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Face Recognition Using 3-D
Models: Pose and Illumination
Novel face recognition algorithms, based on three-dimensional information,

promise to improve automated face recognition by dealing with different

viewing and lighting conditions.

By Sami Romdhani, Jeffrey Ho, Member IEEE,

Thomas Vetter, Member IEEE, and David J. Kriegman

ABSTRACT | Unconstrained illumination and pose variation

lead to significant variation in the photographs of faces and

constitute a major hurdle preventing the widespread use of

face recognition systems. The challenge is to generalize from a

limited number of images of an individual to a broad range of

conditions. Recently, advances in modeling the effects of

illumination and pose have been accomplished using three-

dimensional (3-D) shape information coupled with reflectance

models. Notable developments in understanding the effects of

illumination include the nonexistence of illumination invar-

iants, a characterization of the set of images of objects in fixed

pose under variable illumination (the illumination cone), and

the introduction of spherical harmonics and low-dimensional

linear subspaces for modeling illumination. To generalize to

novel conditions, either multiple images must be available to

reconstruct 3-D shape or, if only a single image is accessible,

prior information about the 3-D shape and appearance of faces

in general must be used. The 3-D Morphable Model was

introduced as a generative model to predict the appearances of

an individual while using a statistical prior on shape and

texture allowing its parameters to be estimated from single

image. Based on these new understandings, face recognition

algorithms have been developed to address the joint chal-

lenges of pose and lighting. In this paper, we review these

developments and provide a brief survey of the resulting face

recognition algorithms and their performance.

KEYWORDS | Biometrics; computer vision; face image analysis;

face recognition; illumination invariant; inverse rendering;

pose invariant

I . INTRODUCTION

The goal of face recognition is to identify individuals in

photographs or videos from their facial appearance. Com-

pared to other biometrics, face recognition is passive and

does not require cooperative subjects who are near or in

contact with a sensor. Images of faces are widespread and

archived, and digital cameras are so inexpensive that they

are embedded in inexpensive consumer devices (e.g., mobile

phones). For video surveillence, a camera may be located
in the corner of a room, and the goal would be to identify

the occupants without their awareness. Yet, to achieve this

capability, face recognition systems must be effective ir-

respective of the person’s gaze or the illumination.

Face recognition has numerous applications including

access control, human computer interfaces, security and

surveillance, e-commerce, entertainment, annotation of

photographic and video databases, etc. Consequently, it
has been an attractive research problem, and the most

recent comprehensive survey [56] cites 168 papers while

a survey of face detection [49]Va preprocessing step of

face recognitionVcites over 180 sources.

Yet despite this enormous effort, accurate and robust

recognition over a broad range of conditions has remained

elusive. A recent large scale evaluation of commercial face

recognition systems called the Facial Recognition Vendor
Test (FRVT) 2002 [31] showed that face recognition and

verification accuracy deteriorated significantly when there

were differences in pose and lighting between images used

for enrollment and recognition, and that errors increased

as the elapsed time between enrollment and recognition

increased [31]. Why has face recognition proven to be so

Manuscript received February 16, 2006; revised August 11, 2006.

S. Romdhani and T. Vetter are with the Computer Science Department, University

of Basel, CH-4056 Basel, Switzerland (e-mail: sami.romdhani@unibas.ch;

thomas.vetter@unibas.ch).

J. Ho is with the Department of Computer and Information Science and Engineering,

University of Florida, Gainesville, FL 32611 USA (e-mail: jho@cise.ufl.edu).

D. J. Kriegman is with the Department of Computer Science, University of California

at San Diego, La Jolla, CA 92093 USA (e-mail: kriegman@cs.ucsd.edu).

Digital Object Identifier: 10.1109/JPROC.2006.886019

Vol. 94, No. 11, November 2006 | Proceedings of the IEEE 19770018-9219/$20.00 �2006 IEEE



challenging? In part, it is because an individual’s face can

appear differently in different images yet many people may

look somewhat similar to each other under some con-

ditions (identical twins are an extreme case). Facial

expression, makeup, eyeglasses, facial hair, weight change,

and aging are intrinsic factors that lead to differences in

appearance. On the other hand, extrinsic factors such as
illumination (source brightness, direction, color), camera

viewpoint, and the camera’s radiometric response can lead

to significant image variability. It is our belief that, to

reach unconstrained and accurate face recognition, the

fewest limiting assumptions about the problem should be

made. It is on these foundations that the systems presented

in this article were developed.

Consider for the moment the challenge of illumination
variation; Fig. 1 shows that the effect of lighting on the

appearance of a human face can be striking. The top row

shows four images of an individual taken with the same

viewpoint but under differing illumination. The bottom

four images, on the other hand, are of four individuals

taken under the same lighting and from the same

viewpoint. Using the most common measure of similarity

between pairs of images, the L2-difference (i.e., the sum
over all pixel locations of the squared difference between

pixel values), the similarity between any pair of images in

the bottom is always greater than the similarity between

any pair of images from the upper row. In other words,

face recognition based purely on L2-similarity (i.e., tem-

plate matching) will fail for these images. The same

remark can also be made for viewpoint changes.

While there are exceptions, the lion’s share of face
recognition methods are purely two-dimensional (2-D) in

the sense that subjects are enrolled into the system using

one or more 2-D images, and at recognition time the input

is again one or more 2-D images. At no point in the

recognition process is a three-dimensional (3-D) model of

a face constructed, nor do the algorithms make strong and

explicit use of the fact that the images are the result of
observing a 3-D object. Instead, they rely on the power of

pattern recognition and machine learning techniques to

essentially infer from training examples how an indivi-

dual’s appearance may vary and how features of the images

can discriminate between individuals. Yet it is our con-

tention that accurate face recognition over the kinds of

variation described above can be achieved with a 3-D

generative model that can be used to synthesize or render
an individual’s appearance. In turn, classifiers can be

constructed based on estimated parameters of the model,

using images or representations derived from a collection

of such models, or by estimating extrinsic and intrinsic

parameters such that a rendered model is consistent with

an imaged face.

We would like to stress that this is not a comprehensive

survey article about face recognition algorithms. See [56]
for an excellent survey paper reviewing the major prob-

lems and solutions. This paper is limited to a few of the

most promising methods that address the illumination and

combined pose/illumination problems. We will provide

some detail and give possible reasons for the success of

these methods. A growing area of research in face recog-

nition is the identification of people from a 3-D range data

[9], [11]. These methods are not reviewed in this paper,
which focuses on recognition from 2-D photographs.

The reader should also be aware that it is not straight-

forward to compare the performance of face recognition

algorithms based on the published results. The standard

protocol [31] in evaluating face recognition algorithms re-

quires three separate sets of images: training, gallery, and

probe sets. The training set is for learning whereas the

gallery and probe sets are used for testing the recognition
algorithm. The gallery set contains images with known

identities while the identities in the probe set are unknown.

In principle, there should be no overlap between training

and testing images not only in terms of identity but also in

terms of illumination condition, pose, and acquisition

device. Ideally, to ensure that the algorithm is not tuned

to any specific condition, training and testing image sets

should originate from different and independent research
institutes. Furthermore, as the complexity of the identifi-

cation depends on the number of individuals in the gallery

and probe sets, this number should be large. Unfortunately,

due to various difficulties, these practices are seldom ob-

served, and this makes the comparison of published al-

gorithms and results often difficult and complicated.

A. Organization of the Paper
In this paper, we discuss the state of the art in face

recognition over pose and lighting variation. We introduce

recent advances in modeling illumination effects [2], [4],

[34] and the most promising face recognition algorithms

based on these foundational results [2], [12], [17], [28],

[42], [52]. We describe how some of these techniques can

be generalized to handle both pose and lighting. We

Fig. 1. Striking effect of illumination on the appearances of a human

face. Top row: images of the same person taken from the same

viewpoint but under different illumination. Bottom row: images

of four different individuals taken under the same viewpoint

and lighting.
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describe the 3-D Morphable Model (3DMM), a parametric
model of 3-D face shape and RGB texture that can be used

to predict the appearances of an individual from an

arbitrary viewpoint, illuminated by one arbitrary directed

light source along with ambient light [7], [8], [36]–[38].

Using a statistical prior on shape and texture, the 3DMM

parameters for an individual can be estimated from single

image, and in turn these parameters are the basis for

recognition decisions. We present and compare empirical
results showing the effectiveness of these methods on face

recognition over lighting and pose variation.

II . MODELS OF ILLUMINATION
AND REFLECTANCE

The effect of lighting on face images is dramatically

illustrated in Fig. 1, and to understand this effect we must
model how the environmental illumination strikes the

face, how light is reflected from the face, and how

shadowing occurs. In general, these are modeled separate-

ly based on physically reasonable assumptions.

First, it should be noted that lighting variation is more

than simply differences in overall brightness as the strength

of the illuminant may vary with direction. It can be

modeled as a positive function over the 4-D space of light
rays that are incident to the face. For recognition, faces are

generally far from the light sources. This allows us to treat

light source strength as a function of directions (i.e., a

positive function on the sphere), and a single distant light

source would then be considered as a delta function.

In general, surface reflectance can be described by a

4-D function frð�i; �i; �o; �oÞ called the bidirectional

reflectance distribution function (BRDF), and it gives the
reflectance of each point on a surface as a function of

the incident illumination direction !i ¼ ð�i; �iÞ and the

emitted direction !o ¼ ð�o; �oÞ (see Fig. 2). Specific re-

flectance models for human skin [23] and hair [30] have

been developed, and have lead to very compelling ren-

derings for motion pictures. To more fully model the

interaction of light with a face, one might also want to

include the effects of subsurface scattering [24], translu-
cency, and interreflections between, say, the nose and the

cheek; while these effects lead to greater realism in ren-
dering, they have not yet been considered significant

enough for face recognition. Consequently, much simpler

reflectance models, such as the Lambertian and Phong

models, have been shown to be effective for face recog-

nition, and we will only consider these reflectance models

in this paper [4], [15], [17].

Under the Lambertian model, the pixel intensity I of

each surface point is given by the inner product between
the unit surface normal vector ~n scaled by the albedo value

� and the light vector ~l, which encodes the direction and

strength of incident light from a single, distant source

Ið~lÞ ¼ �maxð~l �~n; 0Þ: (1)

The Lambertian model effectively collapses the 4-D BRDF

fr into a constant function with value �. In particular, the

brightness of a Lambertian surface does not depend upon
the viewing direction, and so it appears equally bright from

all viewing directions.

The Phong model extends the Lambertian model and

accounts for specular highlights and ambient illumination,

as well as diffuse reflection. Specular highlights arise only

for certain viewing directions that depend on the normal

and light direction. The specular color does not depend on

the albedo of the surface, but only on the color of the light.
Under the Phong model, the radiance of a point

illuminated with ambient intensity a, and viewed from

the direction ~v is given by

Ið~lÞ ¼ a�þ �maxð~l �~n; 0Þ þ sð~l;~n;~v Þ: (2)

In this equation, sð~l;~n;~v Þ is a function modeling specular
highlights, and it is defined in Section V-B.

For a single light source, two types of shadows can

appear: attached shadows and cast shadows (Fig. 2). A

surface point is within an attached shadow when the

inward facing surface normal ~n points away from the light

source. This condition can be summarized concisely as

Fig. 2. (a) Coordinate system used in defining the BRDF. !i ¼ ð�i; �iÞ parameterizes the incident lighting direction. !o ¼ ð�o; �oÞ represents

the viewing direction (emitted direction). n is the normal vector. (b) The formation of shadows on a human face. Attached shadows are

in the upper region of the eye socket. Cast shadows appear in the lower region of the eye socket and the lower part of the face.
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~n �~l G 0. Cast shadows occur when another part of the
object occludes the light source (e.g., the shadow that the

nose casts onto the cheek). A point p is in cast shadow if

the line segment (or ray) from p to the light source

intersects the surface. While attached shadows are related

to the local geometry, cast shadows are related to the

object’s global geometry.

The above discussion has focussed on a single distant

illuminant ~l, and when multiple sources are present, the
resulting image is the sum (superposition) of the images

produced by the sources individually.

III . ILLUMINATION: THEORY AND
FOUNDATIONAL RESULTS

Before delving into the details of various face recognition

algorithms, we discuss briefly an interesting result [12] on
the nonexistence of illumination invariants.

A. Nonexistence of Illumination Invariants
Consider the following simple question. You are given

an image of an object (a face). Now given a second image,

can you determine whether this is an image of the same

object (face) in the same pose, but under different lighting,

or a completely different object? Counterintuitive to our
daily experience, [12] demonstrated that for any two

images, whether they are of the same object or not, there is

always a family of Lambertian surfaces, albedo patterns,

and light sources that could have produced them. As a

consequence, given two images, it is not possible with

absolute certainty to determine whether they were created

by the same or different objects.

For face recognition, this negative result, however, is
not as devastating as one may have thought, and there are

at least two ways of avoiding this apparent quandary. First,

while determining whether two images are of the same

object is impossible in principle, nothing prevents us from

using three or more images, perhaps by increasing the

number of training images for each person. Second, this

result can be attributed to the unrestricted access to the

space of Lambertian objects, and the Lambertian surface
accounting for two specific images may be rather bizarre.

For example, given an image of Katharine Hepburn and

one of Humphrey Bogart, along with any pair of light

source directions, there exists a Lambertian surface that

could have produced these images. However, it is unlikely

to be face-like. This observation is operationalized by using

a deterministic prior on the surface shape so that only face-

like surfaces are permitted or a probabilistic prior favoring
face-like surfaces.

The success of these two approaches depends critically

on the ability to acquire an efficient and effective

appearance model that can capture good amount of

variability of images under all possible conditions. In

particular, for an object O such as a face, we would like to

know the set C of images under all possible conditions. In

principle, the problem of recognition becomes rather easy
if C is known: given an input image, simply determine

which person’s set contains the image. To realize this, one

would need a model of a face from which to construct such

a set and the means to determine containment. In this

section, we will focus particularly on illumination var-

iation and assume that all images were taken from the

same viewpoint, e.g., frontal pose. Considering all images

to have n pixels, we can regard C as a subset of the image
space Rn. In the rest of this section, we discuss the the-

oretical results of [2], [4], [34], which give various char-

acterizations of the set C when the object O is Lambertian

and convex. There are two main themes, the effective low

dimensionality of C and its linearity. While faces are

neither convex nor Lambertian, the theory is tractable in

this case, and algorithms based on these results have

proven to be effective.
We first establish a few conventions and notations.

Interreflections will be ignored, and all illumination will

be assumed to be generated by distant sources. In par-

ticular, the source is represented as a 3-vector~l such that

j~l j encodes the strength of the source, and the unit vector
~l=j~l j represents its direction.

B. Illumination Cones
Under the above assumptions, it was shown in [4] that

the set of n-pixel images C of an object in fixed pose

under all lighting conditions is a convex cone in Rn.

Recall that a cone in Rn is simply a convex subset of Rn

that is invariant under nonnegative scalings: if x is in the

cone, then 	x is also in the cone for any nonnegative 	. A

polyhedral cone is simply a cone with a finite number of

generators fe1; . . . ; egg: points of the cone are vectors
x 2 Rn that can be expressed as some nonnegative linear

combination of the generators, x ¼ a1e1 þ � � � þ ageg with

a1; . . . ; ag � 0.

Convexity is a simple consequence of the superposition

principle for illumination. If I1 and I2 are two images taken

under two different illumination conditions l1 and l2, any

convex combination of these two images

J ¼ aI1 þ bI2; a; b � 0; a þ b ¼ 1

is also an image of the same object under a new illumi-

nation condition specified by al1 [ bl2, i.e., l1 and l2 are

Bturned on[ simultaneously with attenuation factors a; b,

respectively.

This is the simplest and also the only characterization

of C without any limiting assumptions on reflectance or

geometry. When the object is convex, Lambertian and

considered to have a single normal projecting to each pixel,
the set C of images of an object under all possible

illumination conditions is a convex polyhedral cone, and

an upper bound on the number of generators (extreme
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rays) is mðm � 1Þ where m is the number of distinct surface
normals [4].

We now sketch some of the ideas behind these results

and refer the reader to [4], [22] for more details. While

(1) applies to a single surface point, we now consider the

image as a whole. Let B 2 R3�n be a matrix where each

row of B is the product of the albedo with the inward

pointing unit normal for a point on the surface projecting

to a particular pixel. For a light source ~l that does not
produce shadowing, the resulting image is given by

I ¼ B~l, and the set of images without shadowing is a

subset of a 3-D linear subspace called the illumination

subspace L [39], where

L ¼ fIjI ¼ Bl; 8l 2 R3g: (3)

When attached shadows are considered, the set of
images under a single distant source is given by

U ¼ fIjI ¼ maxðBl; 0Þ; 8l 2 R3g. When multiple light

sources illuminate the object, the resulting image is

some convex combination of the images produced by the

individual lights, and in turn the set of images C is the

convex hull of U. It is important to note that single light

source images are on the boundary of C, and in general

images produced with multiple or diffuse light sources will
lie in the interior of C; hence, recognition in single source

conditions is generally more difficult. This partially

justifies why research efforts focussing on lighting have

used single source conditions whereas diffuse lighting is

usually used in controlled operational conditions. How-

ever, [1] has initiated an important study on face recog-

nition under multiple illumination sources, and significant

results have been obtained therein.
Since the illumination cone C is completely determined

by the illumination subspace L, C can be determined

uniquely if the matrix B (surface normals scaled by albedo)

were known. The method of uncalibrated photometric

stereo [51], [58] takes three or more images of the same

object viewed from the same pose and under unknown and

different lighting as input and allows us to recover B up to

an invertible 3 � 3 linear transformation A 2 GLð3Þ since
B~l ¼ ðBAÞðA�1~lÞ ¼ B�~l� where B� ¼ BA and ~l� ¼ A�1~l�.

Although B is not uniquely determined, it is easy to see that

B and B� span the same illumination subspace, and hence,

the same illumination cone.

It can also be shown that the dimension of C is equal to

the number of distinct surface normals [4]. For images

with n pixels, this indicates that the dimension of the

illumination cone is one for a planar object, is roughly
ffiffiffi
n

p

for a cylindrical object, and is n for a spherical object. It is

to be noted, however, that having a cone span n dimen-

sions does not mean that it covers Rn, and as we shall see

there is sound empirical and theoretical evidence to sup-

port the idea that the illumination cone is flat; that is, it

can be well-approximated by a low-dimensional linear
subspace.

C. Empirical Observations
The fact that for objects with diffuse, Lambertian-like

reflectance, the effective dimension of C is small was

noticed quite early [14], [21]. This can be demonstrated by

collecting images of an object taken under a number of

different illumination conditions. If fI1; . . . ; Img are m such
vectorized images, we can form an intensity matrix as

I ¼ ½I1 � � � Im�. Singular value decomposition (SVD) of I
[18] I ¼ U�Vt, gives the singular vectors as the columns of

the matrix U, and the diagonal elements of � as the sin-

gular values. Let f
1; . . . ; 
mg denote the singular values

in descending order. The first k singular values indicate

the least squares approximation accuracy of the best fitting

k-dimensional subspace spanned by the corresponding k
singular vectors. Principal component analysis (PCA) [43],

[45] is another commonly used technique for linear di-

mensional analysis. Instead of the intensity matrix, PCA

computes the eigenvalues and eigenvectors of the scatter

matrix of the images. In computer vision literature, the

singular vectors in SVD and the eigenvectors in PCA are

usually called Eigenimages, and in the case of face images

they are called, appropriately, Eigenfaces.
Fig. 3 displays the magnitude of the first ten sin-

gular values obtained by applying SVD to a collection of

45 image of one human face (in frontal pose and under

45 different point light sources) shown in Fig. 9. The mag-

nitude of the singular values decreases rapidly after the

first three singular values. In [14], PCA was applied to

images of non-Lambertian objects. The conclusion from

this empirical study is surprising in that 5 � 2 Eigenimages
are sufficient to model the effect of lighting for objects

with a wide range of reflectance properties.

We remark that linear algebraic techniques, such as

matrix factorization, SVD and PCA, have been the

dominating and preferred mathematical tools in modelling

Fig. 3. The magnitudes of first ten singular values for 45 images in

fixed pose under differing lighting of the person shown Fig. 9.

In this example, the first three eigenvalues account for

more than 97% of the energy. The four Eigenfaces corresponding

to the largest four eigenvalues are also displayed.
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and analyzing illumination effects for a fixed viewpoint
and object. This can be partially attributed to the fact that

many illumination models are linear. The sources of this

apparent pervasive linearity are the superposition princi-

ple of illumination and the quasi-linear nature of the

Lambertian reflectance model. To analyze the illumination

effects across a range of different objects and viewpoints,

multilinear techniques have become popular recently [27],

[58], [59]. In analyzing the illumination effects for a fixed
viewpoint and object, we have stacked the vectorized

images horizontally fI1; . . . ; Img to form the intensity

matrix I. In other words, the data (intensity values) are now

indexed by two integers Iij, where i indexes the pixels and

j indexes the illumination conditions. To incorporate other

variations into the model such as pose variation, we need to

stack the vectorized images in different directions. The

resulting mathematical structure that encodes the intensity
values is a tensor of rank greater than two. In particular, for

a collection of images that contains both pose and

illumination variations, the intensity values Iijk form a

tensor of rank 3, where i indexes the pixels as before, and j
and k index the illumination and pose variations, respec-

tively. Using tensorial representations, higher order

singular value decomposition and other tensor decompo-

sition results can be applied to compute linear subspaces.
We refer the reader to [27], [58], [59] for more details.

D. Modeling Reflectance and Illumination Using
Spherical Harmonics

The effective low dimensionality of C that we have just

discussed clearly begs for explanations. This empirical ob-

servation can be elegantly explained via a signal processing

framework using spherical harmonics [2], [33], [34]. The

key conceptual advance is to treat a Lambertian object as a

Blow-pass filter[ that turns complex (high frequency)
external illumination into a smoothly shaded image. In

the context of illumination, the signals (the illumination

and BRDF) are functions defined on the sphere, and

spherical harmonics are the analogue of the Fourier

basis functions.

Spherical harmonics, Ylm, are a set of functions that

form an orthonormal basis for the set of all square-

integrable ðL2Þ functions defined on the unit sphere. Ylm,
indexed by two integers l (degree) and m (order) obeying

l � 0 and �l � m � l, has the following form:

Ylmð�; �Þ ¼ NlmP
jmj
l ðcos �Þeim� (4)

where Nlm is a normalization constant, and P
jmj
l are the

Legendre polynomials. Illumination can then be ex-

pressed in terms of this basis as Lð�; �Þ ¼
Pk

l¼0Pl
m¼�l almYlmð�; �Þ. Since the spherical harmonics are

complex-valued functions while the illumination function
L is real-valued, in practice, the expansion above is

computed using real-valued basis functions Y 0
lm, which are

the real and imaginary components of the spherical har-

monics. Conveniently, each Y 0
lm can be written as a poly-

nomial of degree l in the usual Cartesian coordinates x; y; z.

As shown in [2], [34], Lambertian reflectance can be

cast as a linear filter whose truncated cosine kernel can

also be expressed in a spherical harmonic basis. Because

the kernel does not have a �-dependency, odd order terms

for l 9 1 vanish. In addition, more that 99% of the
L2-energy of the kernel is captured by the terms where

l � 2. Because any high-frequency ðl 9 2Þ component of

the lighting function Lð�; �Þ will be severely attenuated,

the Lambertian kernel is said to act as a low-pass filter.

For l � 2, there are nine spherical harmonic basis

functions (one of order 0, three of order 1, and five of

order 2). We can define the nine harmonic images Ii taken

under the virtual lighting conditions specified by the nine
spherical harmonics. The far-reaching consequence is that

although lighting conditions are infinite-dimensional (the

function space for Lð�; �Þ), the illumination effects on a

Lambertian object can be approximated by a 9-D linear

subspace H (the harmonic subspace) spanned by the

harmonic images Ii, i.e., C can be approximated well by H.

While the illumination cone provides a satisfying

characterization of C, its exact computation is, in principle,
not feasible for most objects. This is because the number of

generators is quadratic in the number of distinct surface

normals, and for many objects, this number is on the same

order as the number of pixels. As an example, for a typical

200 � 200 image, there are roughly 1.6 billion generators.

Each generator is stored as a 200 � 200 image, and hence

it requires at least 64 terabytes to store all generators. The

analysis based on spherical harmonics, and the empirical
evidence suggests that an illumination cone can be

approximated by a 9-D subspace, and this only requires

storing 9n numbers. In [28], [29], an alternative approx-

imation is presented.

IV. RECOGNITION FOR FRONTAL POSE,
VARIABLE ILLUMINATION

In this section, we discuss six recently published algo-

rithms [2], [12], [17], [28], [42], [52] for face recognition

under varying illumination. All of these use an image-

based metric, and except for [12], the common feature

among them is the ability to produce an approximation to

the illumination cone (a low-dimensional linear subspace)

that models the illumination effect using only a handful of

training images.
These algorithms can roughly be categorized into two

types, algorithms that explicitly estimate 3-D face geometry

(depth and/or normals) and albedo [2], [17], [42], [52] and

algorithms that do not [12], [28]. Using 3-D shape allows

the recognition system to consider cast shadows as well as

pose variation. The dimensionality of the datum (images)

can be reduced, for example, using PCA [42]. On the
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reduced space, different classifiers (such as support vector
machines, Bayesian classifiers and nearest neighbor classi-

fiers) can be brought to bear. The approach of harmonic

subspaces [2], [52] provides one way of utilizing surface

normals without explicitly computing the 3-D structure.

Since the basis images are simply polynomials of the surface

normals and albedos, they can be easily computed if the

normals and albedos are known. Obviously, a part of these

algorithms is the recovery of surface normals and albedos
using a few training images. This can be accomplished

either using photometric stereo techniques [17] or employ-

ing probabilistic methods using some learned prior

distributions of normals and albedos [42], [52]. Though

not discussed here, other shape reconstruction techniques

such as stereo and laser range finders could be used to

acquire geometry and registered reflectance.

The algorithms in [12] and [28] do not require 3-D
shape information. In [12], the joint probability density

function (pdf) of image gradients at a given location is

learned empirically from training data, and recognition is

then performed by calculating the maximum likelihood

using this pdf. In [29] a set of training images (as few as

five) are taken under prescribed lighting conditions, and

these images form a basis of a linear subspace that

effectively approximates the illumination cone, and in turn
this leads to good recognition rates.

Georghiades et al. [17]: In this algorithm, surface depth,

normals and albedos of each face are recovered using an

uncalibrated photometric stereo technique [5], [51] to first

estimate surface normals and albedo which is then

integrated to provide 3-D face shape. The input is three or

more images of the face from the same pose but under

differing lighting (see Fig. 4). As constructing a full
illumination cone with Oðn2Þ extreme rays is unreasonable,

the sphere of light source directions is sampled, and a

collection of s images is rendered and used as generators

fe1; . . . ; esg of a cone. Given a probe image x, the face is

recognized by finding the closest cone to x. The distance

from x to a cone is found as the minimum of

kx �
Ps

i¼1 aieik2
subject to the constraint that ai � 0.

This is a convex programming problem, which can be solved

efficiently. A variation is to approximate the sampled cone

as a low dimensional linear subspace computed using

singular value decomposition (11-D in the reported experi-

ments); finding the nearest subspace is easily performed.

Basri & Jacobs [2]: This face recognition algorithm is a

direct application of the illumination model based on

spherical harmonics. Similar to the variation in the pre-
ceding algorithm, it is also a subspace-based algorithm, but

here the appearance model for each individual is a 9-D

linear subspace spanned by the nine harmonic images. To

compute the harmonic subspace, surface normals and

albedo are needed. The effect of cast shadows is not

modeled. Let B ¼ ½b1; . . . ; b9� be the matrix whose

columns are harmonic images of an individual. The face

recognition decision is based on finding the nearest
neighbor using the L2 reconstruction error; for a query

image x, it is given by

min
a

kBa � xk2 (5)

where a can be any 9-by-1 vector.

Sim & Kanade [42]: Surface normals and albedos are

necessary components in the previous two algorithms.
While photometric stereo requires at least three images,

[42] presents a maximum likelihood estimation method

using just one image along with a statistical prior. In this

method, the Lambertian model is augmented with an

additional term

iðxÞ ¼ bðxÞtl þ eðx; lÞ (6)

The extra term eðx; lÞ models the effective ambient il-
lumination, and it depends both on x and l. With aligned

images, it is assumed that the normals of human faces at

Fig. 4. 3-D reconstruction of a human face. (a) The seven gallery images. (b) Reconstruction results rendered with constant albedo (left)

and using the estimated albedos (right). (c) Three synthesized images with new lighting conditions. Note the large variations in shading and

shadowing as compared to the seven training images above.
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pixel x form a Gaussian distribution with some mean �bðxÞ
and covariance matrix CbðxÞ. Similarly, eðx; lÞ is also

assumed to form a Gaussian distribution with mean �eðx; lÞ
and variance 
2

e ðx; lÞ. All the parameters forming the prior

can be estimated from a collection of training images along

with known normals and lighting directions.

With the prior in hand and a given enrollment image,

the face shape is estimated by first estimating the unknown

illumination l [55], [57]. This allows �eðx; lÞ and 
2
e ðx; lÞ to

be computed. The normal and albedo bðxÞ are then recov-

ered as a maximum a posteriori (MAP) estimate bMAPðxÞ ¼
arg maxbðxÞ PrðbðxÞjiðxÞÞ. From the estimated normals and

albedo, a collection of images is rendered under differing

lighting, and a subspace is computed. Recognition is again

based on finding the nearest subspace.

Zhang & Samaras [52]: Instead of estimating normals

and albedos, rendering images, and computing a linear
subspace as in [42], Zhang & Samaras directly estimate the

nine harmonic images from a single training image. The

starting point is an equation similar to (6), namely iðxÞ ¼
bðxÞt�þ eðx; �Þ where this bðxÞ is a 9 � 1 vector that

encodes the values of the nine harmonic images at x, and e
is the error term exactly as before. In place of l, there is a

9 � 1 vector � representing the nine coefficients in the

truncated spherical harmonics expansion of s. Assuming
that bðxÞ forms a Gaussian distribution at each pixel x,

with some mean �bðxÞ and covariance matrix CbðxÞ. As in

[42], these parameters can be estimated from a bootstrap

collection of images. And like [42], � is estimated first

and then a MAP estimate of bðxÞ is determined. Recog-

nition is performed as in [2].

Chen et al. [12]: Unlike the previous algorithms, this

one does not estimate surface normals and albedos, and it
requires only a single training image. It is essentially

probabilistic in the sense that the algorithm depends cri-

tically on a prior distribution. In this case, the distribution

is on the angles between image gradients, and it is obtained

empirically from a set of training images of human faces.

Here, the joint probability density function � for two

image gradients can be used as an illumination insensitive

measure. If we treat each pixel independently, the joint
probability of observing the images gradients rI and rJ of

two images I and J of the same object is

PðrI;rJÞ ¼
Y

i2Pixels

�ðrIi;rJiÞ

¼
Y

i2Pixels

� r1ðiÞ; �ðiÞ; r2ðiÞð Þ (7)

where r1ðiÞ ¼ jrIðiÞj, r2ðiÞ ¼ jrJðiÞj, and � is the angle

between the two gradient vectors. With this prior proba-

bility �ðr1ðiÞ; �ðiÞ; r2ðiÞÞ on image gradients and given a

query image I, PðrI;rJÞ is computed for every training
image J. The training image having the largest value of

PðrI;rJÞ is considered to be the likeliest to have come
from the same face as the query image I. No subspace is

involved, and the computation is exceptionally fast and

efficient.

Lee et al. [29]: Implementation-wise, this is perhaps

the simplest algorithm. The main insight is to use a specific

configuration of point light sources such that real images

taken under these lights can directly serve as basis vectors

spanning a subspace that accounts for shading variation,
and to some extent cast shadows and non-Lambertian

effects. Since spherical harmonic functions have negative

values, such lighting is not directly physically realizable,

and in general it is extremely difficult to precisely realize a

source distribution that broadly varies as a function of

direction. Instead, it is shown in [28], [29] that there exists

a configuration of nine (or fewer) lighting directions such

that for any individual, the subspace spanned by images
taken under these lighting conditions lies near the

individual’s harmonic subspace H and effectively approx-

imates the individual’s illumination cone C. Recognition

again proceeds by finding the nearest subspace. Fig. 6

shows the nine light source positions and nine images of a

face taken under the corresponding lighting.

V. RECOGNITION UNDER VARIABLE
POSE AND LIGHTING

The previous sections considered the theory and algorithms

for recognizing faces in fixed pose, but under varying

illumination. In this section, we consider the situation

where both sources of variability are present. As most

systems for frontal face recognition are appearance-based,

it is natural to try to extend these methods to more general
settings. As demonstrated for example by the work on

Eigenlight fields [20], [59] and Bayesian Face Subregions

[25], appearance-based methods can be extended to handle

pose variation. Yet, the recognition rates of such appear-

ance-based techniques when extended to handle both

lighting and pose are not yet satisfactory [19]. What has

proven to be effective is the use of a 3-D generative model.

First, we briefly describe an extention of the methods for
variable lighting from the previous section, and then

consider 3-D Morphable Models in more detail.

A. Illumination Cone Models for Varying
Pose and Lighting

While the set of images of an object in fixed pose but

over all illumination conditions is a convex cone (which

can be approximated by a linear subspace), the set of
images over variable pose and lighting can be characterized

as a family of cones (subspaces) swept out as the pose is

continuously varied with one cone per pose. The method

proposed in [17] for fixed pose and described in Section IV

can be generalized immediately to multiple poses by

sampling the pose space, and for each pose a subsapce

approximation to the cone can be constructed. Hence, the
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representation for an individual is the union of low-
dimenional subspaces (In the experiments reported below,

117 subspaces of dimension 11 were used). For a probe

image, recognition is performed by computing the

minimum distance to all of these linear subspaces. To

speed this computation, principal component analysis can

be performed on the 117 � 11 ¼ 1287 basis images, and the

basis vectors of each subspace can be projected to a lower

dimensional subspace of the image space.

B. 3-D Morphable Model
In this section, we consider a generative model for

predicting an individual’s appearance under arbitrary pose

and lighting, namely the 3-D Morphable Model [7], [8]

which can be used to address one of the most challenging

problem of face recognition: estimating the 3-D shape,

albedo, pose, and illumination from a single image viewed
from unconstrained pose and illumination conditions. It is

based on strong prior knowledge of the statistical variation

of the shape and texture of human faces (the texture is

defined as the albedo values for a complete object) and a

model simulating the physical interaction of light and a

face’s surface. The Morphable Model is generic and

effectively characterizes a broad population of people. It

can be applied to face recognition on images exhibiting
simultaneous variations of pose and illumination, using

just one photograph per individual in both the gallery and

probe sets (see Fig. 7).

One of the reasons for the accuracy of the Morphable

Model is that many of the illumination phenomena are

modeled, thereby maximizing the image information used

in the estimation: non-Lambertian effects such as specular

highlights and cast shadows provide cues about the 3-D
shape that are used to increase the quality of its estimation.

In particular, the 3-D shape is explicitly modeled by a

dense set of 3-D points, and so global illumination effects,

such as cast shadows, can be used in the image analysis

algorithm (see Section V-C). Furthermore, the relative 2-D

image location of facial features depends on both the

individual’s 3-D shape and on her pose. The 3-D shape

model of the Morphable Model represents these geometric
variations explicitly. Hence, 1) the pose can be naturally

separated from the shape and 2) facial features can be

registered together on a reference frame, thereby pro-

ducing photorealistic novel views (see Fig. 7) free of arti-

facts such as double contours and blur visible, for example,

on Fig. 5.

The essence of the 3-D Morphable Model is that accu-

rate and general face recognition is possible by the sepa-
ration of the different sources of variation present in facial

images, and their representation using independent sets of

parameters: physical effects, such as pose and illumination

variations, are modeled using physical principles borrowed

from the computer graphics field, whereas variations of

identity present in a large population sample are modeled

statistically.

The Morphable Model originated more than a decade

ago [7], [8], [36]–[38], [46]–[48]. Initially, ideas as Linear

Object Class, separation of shape and texture and view
generalization from a single image were developed, which

led to the model part of the 3-D Morphable Model. Then,

emphasis was put on developing a robust, fast and accurate

analysis algorithm. The image analysis algorithm has now

matured and is outlined in Section V-C.

There is no illumination invariant (see Section III-A).

This means that estimating the 3-D shape of a face from a

single photograph is an ill-posed problem: the only clue
available in a single image about depth is contained in the

shading and the shadows. However, using this information

requires the illumination environment, the reflectance, and

the texture of the face to be known. As these are generally

not known, the problem is ill-posed. One way out of this

dilemma is by using prior knowledge. The Morphable

Model is a representation of this prior knowledge in that it

parameterizes a large population of possible faces, and is
independent of extrinsic factors such as pose and illumina-

tion. We will see, in the rest of this paper, that this prior

constrains the estimation problem sufficiently.

In computer graphics, objects such as human faces can

be represented by a mesh that includes a dense set of

vertices and a triangle list that specifies the connectivity

between the vertices. Associated with each of the Nv

vertices is its 3-D position and RGB albedo. These can be
arranged in a 3 � Nv shape matrix, S and a 3 � Nv texture

matrix, T

S ¼
x1 x2 � � � xNv

y1 y2 � � � yNv

z1 z2 � � � zNv

0
B@

1
CA

T ¼
r1 r2 � � � rNv

g1 g2 � � � gNv

b1 b2 � � � bNv

0
B@

1
CA: (8)

Fig. 5. Hallucinated images (courtesy of [42]). Four synthetic images

using estimated normals nðxÞ and eðx; sÞ (top row) and actual

images under the same illumination (bottom row).
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An image of this object can then be produced by rotating

the object in 3-D, then projecting it onto the image frame,

using a perspective projection that represents the way a

human observer (with one eye) perceives a 3-D scene

W ¼R
R�R�Sþ �w11�Nv
(9)

xi ¼ f
W1;i

W3;i
yi ¼ f

W2;i

W3;i
: (10)

In this equation, R
 , R�, and R� are rotation matrices

along the three Euclidean axes, �w is a 3 � 1 vector

representing a 3-D translation, f is the focal length of the

camera model, and xi and yi, i ¼ 1; . . . ;Nv, are the 2-D

projections of each modeled vertex. These vertices are

generally projected at noninteger locations in the image
frame. In order to obtain the values at pixel positions, the

vertices are interpolated using the triangle list.

This geometrical transformation details where a vertex

is to be drawn in the image. The color that must be drawn

at that location depends not only on the texture matrix T,

but also on the way light is reflected from the surface. As

mentioned in Section II, a model of the surface reflection

is known as a BRDF. In computer graphics, many elaborate
BRDF models have emerged that account to various

degrees for complex reflection phenomena. For the

Morphable Model, we chose to use the Phong reflectance

model that considers the diffuse and specular reflections.

More elaborate BRDF models could be used instead, such

as the Cook–Torrance [13], Torrance–Sparrow [44], or

Lafortune [26] models, which better approximate more

complex effects. The Phong model specifies that, when

illuminated from a distant light source with unit-length

direction ~l and colored intensity ðldr ; ldg ; ldbÞ, and with an

ambient light of intensity ðlar ; lag ; labÞ, a vertex albedo

represented in a column, ~ti, of the texture matrix, T, is

transformed as follows:

tI
i ¼

lar 0 0

0 lag 0

0 0 lab

0
B@

1
CA � ti þ

ldr 0 0

0 ldg 0

0 0 ldb

0
B@

1
CA

� ð~ni �~lÞti þ ksð~vi �~riÞ�13�1


 �
: (11)

In these equations, ks represents the specular reflectance

of human skin (the higher ks, the more shiny), and �, the

angular distribution of the specular reflections of human

skin (the lower �, the larger the highlight). ~vi is the unit-
length viewing direction between vertex i and the camera

center. The unit-length vector~ri is the reflection direction

of the light, computed from ~ni and~l.
The first term of (11) is the contribution of the ambient

light. The first term of the last parenthesis is the diffuse

component of the directed light, and the second term is its

specular component. To account for attached shadows,

these two scalar products are lower bounded to zero. To
account for cast shadows, a shadow map is computed from

the global 3-D shape matrix, S, using standard computer

graphics techniques [15]. The vertices in shadows are

illuminated by the ambient light only. As can be seen in

(11), only one directional light source is modeled. In

theory, any finite number of light sources can be used.

Fig. 6. Left: The configuration of nine light source directions under which the images on the right are acquired spherical coordinates ð�; �Þ (on S2)

of the nine directions are {(0, 0), (68, �90), (74, 108), (80, 52), (85, �42), (85, �137), (85, 146), (85, �4), (51, 67). Right: nine images of

a person illuminated by these lights.
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However, using multiple light sources could increase the
difficulty of the analysis algorithm (as the optimization

algorithm would have more local minima). The techniques

based on modelling the effects of illumination using linear

subspaces described in the previous section can handle

multiple, distributed sources and recently there has been

an effort to wed the shape representation of morphable

models with spherical harmonic lighting [54].

Using a mesh model as described above, the image of a
particular human face, at any pose when illuminated from

a particular direction, can be synthesized given its shape S,

and its albedo T. To extend the mesh model so that it can

be generic and represent many faces, S and T in the 3-D

morphable are parameterized as a linear combination of

exemplar 3-D faces, so that a particular set of parameters

gives the S and T for a particular individual. To this end,

200 human faces were acquired using a Cyberware laser
scanner. If linear combinations were computed on raw

scans, nonrealistic faces would be generated: blurry faces
with artifacts such as double contours. To eliminate this

undesirable effect, a preprocess is applied to the scanned

faces: the ensemble of scans is registered and put into

correspondence with a reference face. A consistent

labeling of all vertices is introduced. A vertex, say, the

tip of the nose, is represented by the same vertex index

for all faces. This ensures that when a linear combination

is performed, the same facial features are added together.
For some values of the shape and texture linear

coefficients �i and �i, the resulting mesh may not actually

be very face-like, and so a probability distribution is

learned from examples and placed over the model

parameters. We chose to model this as Gaussian distribu-

tion. PCA is applied to the registered shape and texture

exemplars, yielding NS shape and NT texture principal

components, Si and Ti, respectively, and the standard
deviation for each principal component, 
S;i and 
T;i. The

Fig. 7. To compare two images, the 3-D Morphable Model analyzes each image individually by estimating the 3-D shape, albedo, pose, and

illumination parameters. Then, a pose and illumination normalization is performed. Face recognition can be applied by comparing the

normalized shape and albedo model parameters.

Romdhani et al. : Face Recognition Using 3-D Models: Pose and Illumination

Vol. 94, No. 11, November 2006 | Proceedings of the IEEE 1987



face of any individual can then be obtained by a linear
combination of principal components

S ¼ Sþ
XNS

i¼1

�i � Si; T ¼ Tþ
XNT

i¼1

�i �Ti (12)

where S and T are the average of the shape and texture

datasets, respectively. The probability of a given shape and
texture are then directly obtained from their coefficients,

�i and �i

pðSÞ � e
�1

2

P
i

�2
i


2
S;i ; pðTÞ � e

�1
2

P
i

�2
i


2
T;i : (13)

Using the Morphable Model framework, the image of the

face of any individual seen from any angle and illuminated
from any direction can be obtained from the shape pa-

rameters �i, the texture parameters �i, the shape projection

parameters, and the illumination parameters as follows:

Im xið�Þ; yið�Þð Þ ¼ tI
ið�Þ (14)

where xi and yi are computed by (10), and~tI
i , by (11), and �

denotes the ensemble of model parameters.
In a nutshell, the prior models accounting for the

variations of the face image are devised as follows:
Gaussian probability models for the registered 3-D shape
and albedo, a Phong reflectance model, a single directed
light source for the illumination model, and, finally, pose
variations are modeled by the physical law of rigid body.

C. Face Image Analysis
The previous section described a generative model able

to synthesize a photorealistic image of a human face from
model parameters. In vision, the problem is the inverse:
how to infer the model parameters explaining a given input
face image? We address this problem in an analysis by
synthesis framework. The task is to find the model pa-
rameters such that the face image rendered from these
parameters Imðx; yÞ is as close as possible to the input
image Iðx; yÞ. Mathematically, this can be formulated by
maximizing the posterior probability of the model pa-
rameters given the input image. Using Bayes theorem and
assuming that the image pixels are independent and
identically distributed with a Gaussian noise 
I gives rise
to the following equation:

min
�

X
i

1


2
I

I xið�Þ; yið�Þð Þ � tI
ið�Þ



 

2þ
XNS

i¼1

�2
i


2
S;i

þ
XNT

i¼1

�2
i


2
T;i

:

(15)

In this cost function, the first sum is the likelihood of the
model image, which ensures that the resulting face agrees
with the given input image, and the next two sums
represent the prior probabilities, that ensure that the face
obtained is a likely face [see (13)].

As with most nonlinear optimization algorithms, it

must be started using an initial estimate. Typically, the
initial shape and texture parameters are their means, and

the pose and light direction are taken to be frontal.

Additionally, seven landmark points (around the eyes,

mouth, and nose) must be manually provided and put into

correspondence with the model.

In (15), the texture and shape PCA models are employed

to constrain the set of possible solutions. A lighting model is

also used, the Phong reflectance model, which has a few
parameters when only one light source is handled.

However, even these prior models are not strong enough

to obtain an accurate estimate of the 3-D shape when only a

few manually set anchor points are used as input. This is

because the cost function to be minimized is highly non-

convex and exhibits many local minima. In fact, the shape

model requires the correspondence between the input

image and the reference frame to be found for every visible
vertices. Using only facial color information to recover the

correspondence is not optimal and may be trapped in re-

gions that present similar intensity variations (eyes/eyebrows,

for instance). This is why, we use not only the pixel in-

tensities but also other features of the input image to obtain

a more accurate estimate of the correspondence and, as a

result, of the 3-D shape. One example of such a feature is

the edges. Other features that improve the shape and texture
estimate are the specular highlights and the texture con-
straints. The specular highlight feature uses the specular

highlight location, detected on the input image, to refine the

normals and, thereby, the 3-D shape of the vertices affected.

The texture constraint enforces that the estimated texture

lies within a specific range (typically [0, 255]), which

improves the illumination estimate. The overall resulting

cost function is smoother and easier to minimize, making
the system more robust and reliable. A question raised by

this problem is how to fuse the different image cues to form

the optimal parameter estimate. We chose a Bayesian

framework and maximize the posterior probability of the

parameters given the image and its features.

This analysis algorithm, called the Multiple Feature

Fitting algorithm, is briefly outlined here; a more detailed

explanation is provided in [35], [38]. It is demonstrated in
[35], [38] that, if the features (pixel intensities, edges and

specular highlights) are independent and extracted from

the input image by a deterministic algorithm, then the

overall cost function is a linear combination of the cost

function of each feature taken separately

min
�

� cCc þ � eCe þ � sCs þ �pCp þ � tCt (16)
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where Cc ¼
P

ið1=
2
I ÞkIðxið�Þ; yið�ÞÞ � tI

ið�Þk
2

denotes
the pixel intensity feature, CP ¼

PNS

i¼1ð�2
i =


2
S;iÞþPNT

i¼1ð�2
i =


2
T;iÞ denotes the prior feature, and Ce, Cs, and

Ct denote, respectively, the edge, specular highlights, and

texture constraints cost functions. The � ’s are weighting

parameters. A detailed explanation of these cost functions

is provided in [38]. The overall cost function is minimized

using a Levenberg–Marquardt optimization algorithm [32].

Graphically, the Multiple Feature Algorithm is described
in Fig. 8.

The image edges provide information about the 2-D

shape independent of the texture and of the illumination.

Hence, the cost function used to fit the edge features

provides a more direct constraint on the correspondences

and on the shape and pose parameters. This is why it can

be seen in Fig. 8 that the plot of the edge cost function

across azimuth direction is much smoother than the one of
the pixel intensity feature. The edge feature is useful to

recover the correspondences of specific facial character-

istics (eyes, eyebrows, mouth, nose). On the other hand, it

does not carry much depth information. So it is beneficial

to use the edge and intensity features in combination.

The specular highlights are easy to detect: the pixels

with a specular highlight saturate. Additionally, they give a

direct relationship between the 3-D geometry of the

surface at these points, the camera direction, and the light
direction: a point on a specular highlight has a normal that

has the direction of the bisector of the angle formed by the

light source direction and the camera direction. Hence,

the specular highlight cost function is used to refine the

shape estimate for the vertices that are projected onto

specular highlights of the input image.

In order to accurately estimate the 3-D shape, it is

necessary to recover the texture, the light direction, and its
intensity. To separate the contribution of the texture from

light in a pixel intensity value, a Gaussian texture prior

model is used [see (13)]. However, it appears that this

prior model is not restrictive enough and is able to in-

stantiate invalid textures (negative and overflowing color

values). To constrain the texture model and to improve the

separation of light source strength from albedo, we intro-

duce a feature that constrains the range of valid albedo
values.

VI. EXPERIMENTS AND ALGORITHMS
COMPARISON

In this section, we discuss the performance of the face

recognition algorithms summarized in the previous

sections. In the identification task reported here, an image

Fig. 8. 3-D shape, texture, and imaging parameters are estimated using the pixel intensity, the edges, and the specular highlights detected

in the input image, shown on the top row. Additionally, two model-based features are used: the 3-D Morphable Model prior and texture

constraints. Second row: plots of each feature cost function along the azimuth angle. These cost functions are combined yielding a

smoother function that the one based on pixel intensity alone, which is then minimized.
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of an unknown person is provided to the system under

evaluation. The unknown face image is then compared to a

database of known people, called the gallery set, which

may include one or several images of each individual. The

ensemble of unknown images is called the probe set. It is
assumed that the individual in the unknown image is

present in the gallery (i.e., this is not a verification

experiment). The algorithms mentioned in Section VI-A

need to adjust their internal parameters for each individual

in the gallery set. Hence, the gallery set is called training

set, as the gallery images are used to train the system.

The algorithms are tested below using subsets of

two face databases that have become the de facto stan-
dards in the past few years for studies of variable lighting

and pose. Set 1: The Yale Face Database B [17] contains

ten individuals acquired under 64 different illumination

conditions and nine poses (a sample of the Yale database

is shown in Fig. 9). For the Experiments reported in

Section VI-A, only frontal pose and 45 illumination con-

ditions were used, and this is called Set 1. The images

are grouped into four subsets according to the angle of
the lighting with respect to the camera axis. The first

two subsets cover the angular range 0� to 25�, the third

subset covers 25� to 50�, and the fourth subset covers 50�

to 77�. The heavily shadowed images in subset four are

the most challenging for face recognition.

Datasets 2 and 3 include two different portions of

the Pose, Illumination and Expression (PIE) database

from CMU [41]. The full PIE database contains images of
68 individuals, 43 illumination conditions (21 source di-

rection with or without additional ambient light), 13 poses,

and with four different expressions. Set 2: This set in-

cludes a portion of the CMU-PIE database, which, similar

to Set 1, is restricted to the frontal pose photographs taken

in a neutral expression. Apart from being extracted from

two different databases, the main differences between

Sets 1 and 2 is that Set 2 has more images of more

individuals than in Set 1, while Set 1 has more images
under more difficult lighting conditions. Set 3: The pur-

pose of this set is to experiment with the performance of

algorithm when confronted with both pose and illumina-

tion variation. It includes another portion of the CMU-PIE

database. It contains photographs of 68 individuals, illu-

minated from 22 directions plus ambient illumination

and viewed from three poses (frontal, side, and profile).

Each individual is photographed 3 � 22 times. Example
images of this dataset are shown in Fig. 10.

A. Frontal Pose, Varying Illumination
Here we report identification performance of the

algorithms outlined in previous sections on the frontal

pose, varying illumination problem. While these recogni-

tion algorithms are quite robust against illumination

variation, they differ from each other in two fundamental
ways: by the number of training images and by the way

subspaces are computed from the training images.

Table 1 summarizes the experimental results using Set 1

(Yale face database B). Methods are trained from images in

Subset 1, and tested on all subsets. The first four rows

Fig. 9. Example images of a single individual in frontal pose from

the Yale Face Database B showing the variability due to illumination

(Set 1). The images have been divided into four subsets according

to the angle the light source direction makes with the camera

axisVSubset 1 (up to 12�), Subset 2 (up to 25�), Subset 3 (up to 50�),

Subset 4 (up to 77�).

Fig. 10. Example of CMU-PIE dataset (Set 3) photographs. Top rows:

ambient light only. Two middle rows: illuminated by ambient light

and some of the 21 light directions. Bottom row: photographs

of the three different poses.
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contain the result of using well-established and Bbaseline[
algorithms that do not provide significant illumination

modeling. The next eight rows display the results of using

more sophisticated illumination modeling. The difference
in performance between these two categories of algorithms

is apparent: while the total error rates for the former

category hover above 20%, algorithms in the later category

can achieve less than 1% error rates. Note that different

algorithms require different numbers of training images,

and in evaluating algorithm performance, we have tried to

use the same number of training images whenever possible.

Before going further, we briefly describe the five
baseline algorithms [17]. Correlation is a nearest-neighbor

classifier in the image space [10] in which all of the images

are normalized to have zero mean and unit variance.

Eigenfaces uses PCA to obtain a subspace from the training

images [45]. One proposed method for handling illumina-

tion variation using PCA is to discard the first three most

significant principal components, which, in practice,

yields better recognition results [3]. The 3-D linear
subspace method uses the 3-D illumination linear subspace

L in (3) as a representation. While this method models the

variation in shading when the surface is completely

illuminated, it does not model shadowing. Note also that

two variations of the illumination cones method were em-

ployed. In the BCone-attached[ and BCone-cast[ methods,

images without and with cast shadows were used to

compute the illumination cones, respectively.
There are several ways to understand the results in

Table 1. First, recognition is generally easier in images

taken under frontal illumination. As expected, the images

with more shadowing (those from Subsets 3 and 4) are the

main challenges. As the first four Bbaseline[ algorithms

clearly demonstrate, it is difficult to robustly perform

recognition for these images without any significant

illumination modeling. Second, linear subspace models
are indeed an effective tool for modeling illumination. This

is validated by the following experiment: Instead of

computing the minimum distance to the 9-D subspace

spanned by the 9 gallery images per subject as in the 9PL

method, recognition can be performed based on the

minimum distance to these nine images. In this later case,

the error rate becomes 22.6% versus the perfect rate

reported in Table 1. While the same gallery images are
being used, the effectiveness of the 9PL method is due to

the ability of the subspace to correctly extrapolate images

under novel illumination conditions.

While the on-line recognition processes for the more

accurate algorithms in Table 1 are similar, they differ

significantly, however, in their off-line training processes.

For algorithms that required surface normals and/or 3-D

shape, at least three training images are needed for each
subject to be identified. In this experiment, typically six

frontally illuminated images were used to estimate the

shape and albedos using photometric stereo techniques.

Although BHarmonic Exemplar[ can use just one training

image, it requires the priors on harmonic images that can

only be obtained using an off-line training process that

typically requires a large number of training images.

BGradient Angle[ is similar in that priors on the angles
between image gradients have to be estimated empirically.

Perhaps, the simplest algorithm conceptually and in

implementation is B9PL.[ Since there is practically no

training involved here, one simply needs to obtain images

Table 1 The Error Rates for Various Recognition Methods on Subsets of the Yale Face Database B. Each Entry is Taken Directly From

a Published Source Indicated by Citation

Romdhani et al. : Face Recognition Using 3-D Models: Pose and Illumination

Vol. 94, No. 11, November 2006 | Proceedings of the IEEE 1991



of a person taken under nine specified lighting conditions.
Further experiments have also shown that a five-dimen-

sional subspace (B5PL[) may be sufficient for robust face

recognition.

Experiments have also been reported in the literature

using two variants of Set 2 (CMU-PIE database, frontal

pose, 22 or 23 illumination conditions). In [29], it has been

demonstrated that using only a 7-D subspace for each

individual (i.e., seven training images per person), an
overall recognition error rate of 2.8% can be achieved for a

variant of Set 2 where only the direct source is present (No

ambient lighting). On the same dataset, Sim and Kanade

[42] report an error rate of 5%, though only a single image

is used for training. On a variant of Set 2 containing images

with both ambient lighting and a directional light source,

the error rate is 0.1% using the 3-D Morphable Model and

with a single image per individual in the gallery set (more
details on this experiment are provided in the next

section). In general, the results are not directly compara-

ble since as shown in [29], recognition becomes easier

when the lighting contains a larger diffuse component.

B. Variable Pose and Illumination
We now consider the performance of the two

techniques for using a generative model to handle both
pose and lighting variation.

Experimental results for the technique based on il-

lumination cones is evaluated on the Yale Face Database B.

For ten subjects, the representations are constructed from

seven gallery images in frontal pose with near frontal

lighting (images from Subset 1). Fig. 11 shows the ability of

the method to extrapolate from frontal to nonfrontal poses
with complex lighting. On the left, probe images are

shown along with the closest (synthetic) image in the

representation. In the table on the right, the error rate

over 4050 images is shown as a function of increasing

pose angle. As a baseline, the illumination cone method

is compared to the simplest appearance-based method,

nearest neighbor recognition to the gallery images. The

illumination cone representation was constructed using
photometric stereo in two ways, assuming Lambertian

reflectance and the Torrence–Sparrow reflectance model.

For more details, see [16], [17].

We now investigate the performance of the 3-D

Morphable Model and its Multiple Feature Fitting

algorithm in an identification experiment. For these tests,

we chose to use Set 3, (the subset of the CMU-PIE face

image database [40] that presents variation in both pose
and illumination for 68 individuals). Observing the best

practices for face recognition systems evaluation men-

tioned in the introduction, the individuals in the PIE

database are not included in the training set used to

construct the Morphable Model. In this experiment, the

gallery set includes a single image per individual photo-

graphed in an unknown pose and under unknown

illumination conditions.
For each probe image, the 3-D Morphable Model is

first fit to the image. Then, identification is performed by

comparing the fitting result of the probe image to those of

gallery images in two ways: either the identity-specific

model parameters (the shape �i and texture �i parameters)

are compared, or the pose and illumination normalized

Fig. 11. Extrapolation in pose: left: upper row shows three images of a face from the probe set, while the lower row shows the closest

reconstructed images from illumination cone representations. Note that these images are not explicitly stored or directly synthesized

by the generative model, but instead lie within the closest matching 11-D linear subspace. Right: error rates (%) as the viewing direction

increases. The three methods have been trained on seven images per person from Subset 1 (near-frontal illumination), Pose 1

(frontal pose). Note that each reported error rate is for all illumination subsets (1 through 4). The ‘‘frontal pose’’ includes

450 test images, the ‘‘12 degree’’ (poses 2, 3, 4, 5, 6) includes test 2250 images, and the ‘‘24 degree’’

(poses 7, 8, 9) includes 1350 test images.
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images (see Fig. 7) can be compared. First, an experiment

using the model parameter is described, and then an
experiment carried out in the Face Recognition Vendor

Test 2002 [31] on normalized images is reported.

1) Identification From Model Parameters: In the 3DMM

framework, facial images are compared based on the

combined shape and texture model parameters (denoted

by cg and cp for gallery and probe, respectively), using the

following metric (denoted by D):

c ¼ �1; . . . ; �NS
; �1; . . . ; �NT

½ �

D ¼
cTg cpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cTg cg


 �
� cTp cp


 �r : (17)

Three set of experiments were performed with the

3DMM in which the gallery images contained different

poses. In each case, the probe set included all the other

images of the CMU-PIE dataset. The probe set was divided

into three sets also according to the pose. The results

reported on the first three rows of Table 2 are identification

error percentage averaged over each probe set obtained
with the 3DMM. For each cell, the average is taken over all

22 illumination conditions of the probe set (as the gallery

set includes only images with a front illumination).

As a comparison, results obtained on the same (or

similar) dataset with three recent methods are presented.

Zhang et al. [54]: combines Spherical Harmonics to

model illumination and a 3DMM to model albedo and

shape. A drawback of this method is that the normals used
for illumination are independent from the normals of the 3-

D shape. They are statistically modelled in conjunction

with albedo: modifying the albedo cannot be done without

modifying the normals and the reflectance, which contra-

dicts the desirable behavior of coding different physical

phenomena using distinct parameters. In fact the 3-D shape
model is only used for geometrical alignment. A conse-

quence of this is that the 3-D shape is not estimated from

the shading as in the case of the 3DMM, but from a set of 60

manually marked image feature points located on the

silhouette and on the inner part of a face (eyes, eyebrows,

mouth, and nose). Thus, this method requires much more

human operator input than the 3DMM fitting algorithm to

analyse an image (seven feature points are required for the
3DMM). Additionally, it was demonstrated in [35], using a

synthetic example, that correspondence information alone

cannot be used to estimate accurate 3-D shape. In fact, we

think that, in single image analysis, the main reason for

using an illumination model is to enable 3-D shape esti-

mation. These impediments may explain the lower iden-

tification performance compared to the 3DMM (Table 2).

An advantage of the Zhang and Samaras method over the
3DMM is that multiple light sources are explicitly modeled

and accounted for in the analysis algorithm.

Zhou & Chellappa [59]: Results of the pose and

illumination invariant face recognition of Zhou &

Chellappa [59] are provided for a frontal gallery pose.

This algorithm is an image-based multiview appearance

method that uses an approximation of the Lambertian

model for illumination (attached and cast shadows are
ignored and the pixels estimated in the shadow treated as

outlier).

Yue et al. [50]: The Pose-encoded spherical harmonics

method is a direct extension of the Zhang & Samaras [52]

method to the pose invariant case, thereby achieving

combined pose and illumination invariance. Similar to

[52] variations due to multiple light sources are modeled

using a spherical harmonic based model. View invariance
is obtained by generating a frontal view from a face image

at any view, by applying a 2-D linear warping. This warping

is defined by a set of 63 manually marked feature points.

Table 2 Mean Identification Error Percentage for Different Methods Obtained for the PIE Data Set, Averaged Over All Lighting Conditions for Front, Side,

and Profile View Galleries. All the Experiments Included a Single Image per Individual in the Gallery Set With a Front Illumination Condition

Romdhani et al. : Face Recognition Using 3-D Models: Pose and Illumination

Vol. 94, No. 11, November 2006 | Proceedings of the IEEE 1993



Results from this method were only reported on the frontal
gallery, side view pose.

We mentioned in the Introduction the difficulty of

empirical comparison due to the different testing proce-

dures: indeed, the comparison between the first two

systems and the last two is misleading. Although they are

evaluated on the CMU-PIE image set, Zhou & Chellappa

and Yue et al. used the set without ambient illumination

whereas images with ambient illumination were used for
the 3DMM and the Zhang & Samaras. Zhou & Chellappa

trained their system on half of the images of the CMU-PIE

database, the other half being used to form the gallery and

testing sets. Hence, the gallery sets included only 34

individuals, whereas all 68 individuals of the dataset were

used to evaluate the other systems (as they were not

trained on the same CMU-PIE dataset, but on a completely

different dataset).
Table 2 indicates that, although the problem addressed

by the 3DMM is more difficult (it uses far less human

operator input than the Zhang & Samaras and Yue et al.
systems and its gallery is twice as large as the one of Zhou &

Chellappa), the Morphable Model provides significantly

better generalization performance across illumination and

pose. We conjecture that the reason for its improved per-

formance is that the 3DMM makes fewer assumption on
the image formation process and uses more image

information than the other systems: Compared with [54],

the 3DMM estimates the shape using the shading of the

pixels in the face area and not from the 2-D coordinates of

a sparse set of manually marked feature points. Compared

with [59], the 3DMM treats explicitly a face image as a

projection of a 3-D object, whereas [59] attempts to learn

pose variation using statistical techniques. Moreover,

when this technique compares two images, the corre-
sponding pixels are not adjusted during image analysis,

making the comparison less precise (the images are

aligned by registering three image points). The recent

system of Yue et al. [50] is promising, it is regretful,

though, that it requires extensive manual interaction. It

is an example of the fact that addressing the full face

recognition problem is much more involved than addres-

sing part of it (correspondences are not estimated).
Similar to the Illumination Cone, the run time of this

method scales linearly with the number of individuals in

the gallery set, which may set high constraints on a system

with a large gallery set.

It should be noted that the results on profile view are

significantly less accurate than on front and side views.

The major drawback of the 3DMM analysis algorithm is

that, to set the initialization parameters, it requires seven
landmark points. Additionally, a Matlab implementation of

the analysis algorithm takes 2.5 min on a modern

computer.

Comparison of the results of the 3DMM and the

illumination cone methods of Fig. 11 is difficult as these

systems were not tested on the same images. What can be

noted is that the error rate for the 3DMM is slightly better

than the illumination cone, despite the fact that the gallery
set of the CMU-PIE database used to evaluate the 3DMM

includes almost seven times more persons that the Yale

dataset used with the illumination cone, and this method

requires seven gallery images for each subject as opposed

to the 3DMM that necessitates only one.

The difference of the aforementioned pose and

illumination invariant face recognition algorithms are

summarized in Table 3. In this table the methods are

Table 3 Characteristics of the Face Recognition Algorithms Described Earlier
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classified according to some major image analysis

algorithm features: 1) The corresponding pixel in a gallery

and probe image are either estimated from the pixel

intensities, or are given by a sparse set of landmark points.

We conjecture that if a large set of corresponding pixels is
estimated, the image comparison is more precise. 2) Given

one or several images of the same object, the 3-D shape can

be either estimated from the shading, from the cor-

responding pixels (using prior knowledge), or from both.

3) Image variations induced by pose variations can be

modeled using an explicit 3-D model, taking advantage of

the intrinsic 3-D nature of heads, or can be learned statis-

tically. 4) Several images per individual may be required,
which limits the applicability of the system. 5) Finally, the

last rows provide information on the operating conditions

of the algorithms. The time required to identify one input

image, listed on the last row, is only indicative as the

experiments were performed on different machines (as

indicated) and moreover, the methods were all imple-

mented in Matlab and the code was not optimized. The

timings listed do not include the manual labeling time. For

the last two algorithms, the identification time is pro-

portional to the number of individual in the gallery set,

thus, for these methods, we chose to indicate the iden-

tification time per individual in the gallery set.

2) Identification From Normalized Images: The Face

Recognition Vendor Test (FRVT) 2002 [31] was an inde-

pendently administered assessment, conducted by the U.S.

Government, of the performance of commercially available

automatic face recognition systems. It was realized that

identification of face images significantly drops if the face

image is nonfrontal. Hence, one of the questions addressed

by FRVT02 is: Does identification performance of non-
frontal face images improve if the pose is normalized by

our 3-D Morphable Model? To answer this question, we

normalized the pose of a series of images [6]. Normalizing

the pose means to fit an input image where the face is

nonfrontal, thereby estimating its 3-D structure, and to

render a frontal view of the estimated face on top of a

constant frontal view photograph of another person. Exam-

ples of pose normalized images are shown in Fig. 12. As

Fig. 12. 3DMM is fit to the original images (top row). Renderings of the fitting result are shown in the middle row. Mapping the texture of

visible face regions on the surface and rendering it with a standard background produce virtual front views (bottom row). This figure

was first published in the face Recognition Vendor Test 2002 [31].
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neither the hair nor the shoulders are modeled, the

synthetic images are rendered into a standard frontal face
image of one person.

The normalization was applied to images of 87 indi-

viduals at five poses (frontal, two side views, one up,

and a down view). Identification was performed by the

ten participant systems evaluated in FRVT02 (see [31],

pp. 31–32) using the frontal view images as gallery and

nine probe sets: four probe sets with images at nonfrontal

views, four probe sets with the normalized images of the
nonfrontal views and one probe set with 3DMM pre-

processing normalization applied to frontal images. The

comparison of performance between the normalized

images (a.k.a. morph images) and the raw images is pres-

ented on Fig. 13 for a verification experiment (the

verification-rate is plotted for a false alarm rate of 1%).

The frontal morph probe set provides a baseline for

how normalization affects an identification system. In the
frontal morph probe set, normalization is applied to the

gallery images. The results on this probe set is shown on

the first column of Fig. 13. The verification rates would be

1.0, if a system were insensitive to the artifacts introduced

by the Morphable Model and did not rely on the person’s

hairstyle, collar, or other details which are exchanged by

the normalization (which are, anyway, not reliable fea-

tures for identification). The sensitivity to the Morphable
Model of the ten participants ranges from 0.98 down to

0.45. The overall results show that with the exception of

Iconquest, Morphable Models significantly improved (and

usually doubled) performance.

VII. CONCLUSION

Re-examining the images in Fig. 1 in the Introduction, we

now have, at our disposal, a number of face recognition

algorithms that can comfortably handle these formidable-

looking images. Barely a decade ago, these images would

have been problematic for face recognition algorithms of
the time. The new concepts and insights introduced in

studying illumination modeling in the past decade have

bore many fruits in the form of face recognition algorithms

that are robust against illumination variation. In many

ways, we are very fortunate because human faces do not

have more complex geometry and reflectance. Coupled

with the superposition nature of illumination, this allows

us to utilize low-dimensional linear appearance models to
capture a large portion of image variation due to

illumination. Linearity makes the algorithms efficient

and easy to implement, and the appearance models make

the algorithms robust. Yet the generalization to pose

variation presented for the illumination cone method does

not scale well as the number of subjects increases since the

probe image must be compared to the representation of

each enrolled subject. One approach would be to use the
generative models to create a discriminative classifier.

Additionally, there remains a challenge of how these

Fig. 13. The effect on the verification performance of the original images versus normalized images using the 3-D Morphable Model.

The verification rate at a false alarm rate of 1% is plotted. This figure was first published in the face Recognition Vendor

Test 2002 [31] and in [6].
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techniques can be extended to handle nonrigid shape
variation such as facial expression.

At the cost of using nonlinear optimization techniques,

the 3-D Morphable Models has been shown to handle

combined pose and illumination variations, and state of

the art identification performance is obtained. Morphable

Models can be extended, in a relatively straightforward

manner, to cope with other sources of variation such as

expression. Yet, the current implementation requires
manual selection of seven feature points on a face image,

and this is equivalent to providing a good estimate of 3-D

pose; clearly, there is a need either to detect automatically

such features or to directly estimate head pose over the full

range of lighting conditions.

In all of the presented work, the local reflectance

models (Lambertian or Phong) are overly simplistic for

skin and facial hair, and interreflections and subsurface
scaterring are completely ignored. An open question is

whether incorporation of these more sophisticated image

formation models would impact recognition performance
given other confounding factors. In order to model fine

and identity-related details such as freckles, birthmarks,

and wrinkles, it might be helpful to extend the Morphable

Model framework for representing texture. Indeed, a

linear combination of textures is a rather simplifying

choice, hence improving the texture model is subject to

future research.

A component of a full recognition system is robust face
detection and alignment over a wide range of illumination

and pose variations. Present face detection techniques [49]

are not as effective over the same range of conditions as the

presented recognition techniques. Because face tracking is

an integral and indispensable part of video face recogni-

tion, it is also a challenging problem to develop a tracker

that is robust against pose and illumination variations.

Expression, partial occlusion, makeup, aging, and other
factors must also be considered in concert with work on

illumination and pose. h
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