer in each condition, a d % for discrim-
inating learned from novel faces was computed. The
overall pattern of these data appears in Fig. 4. These
data were submitted to a two-factor analysis of vari-
ance with test orientation (0, 30, 60°) and the sex of the
faces as within subjects factors. We found a main effect
of face orientation, F(2, 29)=16.7; PB0.01. As ex-
pected, the effect indicated that the accuracy declined
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as a function of the orientation change from the learned
view replicating previous work (e.g. Krouse, 1981; Lo-
gie, Baddeley & Woodhead, 1987; Valentin & Abdi,
1996; O’Toole, Edelman & Bülthoff, 1998; see also
Troje & Bülthoff, 1996, who used three-dimensional
shape models of heads and the combined shape and
reflectance head models). The sex of the face was not
significant, F(1, 29)=2.63; P=0.11. There was no in-
teraction between sex of the face and its orientation at
test, F(2, 58)=1.82; P=0.17. However, as Fig. 4 sug-
gests, a simple main effect of the face sex variable at the
frontal face orientation was significant, F(1, 58)=5.49;
PB0.05, indicating that female faces were better recog-
nized than male faces in the frontal view condition.
This somewhat unexpected finding made us wonder if
the sex of the observer might also have had an effect.
We were not interested originally in this effect and so,
unfortunately, did not equate the number of male and
female observers. In fact, the proportion of male and
female observers in this study strongly favored female
observers, which makes a formal analysis difficult. We
did, however, look at the pattern of data divided by the
sex of the observer and saw only minor differences.

3.5. Discussion

These data replicate previous findings indicating
view-dependent performance in recognition.

4. Experiment 2: recognizing shape- versus
reflectance-normalized faces

In this experiment we tested the ability of observers
to recognize faces over changes in viewpoint when the

Fig. 5. Recognition scores for the shape- and reflectance-normalized
male and female faces.

shape- versus reflectance-information in the faces was
normalized.

4.1. Obser6ers

A total of 60 volunteers from the University of Texas
at Dallas community participated in the experiment.
Some of the participants were students who were com-
pensated with a research credit in a core course in the
psychology program.

4.2. Procedure

Observers were assigned randomly to the shape- ver-
sus reflectance-normalized face condition. The proce-
dure was identical to the procedure used in Experiment
1 with the exception that the observers learned and
were tested on either the shape- or reflectance-normal-
ized faces.

4.3. Results

For each observer in each condition, a d % was
computed8. These data were submitted to a three-factor
analysis of variance with face type (shape-normalized
versus reflectance-normalized) as a between subjects
factor, and test orientation (0, 30, 60°) and the sex of
the faces as within-subjects independent variables. We
found a main effect of face orientation, F(2, 114)=
18.21; PB0.001, indicating a decline in accuracy with
increasing viewpoint change from the learned view-

Fig. 4. Recognition scores for the normal male and female faces
across the three viewpoints.

8 We eliminated one observer. who scored d % of less than −3.0 in
one condition. The elimination of this observer changed none of the
ANOVA results.



A.J. O ’Toole et al. / Vision Research 39 (1999) 3145–3155 3153

point. Neither the sex of the face, F(1, 57)=1, nor the
face type, F(1, 57)=2.06; P\0.05, proved significant.
There was, however, a strong and significant interaction
between the sex of the face and the face type,
F(1, 114)=7.08; PB0.01. This can be seen in Fig. 5,
which indicates that shape information is more impor-
tant for recognizing male faces than for recognizing
female faces. For the female faces we see a reversed but
more balanced trend for the shape and reflectance
information. Some caution in interpreting the generality
of these results, however, can be seen in Fig. 6, which
displays the results across viewpoint. Although the
three-factor interaction among face type, face sex, and
view was not significant, F(2, 114)=1.34; P=0.33, it
can be seen qualitatively in this figure that the advan-
tage of the shape information for recognizing male
faces suggested by the two-factor interaction, is not
entirely consistent across viewpoint. Specifically, the
means for the shape- and reflectance-normalized male
faces for the 30° view are nearly identical. In other
words, it is likely that this two-factor interaction is
being carried by the frontal and 60° views.

5. Summary and discussion

To summarize the results of these experiments, sev-
eral points are worth noting. At the most general level,
these data indicate that the ability to recognize faces
relies both on information that uniquely specifies the
three-dimensional shape of the face and on information
that uniquely specifies the two-dimensional surface
reflectance properties of the face. Neither the two- nor
three-dimensional information alone can provide a
complete account of the performance levels we obtained

with the normal faces, which vary in both their two-
and three-dimensional structure. This finding is consis-
tent with Hill et al.’s (1995) finding that both shape and
color information are important for race and sex cate-
gorizations. The results also make an interesting con-
trast to recent work by Troje, Huber, Loidolt, Aust and
Fieder (1999). They used a two-dimensionally based
model for exchanging reflectance and shape informa-
tion in faces and showed that pigeons rely almost
exclusively on the reflectance information for classifying
faces by gender.

At a more specific level, the sex of the face was also
a mediating variable for understanding the importance
of three-dimensional shape- versus two-dimensional
surface-reflectance information for face recognition.
The pattern of data for female faces is very easy to
interpret. The shape and reflectance information are
roughly equally informative for recognition—an effect
that remains stable across the three viewpoint change
conditions.

For the male faces, a more complicated pattern is
seen. First, the significant interaction between the sex of
face and the face type is due the relatively poor perfor-
mance seen for shape-normalized versus reflectance-
normalized male faces. It is perhaps worth speculating
that some of this difference may relate to the fact that
the unaltered female faces were better recognized than
the unaltered male faces from the frontal viewpoint.
This difference may indicate that the male faces simply
varied less in their two-dimensional surface reflectance
properties than did the female faces. One possibility is
that the trace of a 5-o’clock shadow in some of the
scans hides part of the male facial surface limiting the
surface reflectance variations that can occur there. In
any case, additional data collected on more diverse

Fig. 6. Recognition scores for the shape- and reflectance-normalized female and male faces across the three viewpoints. The data from Experiment
1 are plotted for reference.



A.J. O ’Toole et al. / Vision Research 39 (1999) 3145–31553154

faces (e.g. more variations in age and ethnicity)
would be required to assess the generality of these
effects.

Finally, at a more theoretical level, although ques-
tions of representation contain some of the most im-
portant keys to current theories of face/object
recognition, they also pose some of the most difficult
challenges to experimental methods. The approach we
have taken here is based on the recent technical ad-
vances provided by laser scanners, which give a direct
measurement of the three-dimensional shape informa-
tion in faces and also provide an independent mea-
sure of the two-dimensional reflectance information in
faces (i.e. one not confounded with the three-dimen-
sional surface structure). By using morphing proce-
dures and automatic correspondence algorithms with
these data, we have been able to selectively eliminate
three-dimensional surface versus two-dimensional sur-
face reflectance variation in a set of faces. The
present results indicate that human observers can,
and do, make use of the available variations in both
three-dimensional shape and two-dimensional surface
reflectance information in faces for recognition. Al-
though these data do not tell us about the exact na-
ture of the human representation of this information,
they do at least definitively inform us that our theo-
ries of representation must include more than an ex-
clusively structural coding of faces, and more than an
exclusively image-based coding.
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Appendix A. 3D correspondence algorithm

For matching points on the surfaces of two three-
dimensional objects we modified an existing optical
flow algorithm developed for two-dimensional images.
Although establishing correspondence between sur-
faces of three-dimensional objects has been considered
only recently, matching corresponding features in
two-dimensional images has been studied for many
years.

A.1. Optical flow algorithm

In video sequences, in order to estimate the veloc-
ities of scene elements with respect to the camera, it

is necessary to compute the vector field of optical
flow, which defines the displacements (dx, dy)= (x2−
x1, y2−y1) between points p1= (x1, y1) in the first im-
age and corresponding points P2= (x2, y2) in the
second image. A variety of different optical flow al-
gorithms have been designed to solve this problem
(for a review see Barron, Fleet & Beauchemin, 1994).
Unlike temporal sequences taken from one scene, a
comparison of images of completely different scenes
or faces may violate a number of important assump-
tions made in optical flow estimation. However, some
optical flow algorithms can still cope with this more
difficult matching problem, opening up a wide range
of applications in image analysis and synthesis
(Beymer et al., 1993).

In previous studies (Vetter & Poggio, 1997), we
computed correspondence between face images using
a coarse-to-fine gradient-based method (Bergen,
Anandan, Hanna & Hingorani, 1992) applied to the
Laplacians of the images and followed an implemen-
tation described in Bergen and Hingorani (1990). The
Laplacians of the images were computed from the
Gaussian pyramid adopting the algorithm proposed
by Burt and Adelson (1983). For every point x, y in
an image I(x, y), the algorithm attempts to minimize
the error term E= �(Ixdx+Iydy−dI)2 for dx, dy,
with Ix, Iy being the spatial image derivatives of the
Laplacians and dI the difference of the Laplacians of
the two compared images. The coarse-to-fine strategy
starts with low resolution images and refines the com-
puted displacements when finer levels are processed.
The final result of this computation (dx, dy) is used
as an approximation of the spatial displacement of
each pixel between two images.

A.2. Three-dimensional face representations

The adaptation and extension of this optical flow
algorithm to the three-dimensional head data is
straightforward due to the fact that the cylindrical
representation of a head surface is analogous to im-
ages: Instead of gray-level values in image coordinates
x, y, here we store the radius values and the color
values for each angle f and height h. A parameteri-
zation of a three-dimensional head in cylindrical coor-
dinates, therefore. consists of two images, one
representing the geometry of the head and the other
containing the texture information. In order to com-
pute the correspondence between different heads, both
texture and geometry were considered simultaneously.
The optical flow algorithm as described earlier had to
be modified in the following way. Instead of compar-
ing a scalar gray-level function I(x, y), our modifica-
tion of the algorithm attempts to find the best fit for
the vector function:
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=w1×radius2+w2×red2+w3×green2+w4×blue2.

The coefficients w1…w4 correct for the different con-
trasts in range and color values, assigning approxi-
mately the same weight to variations in shape as to
variations in all color channels taken together.

For representing the geometry. radius values can be
replaced by other surface properties such as Gaussian
curvature or surface normals.

The displacement between corresponding surface
points is captured by a correspondence function

C(h, f)=
�d h(h, f)

d f(h, f)
�

. (1)

After all individual faces of the training set have been
matched to a reference face, their average three-dimen-
sional shape as well as the average surface reflectance
map can be computed. Additionally, corresponding
values of surface reflectance of different faces can be
exchanged.
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