
Combining PCA and LFA for Surface Reconstruction
from a Sparse Set of Control Points

Reinhard Knothe, Sami Romdhani and Thomas Vetter
University of Basel, Computer Science Department, Basel, Switzerland

reinhard.knothe@unibas.ch, sami.romdhani@unibas.ch, thomas.vetter@unibas.ch

Abstract
This paper presents a novel method for 3D surface re-
construction based on a sparse set of 3D control points.
For object classes such as human heads, prior informa-
tion about the class is used in order to constrain the
results. A common strategy to represent object classes
for a reconstruction application is to build holistic mod-
els, such as PCA models. Using holistic models in-
volves a trade-off between reconstruction of the mea-
sured points and plausibility of the result. We introduce
a novel object representation that provides local adap-
tation of the surface, able to fit 3D control points exactly
without affecting areas of the surface distant from the
control points. The method is based on an interpola-
tion scheme, opposed to approximation schemes gener-
ally used for surface reconstruction. Our interpolation
method reduces the Euclidean distance between a re-
construction and its ground truth while preserving its
smoothness and increasing its perceptual quality.

1. Introduction

The objective of this paper is to present a novel
method for reconstructing a densely sampled 3D shape
of an object given the 3D position of a sparse set
of control points. In order to constrain the problem,
the object is assumed to belong to a class of objects,
such as human faces, for which prior knowledge is ac-
quired. Hence, the aim is to estimate the 3D surface that
matches optimally the given control points while being
a plausible instance of the object class given the prior
knowledge.

In mathematical terms, this is a problem of func-
tion estimation. A function may be estimated using two
different mathematical tools: approximation or interpo-
lation. The control points that are to drive the recon-
structed shape may be acquired from different sources:
either set manually or provided by some acquisition de-
vice. These points may suffer from some deviation from
their true values which depends on the acquisition sys-
tem. This can be considered as noise. When a large
number of control points is available (large with respect
to the number of degrees of freedom of the model), and
the noise probability distribution is known, the noise
can be canceled out by using an approximation method.
For instance, if the control points are independent and
the noise is Gaussian, a least square estimator provides
an unbiased approximation of the function which tends

Figure 1: Example of an approximation and an inter-
polation [1]

to the true function when the number of control points
tends to infinity. If the number of control points avail-
able is limited, an approximation method is not optimal
because the resulting estimate is biased. In this case, an
interpolation method that constrains the resulting func-
tion to match the control points exactly, is favorable.
An example of function approximation using approxi-
mation and interpolation is shown in Figure 1.

When using an approximation method in the case
of limited control points, as the noise does not cancels
out, the estimated function may overfit the data, as is
shown in Figure 2 (b). For instance, when the number
of degrees of freedom of the model matches the num-
ber of control points, even an approximation method
fits the control points are exactly. However, using a
holistic model, e.g. a Principal Component Analysis
(PCA) based model, which is usually utilized in this set-
ting [2, 3, 4], the model is not adapted to the particular
set of control points used. Hence, overfitting is very
likely to result. This can be prevented by using a reg-
ularization which enforces the resulting function to be
plausible according to prior knowledge (Figure 2 (c)).
However, the estimate approximates poorly the control
points. This is because the regularization does not de-
pend on the noise of the control points and this noise
is likely to be overestimated. This method is generally
used in computer vision to tackle the problem of 3D
surface reconstruction using prior knowledge. For in-
stance, Blanz et al. [2] use a least square approximation
with a Gaussian regularization to estimate the surface
of a head given a small set of control points. In order to
avoid overfitting, the Gaussian regularization parameter
must be large, resulting in a head shape that approxi-
mates inadequately the control points.

Using an interpolation scheme, on the other hand,
provides an estimated function that matches the control
points perfectly and, with the method introduced in this
paper, is also plausible according to the prior knowledge
(Figure 2 (d)). An interpolation method requires to use
a model that is somehow adapted to the set of control
points used: Fitting one control point should not perturb
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Figure 2: Schematic outline of the problem in 2D:
Given a measurement of some vertices (a) our task
is to reconstruct a surface. PCA-based reconstruc-
tion without regularization suffers from overfitting
(b). Introducing a regularization helps to limit the
overfitting, but the measured vertices are approxi-
mated (c). We present a method to interpolate the
measured vertices without overfitting that passes
exactly through the input points (d).

the fit of the other ones and should result in a plausible
shape. The conventional method to interpolate a linear
function is the cubic spline, which estimates a function
as a sum of basis spline functions. To avoid the overfit-
ting problem, these basis functions are defined on a lo-
cal support. In our setting, matching the control points
is not the only requirement, we also enforce the esti-
mated function to belong to a class of objects, here, hu-
man faces. Therefore we propose a method to adapt the
interpolating basis functions such as the estimated 3D
surface is a plausible face. Similar to the spline scheme,
our basis functions are defined on a local support and
are smooth. In order to avoid overfitting, we require the
estimated function to have similar spatial derivatives as
typical examples of the object class modeled. The Eu-
clidean distance between two surfaces is independent of
the spatial derivatives. Therefore we detail in Section 2
a distance measure able to compare spatial derivatives
of two surfaces. Using this distance measure, we show
that a holistic PCA model is able to model the exam-
ple class while preserving the spatial derivative charac-
teristics only at a coarse resolution, using a few basis
functions. In order to model the data at a higher reso-
lution while still maintaining the spatial derivative, we
use in Section 3 a Local Feature Analysis (LFA) intro-
duced in Penev et al. [5]. Hence, the resulting model is
a combination of a holistic PCA model and local LFA
model introduced in Section 3.3 and 3.4. We evaluate
our novel method on validation 3D heads in Section 4.

2. Derivative based Distance

To evaluate the quality of a reconstruction (with re-
spect to its ground-truth), we need an appropriate dis-
tance measure to compare two 3D surfaces. The sum of
the Euclidean distances over all vertices of the shapes is
the most obvious choice:

∑
i∈V

‖vr,i −vt,i‖, (1)

where V is the set of all vertices of the surfaces. vr,.
and vt,. are corresponding vertices of the two surfaces.
Euclidean distance treats all vertices independently and
thus is not related to surface smoothness. As one can see
in Figure 3, optimizing the Euclidean distance favors
noisy, nearby surfaces over smooth and displaced sur-
faces. To get a good quality of surface reconstruction, a

Figure 3: Illustration of the drawbacks of the Eu-
clidean distance. Comparing reconstructed sur-
faces B and C of the original surface A, the Eu-
clidean distance between B and A is much larger
than between C and A, although C appears quite dif-
ferent from A.

N. of coeff.: 65 130 195
Euclid.: 2110 1630 1470
Derivative: 445.6 457.6 490.0

Figure 4: Projecting the leftmost surface to a PCA
model that includes more dimensions reduces the
Euclidean distance but degrades the perceptual
quality. The number of basis vectors used and the
projection errors are written below the surfaces.

small Euclidean distance is necessary but not sufficient.

The visual quality of a reconstruction depends not
only on the Euclidean distance of the reconstructed
surface from the control points but also on its spatial
derivatives. Hence, we introduce a derivative based dis-
tance:

1
|E| ∑

(i, j)∈E
‖(vr,i −vr, j)− (vt,i −vt, j)‖L1 (2)

where E is the set of all neighboring vertices connected
through edges in the surface mesh. Note that, as the
mesh is parametrized over a 2D area and that a surface
is sampled at equidistant increments of a cylindrical co-
ordinate frame, (r,φ), this distance is in fact the norm
of the difference of the numerical approximation of the
spatial derivatives along r and φ . We chose a L1 dis-
tance, to keep commensurate distance units. The deriva-
tive based distance is large, if either the reconstructed or
the original surface has small wrinkles or spikes at loca-
tions where the other surface is flat. So it is a measure
of smoothness similarity of two surfaces.

Let us now give an example to demonstrate the ad-
vantage of the derivative based distance. We project a
novel head into a PCA-model learned from a training
set. This model is discussed in details in Section 3.1.

As one can see in Figure 4, the projection gets
spikier, noisier and less realistic when increasing the
number of PCA-coefficients. However, using more co-
efficients decreases the Euclidean distance between the
original and the reconstruction (see Figure 5, top left
plot). This is because there is no smoothness constraint
when minimizing the Euclidean distance. In a recon-
struction, if the model is able to reduce the Euclidean
distance even at the cost of generating a spiky surface,
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Figure 5: Plots of the average of Euclidean and
derivative based reconstruction errors using all ver-
tices of 70 novel heads into a PCA space.

it will do so. In fact, a PCA model does not preserve re-
lationships between neighboring vertices, hence it does
not preserve spatial derivatives of the training examples.
In order to do so, we should use a model that encodes
relationships between neighboring vertices. A method
for doing this is presented in Section 3.3.

This experiment may be done for a set of validation
shapes (not used for model building). Figure 5 shows
a plot of the two distance measures as the number of
PCA coefficients used for reconstruction is increased.
Note that, in this experiment, all vertices of the mesh
are used as control points. The derivative based dis-
tance has a minimum at around 60 PCA-coefficients.
So, using 60 PCA coefficients gives the best reconstruc-
tion with respect to this distance measures. Modeling
higher resolution behavior, while still preserving spatial
derivatives, requires the use of another type of model as
discussed in next section.

3. Class Specific Knowledge

The method we propose is based on a combination
of a holistic PCA model, to represent coarse shape vari-
ations and a Local Feature Analysis model to account
for high frequencies. The two models are first briefly
discussed, then the way we used a combination of them
to reconstruct a shape is detailed.

3.1. Principal Components Analysis

We use a Morphable model to describe the 3D
shape of a linear object class [6]. We assume that we
have m examples of human shapes, acquired with a Cy-
berware scanner. Each example is defined by the 3D
position of n vertices. The shape data is arranged in a
column vector for each example:

xj = (x1,y1,z1,x2,y2,z2, ...xn,yn,zn)T 1 ≤ j ≤ m
(3)

The shape vectors are in correspondence [6]: Each com-
ponent represents the corresponding vertex of the object
within the data set. The arithmetic mean is given by:

x̄ =
1
m

m

∑
j=1

x j (4)

The examples are centered around the mean and con-
catenated into a data matrix:

X = [x1 − x̄, ...,xm − x̄] ∈ R3n×m (5)

To compute PCA, a Singular Value Decomposition
(SVD) [7] is used. The matrix X is decomposed into:

X = UWVT =
√

mU diag(σi)VT (6)

where U and V are orthogonal matrices, W is a diag-
onal matrix and σi = wii√

m is the standard deviation of
principal component i. The columns of U = [u1, ...um]
form an orthogonal set of eigenvectors of the covariance
matrix ΣX = 1

m XXT . The eigenvectors can be used as
a basis. Therefore the PCA-coefficients cp of a vector
x ∈ R3n are calculated by:

cp = diag(
1
σi

)UT (x− x̄) ∈ Rm (7)

The vector x is reconstructed from its coefficients cp

yielding xrec ∈ R3n as follows:

xrec = U ·diag(σi) · cp + x̄ = UUT · (x− x̄)+ x̄ (8)

The coefficients cp are decorrelated in the sense that the
correlation matrix of the training example coefficients
is the identity matrix.

3.2. Local Feature Analysis

The PCA representation is typically not topo-
graphic, meaning that nearby components of the PCA-
coefficient vector cp = (c1, ...,ci,ci+1, ...)T have no spa-
tial relationship. Topography in this context means, that
nearby components should have the same relationship
as the corresponding components in the input vector
x = (x1, ...,xi,xi+1, ...)T . Thus, the coefficients should
be labeled in the same way as the input vector x. Penev
and Atick [5] have introduced a model that preserves to-
pography, Local Feature Analysis (LFA), which we now
overview. The most general topographic kernel that
projects signals to the subspace spanned by the eigen-
vectors of ΣX is [5]:

cl =
1
m

U ·Q ·UT · (x− x̄) (9)

where U is the matrix of the eigenvectors of ΣX (see
Equation 6), Q is an arbitrary m×m matrix, x is an
input vector and cl is the LFA-coefficients vector.

As cl ∈R3n, we can no longer satisfy the condition
of coefficients decorrelation. It can be shown [5] that
the coefficients are as decorrelated as possible if

Q = diag(
1
σi

). (10)

LFA provides a component for each dimension of the
space modeled. This component is the mode of vari-
ation of one vertex. Its support is local and includes
the vertices which are correlated with the correspond-
ing vertex. Moreover, LFA spans the same subspace
as PCA. Given the LFA-coefficients, the input vector is



reconstructed by:

xrec = m ·U ·Q−1 ·UT cl + x̄
= m ·U ·diag(σi) ·UT cl + x̄
= Udiag(σi)UT Udiag( 1

σi
)UT (x− x̄)+ x̄

= UUT(x− x̄)+ x̄
(11)

3.3. Adjusting a shape given one vertex

We now show how to use LFA for shape recon-
struction given a sparse set of control points. For ex-
planation purposes we first show how to adjust a shape
to match a single vertex. In the next section, we will use
this method to match a shape to a set of control points
using a combination of PCA and LFA models. Starting
from the shape of a head (e.g. the mean head or a coarse
reconstruction or even any head from the database as is
shown in Figure 6), we want to move one of its vertices
to an arbitrary position so that the resulting head is a
plausible head in terms of position of its vertices and
their spatial derivatives. To meet these requirements,
the modification of the head should have a local sup-
port. Changing the tip of the nose should have no effect
on the ears (see Figure 6). This is achieved by mov-
ing in the direction of the LFA component associated,
in this example, with the tip of the nose.

Figure 6: A face (left) and three deformations of it
are shown, obtained by displacement of different
control points marked by a cross (Equations (14)
and (15)).

(a) (b) (c)

Figure 7: (a) z-component of the LFA vector for the
tip of the nose, (b) its mask given by the Voronoi
Tessellation and (c) their pointwise multiplication.

Let us denote by r the displacement between a mea-
surement v of a vertex at position i and the correspond-
ing vertex of an input shape that is to be modified:

r = v−x|P r,v ∈ R3 (12)

where P = {3i,3i + 1,3i + 2} is the set of components
in the shape vector x that represents the (x,y,z) coor-
dinates of vertex i. We now project this displacement
onto the LFA basis corresponding to the vertex i. Note
that although the LFA is learnt on mean centered data,
we can also legitimately project to it the difference be-
tween an input shape and not only the average shape

but also any shape in the span of the PCA model. The
corresponding rows of U are denoted by U|P. Equation
(11) is now restricted to the components P. Since it is
not reasonable to compute more coefficients than input
dimensions, we also restrict the LFA-coefficients cl to
P:

r = mU|P ·diag(σ) · (U|P)T · cl
P (13)

This Equation is solved for the LFA-coefficients cl
P.

Note that in this case, we can use Equation (11) di-
rectly (instead of Equation (9)) since the matrix (U|P ·
diag(σ) · (U|P)T ) ∈ R3×3 is non-singular:

cl
P =

1
m
· (U|P ·diag(σ) · (U|P)T )−1 · r (14)

The reconstruction is obtained from the coefficients cl
P

only, as the other coefficients are zero.

xrec
i = m ·U ·diag(σ j) · (U|P)T · cl

P +x
= m ·Li · cl

P +x (15)

where Li = U ·diag(σ) · (U|P)T ∈ R3n×3.
This method is able to deform a shape so that the

resulting shape passes through an input control point
and is maximally correlated with the set of prototypical
shapes used. We denote this by Maximal Correlation
Interpolation. If several control points are to be inter-
polated, their influence on one another should be null.
Therefore, the value of Li for one control point should
be (0,0,0) for all the other ones. This is achieved by
multiplying Li by a factor that is 1 at the control point
i and 0 at all other control points. This factor decreases
linearly between the control point i and the neighboring
ones, see figure 7. This is implemented easily using a
Voronoi Tessellation.

3.4. Reconstruction from a few control points

In this section, we detail the usage of a combined
PCA and LFA model to reconstruct the shape from a
small set of control points. Because no unbiased noise
estimate can be made from a small set of control points,
an interpolation scheme is favored over an approxima-
tion method. Hence, the reconstructed surface is en-
forced to match the points exactly.

First, the shape is reconstructed using the coarse
holistic PCA model with 60 coefficients (see Section 2).
This is achieved using the approximation with regular-
ization method of Blanz et al. [2], by minimizing the
following cost function:

E = ‖diag(σ)U|F cp −x|F‖+η‖cp‖2 (16)

where F includes the indices of the (x,y,z) components
of the set of control points and x|F is their 3D position.
The first part of the error term is the Euclidean recon-
struction error of the control points and the second term
is a regularization term to control the plausibility of the
reconstruction that assumes that the control points are
independent, identically and normally distributed. It
can be shown that this cost function is minimized by
[2]:

cp = V′ ·diag(
wi

w2
i +η

) ·U′T ·x|F (17)



Figure 8: Positions of the 73 Farkas points.

where U′WV′T is the singular value decomposition of
the matrix U|F diag(σ).

We have already mentioned that overfitting is the
main problem of PCA-based methods. The overfitting
can be reduced by restricting the number of PCA eigen-
vectors in Equation (8) or by choosing a larger regular-
ization term (see Equation (16)). However, this involves
a larger reconstruction error. Here, we use PCA to ob-
tain a coarse estimation of the shape with a relatively
large error at the measured vertices (using a large reg-
ularization ensuring no overfitting). Then local models
(one for each measured vertex v) are utilized to com-
pensate the approximation error. A shape is then recon-
structed with Equation (8):

m′

∑
i=1

cp
i σi ·ui + x̄ (18)

where the coefficients cp
i are obtained using Equa-

tion (14), in which r is the residual between the coarse
PCA approximation and each input control point. As a
result, in the proposed combined method, the shape is
represented as follows:

m′

∑
i=1

cp
i σi ·ui +

|F |/3

∑
i=1

Li · cl
i + x̄ (19)

where the PCA-coefficients cp
i are computed using

Equation (17) and the LFA-coefficients cl
i are computed

using Equation (14).

4. Experiments on Face Data

In this experiment we choose the set of human
faces as object class. To obtain a set of prototypical
examples, a Cyberware laser scanner with a spatial res-
olution of less than 1mm was used. The surface is rep-
resented by n = 75972 vertices. The vertices are com-
bined in a shape vector, as in Equation (3). Correspond-
ing points, such as the tip of the nose, the corner of the
eye, etc. are represented by the same vector component
across all shape vectors. Hence, a linear combination
of shape vectors produces realistic novel faces [6, 2].
A database of 270 individuals is used. It is split in a
training set of m = 200 faces and a test set of 70 faces.

In the experiments detailed in this section, we use
the Farkas points as input control points. Farkas [8] de-
scribes a set of 78 reference points for measurements of
the human head. We use 73 of them as our face model
covers only a portion of the entire head: from one ear to
the other, see Figure 8. We have chosen the Farkas con-
trol points for two reasons: They are widely used in an-
thropology and medicine to describe a human head and

they are relatively easy to locate. These control points
are used as a fixed set of input points and we trained the
LFA model, thereby producing Li (Equation 19), on this
particular set of points. This is not a limitation, since we
could use any other set of points and automatically train
our model accordingly. Since the heads are in corre-
spondence, it suffices to specify the Farkas points on a
single face, in order to get their positions on each face
of the training and testing set.

Examples of reconstructions of a head of the test
set from the 73 Farkas points using several methods are
shown in Figure 9. It can be seen that using PCA, the
regularization parameter η must be chosen by the user.
A small value improves the Euclidean distance but de-
grades the derivative based distance and a large value
does the opposite. Hence, there is a trade-off between
position accuracy and smoothness accuracy. Using LFA
only provides a head with small derivative based er-
ror but with large Euclidean error. The last rendering
of this figure shows a reconstruction obtained by the
proposed combined PCA/LFA model. This reconstruc-
tion minimizes both, simultaneously the Euclidean er-
ror (related to point position) as well as the derivative
based error (related to spatial derivatives). Perceptu-
ally as well as numerically, this reconstruction is the
closest to the original head. It should be noted that the
combined model is more flexible than the PCA model:
As advocated in Section 2, 60 PCA components were
used. Using more components would favor overfitting
and large derivative based error. The combined model
also includes 60 PCA components as well as 3 ·73 LFA
components. One of the advantage of the LFA model
is that much more components can be used than with a
PCA model (the upper limit of m components of PCA
is lifted for LFA), while still preserving the smoothness
of the training data.

Figure 10 provides quantitative evaluation of the
method performed over the whole test set. Two sets
of experiments are presented. The first one (top row)
shows results obtained using the 73 Farkas points. On
this experiment, more coefficients were used for the
combined PCA/LFA model than for the PCA model.
This is because the combined model permits the usage
of more dimensions than the PCA model. It can be seen
that using a large value of the regularization parameter
η , the PCA model can provide a reconstruction simi-
lar to the combined model in terms of smoothness, but
then the discrepancy between the original surface and
the reconstructed surface provided by the PCA model is
much larger than with the combined PCA/LFA model.
The same conclusion can be drawn when the same num-
ber of coefficients for both models is used (second row),
however to a lesser extent. In this experiment only 33
control points were used.

5. Conclusion

We have presented a novel method for 3D sur-
face reconstruction from sparse data. It is based on
an interpolation scheme enabled by a novel combined
PCA/LFA model. It has been applied to estimate the
3D shape of human faces from a small set of control
points. In contrast to the previous PCA-only-based ap-
proach, our method improves the results both in terms



(a) Original (b) PCA: η = 5000 (c) η = 5 ·105 (d) η = 107 (e) LFA (f) PCA/LFA
N. of coeff: 159 159 159 3 ·73 = 219 60+3 ·73 = 279
Euclid. dist.: 4430 2840 3240 6620 2570
Derivative dist.: 941.8 507.5 462.0 468.5 462.1

Figure 9: Shapes (b) to (f) are reconstructions from 73 Farkas points of the ground truth shape (a). The
first three reconstructions were obtained by PCA approximation with different values of the regularization
parameter. The shape (e) uses LFA, and the shape (f) uses the novel combined PCA/LFA model.

Using 78 points: PCA (159 coeffs, dashed line) and PCA/LFA (60+3 ·73 = 279 coeffs., solid line)
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Using 33 points: PCA (159 coeffs., dashed line) and PCA/LFA (60+3 ·33 = 159 coeffs., solid line)
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Figure 10: Comparison of the reconstruction errors (Euclidean, derivative based and the sum of both) using
PCA (dashed line) and the combined PCA/LFA method (solid line) for different values of the regularization
parameter (x-axis). On the top row, the reconstructions are computed using the 73 Farkas points, and on
the bottom row, using 33 control points. The reconstruction error is computed over a complete shape and
averaged over the 70 examples of the test set.

of point-wise accuracy and also in terms of smoothness
accuracy: Not only the 3D position of the vertices but
also the spatial derivatives of the reconstructed surface
are closer to the original surface using the reconstruc-
tion of the combined PCA/LFA model than the one ob-
tained by PCA. Smoothness accuracy is important as
it is strongly related to how humans perceive shapes.
In this paper we used Farkas points to control a shape
reconstruction. However, it may be possible that a se-
lection of other control points could decrease both Eu-
clidean and derivative based errors. It is left for further
research to investigate what this set of points could be
and how to use this knowledge in an analysis of varia-
tions of human heads.
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