View-based Models of 3D Object
Recognition: Invariance to Imaging
Transformations

This report describes the main features of a view-based model of
object recognition. The model does not attempt to account for specific
cortical structures; it tries to capture general properties to be ex-
pected in a biological architecture for object recognition. The basic
module is a regularization network (RBF-like; see Poggio and Girosi,
1989; Poggio, 1990) in which each of the hidden units is broadly tuned
to a specific view of the object to be recognized. The network output,
which may be largely view independent, is first described in terms of
some simple simulations. The following refinements and details of the
hasic module are then discussed: (1) some of the units may represent
only components of views of the object—the optimal stimulus for the
unit, its “center,” is effectively a complex feature; (2) the units’ prop-
erties are consistent with the usual description of cortical neurons as
tuned to multidimensional optimal stimuli and may be realized in terms
of plausible biophysical mechanisms; (3) in learning to recognize new
objects, preexisting centers may be used and modified, but also new
centers may be created incrementally so as to provide maximal view
invariance; (4) modules are part of a hierarchical structure—the output
of a network may be used as one of the inputs to another, in this way
synthesizing increasingly complex features and templates; (5) in sev-
eral recognition tasks, in particular at the basic level, a single center
using view-invariant features may be sufficient.

Modules of this type can deal with recognition of specific objects,
for instance, a specific face under various transformations such as
those due to viewpoint and illumination, provided that a sufficient
number of example views of the specific object are available. An
architecture for 3D object recognition, however, must cope— to some
extent—even when only a single model view is given. The main con-
tribution of this report is an outline of a recognition architecture that
deals with objects of a nice class undergoing a broad spectrum of
transformations—due to illumination, pose, expression, and so on—
by exploiting prototypical examples. A nice class of objects is a set
of objects with sufficiently similar transformation properties under
specific transformations, such as viewpoint transformations. For nice
object classes, we discuss two possibilities: (1) class-specific trans-
formations are to be applied to a single model image to generate
additional virtual example views, thus allowing some degree of gen-
eralization beyond what a single model view could otherwise provide;
(2) class-specific, view-invariant features are learned from examples
of the class and used with the novel model image, without an explicit
generation of virtual examples.

In the past three years we have been developing systems for
3D object recognition that we labeled view based (or mem-
ory based; see Poggio and Hurlbert, 1993) since they require
units tuned to views of specific objects or object classes.' Our
work has led to artificial systems for solving toy problems
such as the recognition of paperclips as in Figure 3 (Poggio
and Edelman, 1990; Brunelli and Poggio, 1991), as well as
more real problems such as the recognition of frontal faces
(Brunelli and Poggio, 1993; Gilbert and Yang, 1993) and the
recognition of faces in arbitrary pose (Beymer, 1993). We have
discussed how this approach may capture key aspects of the
cortical architecture for 3D object recognition (Poggio, 1990;
Poggio and Hurlbert, 1993), we have tested successfully with
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psychophysical experiments some of the predictions of the
model (Biilthoff and Edelman, 1992; Edelman and Biilthoff,
1992; Schyns and Biilthoff, 1993), and recently we have gath-
ered preliminary evidence that this class of models is consis-
tent with both psychophysics and physiology [specifically, of
inferotemporal (IT) cortex] in alert monkeys trained to rec-
ognize specific 3D paperclips (Logothetis and Pauls, 1995).

This report is a short summary of some of our theoretical
work; it describes work in progress and it refers to other re-
ports that treat in more detail several aspects of this class of
models. Some of these ideas are similar to those of Perrett et
al. (1989), though they were developed independently; they
originate instead from applying regularization networks to the
problem of visual recognition and noticing an intriguing sim-
ilarity between the hidden units of the model and the tuning
properties of cortical cells. The main problem this report ad-
dresses is that of how a visual system can learn to recognize
an object after exposure to only a single view, when the ob-
ject may newly appear in different views corresponding to a
broad spectrum of image transformations. Our main novel
contribution is the outline of an architecture capable of
achieving invariant recognition for a single model view, by
exploiting transformations learned from a set of prototype
objects of the same class.

We will first describe the basic view-based module and
illustrate it with a simple simulation. We will then discuss a
few of the refinements that are necessary to make it biolog-
ically plausible. The next section will sketch a recognition
architecture for achieving invariant recognition. In particular,
we will describe how it may cope with the problem of rec-
ognizing a specific object of a certain class from a single mod-
el view. Finally, we will describe an hypothetical, secondary
route to recognition—a visualization route—in which (1)
class-specific RBF-like modules estimate parameters of the in-
put image, such as illumination, pose, and expression; (2) oth-
er modules provide the appropriate transformation from
prototypes and synthesize a “normalized” view from the input
view; and (3) the normalized input view is compared with
the model view in memory. Thus, analysis and synthesis net-
works may be used to close the loop in the recognition pro-
cess by generating the “neural” imagery corresponding to a
certain interpretation and eventually comparing it to the in-
put image. In the last section we will outline some of the
critical predictions of this class of biological models and dis-
cuss some of the existing data.

The Basic Recognition Module

Figure 1 shows our basic module for object recognition. As
Poggio and Hurlbert (1993) have argued, it is representative
of a broad class of memory-based modules (MBMs). Classifi-
cation or identification of a visual stimulus is accomplished
by a network of units. Each unit is broadly tuned to a partic-
ular view of the object. We refer to this optimal view as the
center of the unit. One can think of it as a template to which
the input is compared. The unit is maximally excited when
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Figure 1. An RBF network for the approximation of 2D functions (/eft) and its basic
“hidden” unit {right). x and y are components of the input vector that is compared via
the RBF h at each center t. Outputs of the RBFs are weighted by the ¢, and summed
to yield the function F evaluated at the input vector. N is the total number of centers.

the stimulus exactly matches its template but also responds
proportionately less to similar stimuli. The weighted sum of
activities of all the units represents the output of the network.

Here we consider as an example of such a structure an
RBF network that we originally used as a learning network
(Poggio and Girosi, 1989) for object recognition while discov-
ering that it was biologically appealing (Poggio and Girosi,
1989; Poggio, 1990; Poggio and Edelman, 1990; Poggio and
Hurlbert, 1993) and representative of a much broader class
of network architectures (Girosi et al., 1993).

RBF Networks
Let us review briefly RBF networks. RBF networks are ap-
proximation schemes that can be written as (see Fig. 1; Pog-
8io, 1990; Poggio and Girosi, 1990b)

N

f@ = 2 ehdix — t) + p@. )

i=1
The Gaussian case, h(lx — t) = exp(—(x — tP?/20?), is es-
pecially interesting: (1) each “unit” computes the distance IIx
— t| of the input vector x from its center t and (2) applies
the function h to the distance value; that is, it computes the
function h(lx — t|); (3) in the limiting case of h being a very
narrow Gaussian, the network becomes a look-up table; (4)
centers are like templates.

The simplest recognition scheme we consider is the net-
work suggested by Poggio and Edelman (1990) to solve the
specific problem of recognizing a particular 3D object from
novel views. This is a problem at the subordinate level of
recognition; it assumes that the object has already been clas-
sified on the basic level but must be discriminated from other
members of its class. In the RBF version of the network, each
center stores a sample view of object, and acts as a unit with
a Gaussian-ike recognition field around that view. The unit
performs an operation that could be described as “blurred”
template matching. At the output of the network the activities
of the various units are combined with appropriate weights,
found during the learning stage.

Consider how the network “learns” to recognize views of
the object shown in Figure 3. In this example the inputs of
the network are the x,y-positions of the vertices of the object
images and four training views are used. After training, the
network consists of four units, each one tuned to one of the
four views as in Figure 2. The weights of the output connec-
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Figure 2. An RBF network with four units each tuned to one of the four training views
shown in Figure 3. The tuning curve of each unit is also shown in Figure 3. The hidden
units are view dependent but selective relative to distractors of the same type. The
output unit is in this case view invariant for rotations of the object around the vertical
axis, examples of which are represented by the centers of the four hidden units.

tions are determined by minimizing misclassification errors
on the four views and using as negative examples views of
other similar objects (“distractors”).

Figure 3 shows the tuning of the four units for images of
the “correct” object. The tuning is broad and centered on the
training view. Somewhat surprisingly, the tuning is also very
selective: the dotted line shows the average response of each
unit to 300 similar distractors (paperclips generated by the
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Figure 3. Tuning of each of the four hidden units of the network of the previous figure
for images of the “correct” 3D objects. The tuning is broad and selective: the dotted
lines indicate the average response to 300 distractor objects of the same type. The
bottom graph shows the tuning of the output of the network after learning (i.e., after
the computation of the weights cl: it is view invariant and object specific. Again, the
dotted curve indicates the average response of the network to the same 300 distractors.



same mechanisms as the target; for further details about the
generation of paperclips, see Edelman and Biilthoff, 1992).
Even the maximum response to the best distractor is in this
case always less than the response to the optimal view. The
output of the network, being a linear combination of the ac-
tivities of the four units, is essentially view invariant and still
very selective. Notice that each center is the conjunction of
all the features represented: the Gaussian can in fact be de-
composed into the product of 1D Gaussians, one for each
input component. The activity of the unit measures the global
similarity of the input vector to the center: for optimal tuning
all features must be close to the optimum value. Even the
mismatch of a single component of the template may set to
zero the activity of the unit. Thus, the rough rule implement-
ed by a view-tuned unit is the conjunction of a set of predi-
cates, one for each input feature, measuring the match with
the template. On the other hand, the output of the network
is performing an operation more similar to the “OR” of the
output of the units. Even if the output unit may have a sig-
moidal nonlinearity (see Poggio and Girosi, 1990), its output
does not need to be zero when one or more of the hidden
units are inactive, provided there is sufficient activity in the
remaining ones. In general, one expects a nonlinear decision-
like mechanism (see Logothetis and Pauls, 1995) operating on
the output signal of the network.

This example is clearly a caricature of a view-based rec-
ognition module but it helps to illustrate the main points of
the argument. Despite its gross oversimplification, it manages
to capture some of the basic psychophysical and physiologi-
cal findings, in particular the existence of view-tuned and
view-invariant units and the shape of psychophysically mea-
sured recognition fields. In the next section we will list a
number of ways in which the network can be made more
plausible.

Toward More Biological Recognition Modules

The simple model proposed in the previous section contains
view-centered hidden units.> More plausible versions allow
for the centers and corresponding hidden units to be view
invariant if the task requires. In a biological implementation
of the network, we in fact expect to find a full spectrum of
hidden unit properties, from view centered to view invariant.
View-centered units are more likely in the case of subordinate
level recognition of unfamiliar ot nice objects (for the defi-
nition of a nice class, see below); view-invariant units would
appear for the basic level recognition of familiar objects. We
will now make a number of related observations, some of
which can be found in Poggio and Hurlbert (1993), which
point to necessary refinements of the model if it is to be
biologically plausible.

(1) In the previous example each unit has a center that is
effectively a full training view. It is much more reasonable to
assume that most units in a recognition network should be
tuned to components of the image, that is, to conjunctions of
some of the elementary features but not all of them. This
should allow for sufficient selectivity (the above network per-
forms better than humans) and provide for significant ro-
bustness to occlusions and noise (see Poggio and Hurlbert,
1993). This means that the “AND” of a high-dimensional con-
junction can be replaced by the “OR” of its components—a
face may be recognized by its eyebrows alone, or a mug by
its color. Notice that the disjunction (corresponding to the
weighted combination of the hidden units) of conjunctions
of a small number of features may be sufficient (each con-
junction is implemented by a Gaussian center that can be
written as the product of 1D Gaussians). To recognize an ob-
ject, we may use not only templates (i.e., centers in RBF ter-
minology) comprising all its features, but also, and in some

cases solely, subtemplates, comprising subsets of features
(which themselves constitute “complex” features). This is sim-
ilar in spirit to the technique of supplementing whole-face
templates with several smaller templates in the Brunelli-Pog-
gio work on frontal face recognition (see also Beymer, 1993).

(2) The units tuned to complex features mentioned above
are similar to IT cells described by Fujita and Tanaka (1992)
and could be constructed in a hierarchical way from the out-
put of simpler RBF-like networks. They may avoid the corre-
spondence problem, provided that the system has built-in in-
variance to image-plane transformations, such as translation,
rotation, and scaling. Thus, cells tuned to complex features
are constructed from a hierarchy of simpler cells tuned to
incrementally larger conjunctions of elementary features. This
idea—common among physiologists (see Perrett and Oram,
1993; Tanaka, 1993)—can immediately be formalized in terms
of Gaussian radial basis functions, since a multidimensional
Gaussian function can be decomposed into the product of
lower dimensional Gaussians (Marr and Poggio, 1976; Ballard,
1986; Poggio and Girosi, 1990; Mel, 1992).

(3) The features used in the example of Figure 3 (X,y-co-
ordinates of paperclip vertices) are biologically implausible.
We have also used other more natural features such as ori-
entation of lines. An attractive feature of this module is its
recursive nature: detection and localization of a line of a cer-
tain orientation, say, can be thought of as being performed by
a similar network with centers being units tuned to different
examples of the desired line type. An eye detector can local-
ize an eye by storing in its units templates of several eyes and
using as inputs more elementary features such as lines and
blobs. A face recognition network may use units tuned to
specific templates of eyes and nose and so on. A homoge-
neous, recursive approach of this type in which not only ob-
ject recognition is view based but also feature localization is
view based has been successfully used in the Beymer-Poggio
face recognizer (see Beymer, 1993). Both feature detection
and face recognition depend on the use of several templates,
the “examples”

(4) In this perspective there are probably elementary fea-
tures such as blobs and oriented lines and center-surround
patterns, but there is then a continuum of increasingly com-
plex features corresponding to centers that are conjunctions
of more elementary ones. In this sense a center is simply a
more complex feature than its inputs and may in turn be the
input to another network with even more complex center-
features.

(5) The RBF network described in the previous sections is
the simplest version of a more general scheme (hyperbasis
functions, HBF) given by

[ =2 a6 = Ol + pGo, @

where the centers t, and coefficients ¢, are unknown, and
are in general fewer in number than the data points (z = N).
The norm is a weighted norm:

lx — I = x — ' WWx - t, (€))
where W is an unknown square matrix and the superscript
T indicates the transpose. In the simple case of diagonal W
the diagonal elements w, assign a specific weight to each
input coordinate, determining in fact the units of measure and
the importance of each feature (the matrix W is especially
important in cases in which the input features are of a dif-
ferent type and their relative importance is unknown). During
learning, not only the coefficients ¢ but also the centers t,,
and the elements of W are updated. Whereas the RBF tech-
nique is similar to and similarly limited as template matching,
HBF networks perform a generalization of template matching
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in an appropriately linearly transformed space, with the ap-
propriate metric. As a consequence, HBF networks may “find”
view-invariant features when they exist (Bricolo, unpublished
observation). There are close connections between HBF net-
works, multilayer perceptrons, and regularization (see Girosi
et al., 1993).

(6) It is also plausible that some of the center-features are
“innate,” synthesized by evolution or by early experience of
the individual or more likely by both. We assume that the
adult system has at its disposal a vocabulary of simple as well
as increasingly more complex center-features. Other centers
are synthesized on demand in a task-dependent way. This may
happen in the following way. Assume that a network such as
the one in Figure 2 has to learn to recognize a new object. It
may attempt to do so by using some of the outputs in the
pool of existing networks as its inputs. At first no new centers
are allocated and only the linear part of the network is used,
corresponding to the term p(x) in Equation 1 and to direct
connections between inputs and output (not shown in Fig.
2). This of course is similar to a simple OR of the input fea-
tures. Learning may be successful in which case only some of
the inputs will have a nonzero weight. If learning is not suc-
cessful—or sufficiently weak—a new center of minimal di-
mension may be allocated to mimic a component of one of
the training views. New centers of increasing dimensionali-
ty—comprising subsets of components, up to the full view—
are added while old centers are continually pruned until the
performance is satisfactory. Centers of dimension 2 effectively
detect conjunctions of pairs of input features (see also Mel,
1992). It is not difficult to imagine learning strategies of this
type that would select automatically centers, that is, complex
features, that are as view invariant as possible (this can be
achieved by modifying the associated parameters ¢ and/or w
in the W matrix). Such features may be global—such as col-
or—but we expect that they will be mostly local and perhaps
underlie recognition of geon-like components (see Bieder-
man, 1987; Edelman, 1991). View-invariant features may be
used in basic-level more than in subordinate-level recognition
tasks.

(7) One essential aspect of the simplest (RBF) version of
the model is that it contains units that are viewer centered,
not object centered. This aspect is independent of whether
the model is 2D or 3D, a dichotomy that is not relevant here.
Each center may consist of a set of features that may mix 2D
with 3D information, by including shading, occlusion, or bin-
ocular disparity information, for example. The features that
depend on the image geometry will necessarily be viewpoint
dependent, but features such as color may be viewpoint in-
dependent. As we mentioned earlier, in situations in which
view-invariant features exist (for basic- as well as for subor-
dinate-level recognition) centers may actually be view
independent.

(8 The network described here is used as a classifier that
performs identification, or subordinate-level recognition:
matching the face to a stored memory, and thereby labeling
it. A similar network with a different set of centers could
perform also basic-level recognition: distinguishing objects
that are faces from those that are not.

Virtual Views and Invariance to Image Transformations:

Toward a Recognition Architecture

In the example given above, the network learns to recognize
a particular 3D object from novel views and thereby achieves
one crucial aim in object recognition: viewpoint invariance.
But recognition does not involve solely or simply the problem
of recognizing objects in hitherto unseen poses. Hence, as
Poggio and Hurlbert (1993) emphasize, the cortical architec-
ture for recognition cannot consist simply of a collection of
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the modules of Figures 1 and 3, one for each recognizable
object. The architecture must be more complex than that car-
toon, because recognition must be achieved over a variety of
image transformations, not just those due to changes in view-
point, but also those due to translation, rotation, and scaling
of the object in the image plane, as well as non-image-plane
transformations, such as those due to varying illumination. In
addition, the cortex must also recognize objects at the basic
as well as subordinate level.

In the network described above, viewpoint invariance is
achieved by exploiting several sample views of the specific
object. This strategy might work to obtain invariance under
other types of transformations also, provided sufficient ex-
amples of the object under sample transformations are avail-
able. But suppose that example views are not available. Sup-
pose that the visual system must learn to recognize a given
object under varying illumination or viewpoint, starting with
only a single example view. This is the problem that we will
focus on in the next few sections, that of subordinate level
recognition under non-image-plane transformations, given
only a single model view. '

Probably the most natural solution is for the system to
exploit certain invariant features, learned from examples of
objects of the same class. These features could supplement
the information contained in the single model view. Here we
will put forward an alternative scheme that, although possibly
equivalent at a computational level, may have a very different
implementation. Our proposal is that when sample images of
the specific object under the relevant transformations are not
available, the system may generate virtual views of that object,
using image-based transformations that are characteristic of
the corresponding class of objects (Poggio and Vetter, 1992).
We propose that the system learns these transformations from
prototypical example views of other objects of the same class,
with no need for 3D models. The idea is simple but it is not
obviously clear that it will work. Figure 4 provides a plausi-
bility argument.

The problem of achieving invariance to image plane trans-
formations such as translation, rotation, and scaling, given only
one model view, is also difficult, particularly in terms of bio-
logically plausible implementations. But given a single model
view, it is certainly possible to generate virtual examples for
appropriate image-plane translations, scalings, and rotations
without specific knowledge about the object. This is not the
case for the non-image-plane transformations we will consider
here, caused by, for example, changes in viewpoint, illumina-
tion, facial expression, or physical attitude of a flexible or ar-
ticulated object such as a body.

Within the virtual views theory, there are two extreme
ways in which virtual views may be used to ensure invariance
under non-image-plane transformations. The first one ‘is to
precompute all possible “virtual” views of the object or the
object class under the desired group of transformations and
to use them to train a classifier network such as the one of
Figure 1. The second approach—equivalent from the point of
view of information processing—is instead to apply all the
relevant transformations to the input image and to attempt
to match the transformed image to the data base, which under
our starting assumption, may contain only one view per ob-
ject. These two general strategies may exist in several differ-
ent varjations and can also be mixed in various ways.

An Example

Consider as an example of the general recognition strategy
we propose the following architecture for biological face rec-
ognition based on our own work on artificial face recognition
systems (Beymer, 1993; Brunelli and Poggio, 1993; see also
Gilbert and Yang, 1993).
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Figure 4. A face transformation is “leamed” from a prototypical example transformation. Here, face rotation and smiling transformations are represented by prototypes, y,. ¥, is
mapped onto the new face image img,,,. The virtual image img, ., is synthesized by the system. In-a biological implementation cell activities instead of gray levels would be the

inputs and the outputs-of the transformation. From Beymer et al. (1993).

First, the face has to be localized within the image and
segregated from other objects. This stage might be template
based, and may be equivalent to the use of a network like
that in Figure 3, with units tuned to the various low-resolution
images a face may produce. From the biological point of view,
the network might be realized by the use of low-resolution
face detection cells at each location in the visual field (with
each location examined at a resolution dictated by the corti-
cal map, in which the fovea of course dominates), or by con-
nections from each location in, say, V1 to “centered” templates
(or the equivalent networks) in IT, or by a routing mechanism
to achieve the same result with fewer connections (see Ols-
hausen et al., 1992). Of course, the detection may be based
on disjunction of face components rather than on their con-
junction in a full-face template.

The second step in our face recognizer is to normalize the
image with respect to translation, scale, and image rotation.
This is achieved by finding two anchor points, such as the
eyes, again with a template-based strategy, equivalent to a net-
work of the type of Figure 1 in which the centers are many
templates of eyes of different types in different poses and
expressions. A similar strategy may be followed by biological
systems for both faces and other classes of objects. The ex-

istence of two stages would suggest that there are modules
dedicated to detect certain classes of complex features—such
as eyes—and other modules that use the result to normalize
the image appropriately. Again, there could be eye detection
networks at each location in the visual field or a routing of
relevant parts of the image—selected through segmentation
operations—to a central representation in IT.

The third step in our face recognizer is to match the lo-
calized, normalized face to a data base of individual faces
while at the same time providing for invariance of view, ex-
pression, and illumination. If the data base contains several
views of each particular face, the system may simply compare
the normalized image to each item there (Beymer, 1993); this
is equivalent to classifying the image using the network of
Figure 1, one for each person. But if the data base contains
only a single model view for each face, which is the problem
we consider here, virtual examples of the face may be gen-
erated using transformations—to other poses and expres-
sions—Ilearned from examples of other faces (see Poggio and
Brunelli, 1992; Poggio and Vetter, 1992; Beymer et al., 1993).
Then the same approach as for a multiexample data base may
be followed, but in this case most of the centers will corre-
spond to “virtual examples.”
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Transformations and Virtual Examples

In summary, our proposal is to achieve invariance to non-
image-plane transformations by using a-sufficient number of
views of the specific objects for various transformation pa-
rameters. If real views are available they should be used di-
rectly; if not, virtual views can be generated from the real
one(s) using image-based transformations learned from ex-
ample views of objects of the same class.

Transformation Networks

How can we learn class-specific transformations from proto-
typical examples? There are several simple technical solutions
to this problem, as discussed by Poggio (1991), Poggio and
Brunelli (1992), and Poggio and Vetter (1992). The proposed
schemes can “learn” approximate 3D geometry and underly-
ing physics for a sufficiently restricted class of objects—a nice
class.* We define informally here nice classes of objects as
sets of objects with sufficiently similar transformation prop-
erties. A class of object is nice with respect to one or more
transformations. Faces are a nice class under viewpoint trans-
formations because they typically have a similar 3D structure.
The paperclip objects used by Poggio and Edelman (1990)
and Bilthoff and Edelman (1992; Biilthoff et al., 1994 this
issue) and by Logothetis and Pauls (1995) are not nice under
viewpoint transformation because their global 3D structures
are different from each other. Poggio and Vetter (1992) de-
scribe a special set of nice classes of objects—“linear classes.”
For linear classes, linear networks can learn appropriate trans-
formations from a set of prototypical examples. Figure 4
shows how Beymer et al. (1993) used the even simpler tech-
nique (linear additive) of Poggio and Brunelli (1992) for learn-
ing transformations due to face rotation and change of ex-
pression.

In any case, a sufficient number of prototype transforma-
tions—which may involve shape, color, texture, shading, and
other image attributes by using the appropriate features in
the vectorized representation of images—should allow the
generation of more than one virtual view from a single “real”
view. The resulting set of virtual examples can then be used
to train a classification network. The argument so far is purely
on the computational level and is supported only by prelim-
inary and partial experiments.It is totally unclear at this point
how IT cortex may use similar strategies based on learning
class-specific prototypical transformations. The alternative
model in which virtual examples are not explicitly generated
and instead view-invariant features are learned is also attrac-
tive. Since networks such as multilayer perceptrons and HBF
networks may “find” some view-invariant features, the two
approaches may actually be used simultaneously.

An Alternative Visualization Route?

As we hinted earlier, an alternative implementation of the
same approach to invariant recognition from a single model
view is to transform the (normalized) input image using the
learned transformations and compare each one of the result-
ing virtual views to the available real views (in this case only
one per specific object). As pointed out by Ullman (1991),
the cortex may perform the required search by generating
simultaneously transformations of both the input image and
the model views until a match is found.

The number of transformations to be tested may be re-
duced by first estimating the approximate pose and expres-
sion parameters of the input image. The estimate may be pro-
vided by an RBF-like network of the “analysis” type in which
the centers are generic face prototypes (or face parts) span-
ning different poses, expressions, and possibly illuminations.*
They can be used if trained appropriately to do the analysis
task of estimating state parameters associated with the image
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of the object such as its pose in space, its expression (if a
face), its illumination, and so on (see Poggio and Edelman,
1990; Beymer et al., 1993).

The corresponding transformation will then be performed
by networks (linear or of a more general type).s Analysis-type
networks may help reduce dramatically the number of trans-
formations to be tried before successful recognition is
achieved. A particular version of the idea is the following.

Assume that the data base consists of single views of dif-
ferent, say, faces in a “zero” pose. Then in the visualization
route the analysis network provides an estimate of “pose” pa-
rameters; a synthesis network (Librande, 1992; Poggio and
Brunelli, 1992; Beymer et al., 1993) generates the correspond-
ing view of a prototype; the transformation from the latter
prototype view to the reference view of the prototype is com-
puted and applied to the input array to obtain its “zero” view;
finally, this corrected input view is compared with the data
base of single views. Of course, the inverse transformation
could be applied to each of the views in the data base, instead
of applying the direct transformation to the input image. We
prefer the former strategy because of computational consid-
erations but mixtures of both strategies may be suitable in
certain situations.

This estimation-transformation route (which may also be
called analysis-synthesis) leads to an approach to recognition
in which parameters are estimated from the input image, and
then used to “undo” the deformation of the input image and
“visualize” the result, which is then compared to the data base
of reference views. A “visualization” approach of this type can
be naturally embedded in an iterative or feedback scheme in
which discrepancies between the visualized estimate and the
input image drive further cycles of analysis-synthesis and
comparison (see Mumford, 1992). It may also be relevant in
explaining a role in mental “imagery” of the neurons in IT
(see Sakai and Miyashita, 1991). A few remarks follow.

(1) Transformation parameters may be estimated from im-
ages of objects of a class; some degree of view invariance may
therefore be achievable for new objects of a known class
(such as faces or bilaterally symmetric objects; see Poggio and
Vetter, 1992). This should be impossible for unique objects
for which prior class knowledge may not be used (such as
the paperclip objects; Biilthoff and Edelman, 1992).

(2) From the computational point of view it is possible
that a “coarse” 3D model—rather like a marionette—could be
used successfully to compute various transformations typical
for a certain class of objects (such as faces) to control 2D
representations of the type described earlier for each specific
object. Biologically, this coarse 3D model may be implement-
ed in terms of learned transformations characteristic for the
class.

(3) We believe that the classification approach—the one
summarized by Figures 1 and 3, as opposed to the visualiza-
tion approach—is the main route to recognition, which
should be used with real example views when a sufficient
number of training views is available. Notice that this ap-
proach is memory based and in the extreme case of many
training views should be very similar to a lookup table. When
only one or very few views of the specific object are available,
the classification approach may still suffice, if either (1) view-
invariant features are discovered and then used or (2) virtual
examples generated by the transformation approach are ex-
ploited. But this is possible only for objects belonging to a
familiar class (such as faces). The analysis-synthesis route may
be an additional, secondary strategy to deal with only one or
very few real model views.°

(4) We have assumed here a supervised learning frame-
work. Unsupervised learning may not be of real biological
interest because various natural cues (object constancy, sen-



Figure 5. The generalization field associated with a single training view. Whereas it is
gasy to distinguish between, say, tubular and amoeba-like 3D objects, irrespective of
their orientation, the recognition error rate for specific objects within each of those two
categories increases sharply with misorientation relative to the familiar view. This figure
shows that the error rate for amoeba-like objects, previously seen from a single attitude,
is viewpoint dependent. Means of error rates of six subjects and six different objects
are plotted versus rotation in depth around two orthogonal axes (Biilthoff et al., 1991;
Edelman and Biilthoff, 1992). The extent of rotation was +60° in each direction; the
center of the plot corresponds to the training attitude. Shades of gray encode recog-
nition rates, at increments of 5% (white is better than 90%, black is 50%). From Billthoff
and Edelman (1992). As predicted by our model, viewpoint independence can be
achieved by familiarizing the subject with a sufficient number of real training views of
the 3D object. For objects of a “nice” class the generalization field may be broader
because of the possible availability of virtual views of sufficient quality.

sorimotor cues etc.) usually provide the equivalent of super-
vised learning. Unsupervised learning may be achieved by us-
ing either a bootstrap approach (see Poggio et al., 1992) or
an appropriate cost-functional for learning or special network
architectures.

Critical Predictions and Experimental Data
In this section we list a few points that may lead to interesting
experiments both in psychophysics and physiology.

Predictions

Viewer-centered and Object-centered Cells

Our model (see the module of Fig. 2) predicts the existence
of viewer-centered cells (in the “hidden” layer) and object-
centered cells (the output of the network). Evidence pointing
in this direction in the case of face cells in IT is already avail-
able. We predict a similar situation for other 3D objects. It
should be noted that the module of Figure 2 is only a small
part of an overall architecture. We expect therefore to find
other types of cells, such as for instance pose-tuned, expres-
sion-tuned and illumination-tuned cells. Very recently Logo-
thetis and Pauls (1995) have succeeded in training monkeys
to the same objects used in human psychophysics and in re-
producing the key results of Bulthoff and Edelman (1992). As
we mentioned above, they also succeeded in measuring gen-
eralization fields of the type shown in Figure 5 after training
on a single view. We believe that such a psychophysically
measured generalization field corresponds to a group of cells
tuned in a Gaussian-like manner to that view. We conjecture
(though this is not a critical prediction of the theory) that

the step of creating the tuned cells, that is, the centers, is
unsupervised; in other words, it would be sufficient to expose
the monkeys to the objects without actually training them to
respond in specific ways.

Cells Tuned to Full Views and Cells Tuned to Parts

As we mentioned, we expect to find high-dimensional as well
as low-dimensional centers, corresponding to full templates
and template parts. Physiologically this corresponds to cells
that require the whole object to respond (say, a face) as well
as cells that respond also when only a part of the object is
present (say, the mouth).

Computationally, this means that instead of high-dimen-
sional centers any of several lowerdimensional centers are
often sufficient to perform a given task. This means that the
“AND” of a high-dimensional conjunction can be replaced by
the “OR” of its components—a face may be recognized by its
eyebrows alone, or a mug by its color. To recognize an object,
we may use not only templates comprising all its features, but
also subtemplates, comprising subsets of features. Splitting the
recognizable world into its additive parts may well be pref-
erable to reconstructing it in its full multidimensionality, be-
cause a system composed of several independently accessible
parts is inherently more robust than a whole simultaneously
dependent on each of its parts. The small loss in uniqueness
of recognition is easily offset by the gain against noise and
occlusions and the much lower requirements on system Con-
nectivity and complexity.

View-Invariant Features

For many objects and recognition tasks there may exist fea-
tures that are invariant at least to some extent (color is an
extreme example). One would expect this situation to occur
especially in basic level recognition tasks (but not only). In
this case networks with one or very few centers and hidden
units—each one being invariant—may suffice. One or very
few model views may suffice.

Generalization from a Single View for “Nice” and
“Not Nice” Object Classes
An example of a recognition field measured psychophysically
for an asymmetric object of a “not nice” class after training
with a single view is shown in Figure 5. As predicted from
the model (see Poggio and Edelman, 1990), the surface of the
recognition errors is bell shaped and is centered on the train-
ing view. If the object belongs to a familiar and “nice” class
of objects—such as faces—the generalization from a single
view is expected to be better and broader because informa-
tion equivalent to additional virtual example views can be
generated from familiar examples of other objects of the same
class. Ullman et al. (1993) report evidence consistent with this
view. They use two “nice” classes of objects, one familiar—
upright faces—and one unfamiliar—inverted faces. They find
that generalization from a single training view over a range
of viewpoint and illumination transformations is perfect for
the familiar class and significantly worse for the unfamiliar
inverted faces. They also report that generalization in the lat-
ter case improved with practice, as expected in our model.
Notice again that instead of creating virtual views the sys-
tem may discover features that are view invariant for the giv-
en class of objects and then use them.

Generalization for Bilaterally Symmetric Objects

Bilaterally symmetric objects—or objects that may seem bi-
laterally symmetric from a single view—are a special example
of nice classes. They are expected from the theory (Poggio
and Vetter, 1992) to have a generalization field with additional
peaks. The prediction is consistent with old and new psycho-
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physical (Vetter et al., 1994) and physiological data (Logothe-
tis and Pauls, 1995).

Notes

1. Of course the distinction between view-based and object-centered
models makes little sense from an information processing perspec-
tive: a very small number of views contains full information about
the visible 3D structure of an object (compare Poggio and Edelman,
1990). Our view-based label refers to an overall approach that does
not rely on an explicit representation of 3D structure and in partic-
ular to a biologically plausible implementation in terms of view-cen-
tered units.

2. A computational reason for why a few views are sufficient can
be found in the results (for a specific type of features) of Ullman and
Basri (1991). Shashua (1992a,b) describes an elegant extension of
these results to achieve illumination as well as viewpoint invariance.

3. The linear classes definition of Poggio and Vetter (1992) may
be satisfactory, even if not €xact, in a number of practically interesting
situations such as viewpoint invariance and lighting invariance for
faces.

4. Invariance to illumination can be in Dart achieved by appro-
priate preprocessing.

5. Of course, in all of the modules described above the centers
may be parts of the face rather than the full face.

6.1t turns out that the RBFlike classification scheme and its im-
plementation in terms of view-centered units is quite different from
the linear combination scheme of Ullman and Basri (1990). On the
other hand a regularization network used for synthesis—in which
the output is the image y—is similar to their linear combination
scheme (though more general) because its output is always a linear
combination of the example views (see Beymer et al., 1993).
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