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Abstract

The registration of 3D scans of faces is a key step for
many applications, in particular for building 3D Mor-
phable Models. Although a number of algorithms are
already available for registering data with neutral ex-
pression, the registration of scans with arbitrary ex-
pressions is typically performed under the assumption
of a known, fixed identity. We present a novel algo-
rithm which breaks this restriction, allowing to regis-
ter 3D scans of faces with arbitrary identity and ex-
pression. Furthermore, our algorithm can process in-
complete data, yielding results which are both contin-
uous and with low reconstruction error. Even in the
case of complete, expression-less data, our method can
yield better results than previous algorithms, due to an
adaptive smoothing, which regularizes the results sur-
face only where the estimated correspondence is unre-
liable.

1. Introduction

The registration of 3D scans of human faces is a
key step in their processing for many applications. We
present an algorithm closely related to the methods us-
ing a regularized energy minimization ([15, 11, 1]).
This is a common approach, since the regularization
term provides the advantage of handling missing data
and inconsistencies in thecorrespondence. The cor-
respondence can be derived from a manually-defined
sparse correspondence ([13, 10]), or with ICP ([1]). We
estimate a dense correspondence following an approach
similar to [6, 3]. This results in a more accurate registra-
tion, and the correspondence is also used to determine
the local importance of the regularization term. Our reg-
istration algorithm presents three novel characteristics.

Unified Processing.Although some very efficient
methods for registering 3D scans of human faces have
already been published ([6, 11, 10, 4, 19]), the regis-
tration of data with varying identities and expressions
are typically treated separately. An exception is the
method in [18], which however needs around 70 user-

defined landmark points. Our algorithm can be applied
to 3D face scans with arbitrary identity and expressions,
which makes it suitable for the applications where no
such prior knowledge is available (e.g. recognition).

Reconstruction of Missing Data. The input data
of the registration algorithm is typically incomplete. In
previous methods this problem is either not considered
or it is addressed from a purely geometric point of view,
a clear drawback if the results of the registration have
to be used to build statistical models of human faces.
In our registration algorithm the reconstruction of the
missing areas takes into account not only its geometric
properties but also its likelihood w.r.t. already available
data.

Robustness.A further novelty of our algorithm is
related to the estimation ofcorrespondence. In methods
which regularize the result ([15, 11, 1]), the relative im-
portance of the correspondence in the registration pro-
cess – for instance with respect to the smoothness of the
registration result – is globally fixed. This might either
result in loss of information, or introduce errors in the
registration results. By setting the relative importance
of the correspondence locally, our algorithm retains as
much correspondence information as possible, while at
the same time being robust with respect to errors in its
estimation.

2. 3D Morphable Models

Before describing the registration algorithm, we re-
view the concept of the 3D Morphable Model (3DMM)
and show how the 3DMM is extended to handle both
identity and expression as separate sources of varia-
tions. The shape of a 3D mesh withn vertices is rep-
resented as ann×3 matrix S, or alternatively as a 3n-
dimensional column vector obtained by flattening the
matrix:

s= vec(S) = (x1,y1,z1, . . . ,xn,yn,zn)T . (1)

A similar representation can be used for the texture of
the 3D mesh, which is stored in a vectort:

t = vec(T) = (r1,g1,b1, . . . , rn,gn,bn)T . (2)



In this section we will develop the model of the shape,
using the vector representation. The texture model is
obtained following the same procedure.

Three-dimensional morphable models are built un-
der the assumption that a shape vectors is generated
by a linear Gaussian model, defined by a mean vector
s̄∈R3n and a generative matrixC∈R3n×k with k< 3n.:

s= s̄+C ·α + ε. (3)

The vectorsα ∈Rk andε ∈R3n are the latent variables
of the model, and they follow a Gaussian distribution
with zero mean and diagonal covariance:

p(α) = N (0, I) and p(ε) = N (0,σ2I). (4)

The model parameters ¯s,C andσ2 can be estimated
by maximizing the likelihood of a training set of exam-
ples shapess1, . . . ,sm. We report here only the solution
of the maximization, and refer to [16] for details. Defin-
ing s̄ as the sample mean

s̄=
1
m

m

∑
i=1

si , (5)

we decompose thecentereddata matrix bySingular
Value Decomposition(SVD):

A = (s1− s̄, . . . ,sm− s̄) ∈ R3n×m (6)

= U ·W ·VT . (7)

Recall thatU is a column-orthogonal matrix (UTU =
I ) and thatW is a diagonal matrix with elements
wi . Denoting byΛ the diagonal matrix with elements
w2

i /(m−1), the optimal estimates ofC andσ2 are given
by

σ
2 =

1
(m−1)(3n−k)

m−1

∑
i=k+1

w2
i , (8)

C = Uk ·
(
Λk−σ

2I
)1/2

, (9)

wherek is the number of principal directions which are
retained, and the matricesUk andΛk are obtained from
the firstk columns ofU andΛ, respectively. The differ-
ence from this model and the one obtained from PCA
(in the case ofk = m−1) is that discarding some of the
higher componentsui , their contributions to the sam-
ple variance accumulates in the model noise and scales
down the variance of the retained components.

2.1. Combined Model

In order to model expressions and identity as sepa-
rate sources of variations, we assume that a generic face

shape is the sum of an identity vector and an expression
vector:

s= sid +sxp, (10)

while the face texture depends only on the identity. The
vectorssid and sxp holds respectively the face shape
with neutral expression and the displacements of the
vertices due to the expression; assigning them separate
linear Gaussian models we obtain:

s= s̄id +Cid ·α id + s̄xp+Cxp ·αxp+ ε, (11)

with the usual Gaussian prior for the latent variables
α id , αxp andε. Clearly, once the model parameters are
fixed, this is equivalent to the model of eq. (3), with
the only difference that the matrixC = [Cid Cxp] is not
column-orthogonal.

In order to learn the distinct model parameters for
the identity and expressions components we use two
training sets. A first set of examples with neutral ex-
pression and varying identity is used to estimate the
identity parameters ¯sid andCid , as outlined in the previ-
ous section. The expression parameters ¯sxp andCxp are
estimated from a second set of expression examples, ac-
quired fromp different persons. Given thei-th individ-
ual, we have its neutral expressionni andmi examples
si

j , from which we build a matrix

Bi = (si
1−ni , . . . ,si

mi
−ni) ∈ R3n×mi . (12)

All the person-specific matricesBi are then put together
into a matrix

B = (B1 . . .Bp) ∈ R3x×∑mi . (13)

The average expression ¯sxp is computed as the mean of
the columns ofB, which is then recentered and decom-
posed by SVD to obtain the matrixCxp as in eq. (9).

3. Registration Algorithm

The shape of a novel mesh is registered in three
steps (see also the diagram of figure 1): first, the mor-
phable model defined in the previous section is used to
approximate the input mesh; then, the correspondence
is estimated between the approximation and the input
mesh; in the third step, the shape is registered by solv-
ing an optimization problem. For the registration of the
texture, the third step is different; we will describe it
in section 3.2, after having explained how the shape is
processed.

Approximation. In order to obtain a more accurate
estimation of the correspondence we employ a strategy
known asbootstrapping(see [17]). Given a 3DMM, its
coefficients are optimized with a stochastic Newton de-
scent method so that its shape and texture fit the input



Figure 1. Flow diagram of the registration
method. (1) The morphable model is fitted to
the novel mesh (b). (2) A correspondence is
estimated via optical flow between the approx-
imation (c) and the input. Using the correspon-
dence, the input is resampled yielding the in-
complete surface (d). (3) The registration result
(e) is obtained by minimizing an energy which
depends on the resampling of the input. Each
result of the registration increases the set of
examples used to build the morphable model.

mesh (see [6]). An example is shown in figure 1(c); the
novel mesh is in figure 1(b) and the reference in fig-
ure 1(a). In case no 3DMM is yet available, this step
is skipped and a reference model is used as approxima-
tion.

Correspondence Estimation.Both the input mesh
and the approximation are projected to a cylindrical 2D
representation. We estimate a correspondence between
them with the modified optical flow algorithm described
in [6], using both the shape and texture information.
The optical flow defines a correspondence between the
verticesai of the approximation and pointswi lying on
the surface of the input (see figure 2). We face now two
problems: the input data are typically incomplete (see
figure 1(d)), and the optical flow is not everywhere re-
liable. For these reasons, the vertices positionswi com-
puted through optical flow cannot be directly used to
define the registration result.

Energy minimization. We compute the final re-
sultsvi minimizing an energy made up of a data term,
depending on the positionswi obtained from optical
flow, and a smoothness term. This allows us to recon-
struct the positions of the vertices without correspon-
dence, and to regularize the positions of the vertices
where the correspondence is unreliable.

Figure 2. Notation used for defining the energy
minimized during registration. The positions of
the vertices in the approximation are denoted
by ai , the corresponding sampled positions on
the input by wi , and the unknown vertices posi-
tions in the solution by vi . The displacements
from the approximation to the solution are de-
noted by di .

3.1. Energy Minimization

Since the positionswi are defined only for the ver-
tices with a correspondence, we define the data term
only for the subsetC of such vertices:

Ed = ∑
i∈C

‖vi −wi‖2 (14)

Let ai denote the positions of the vertices in the approxi-
mation; the regularization term depends on the displace-
ments with respect to the approximationdi = vi −ai

(see figure 2):

Es = ∑
i

∑
j∈Ni

ei j ‖d j −di‖2, (15)

whereNi denotes the neighborhood of thei-th vertex,
and the coefficientsei j weights the relative importance
of each edge to the smoothness energy of a vertex. A
good criterion for the choice of the coefficientsei j is
to look at how much the edges deform in the examples
already registered. Defining withσi j the standard devi-
ations of the edges lengths over the examples, we set

ei j = σ
−2
i j /∑

Ni

σ
−2
i j , (16)

Substituting eq. (16) in eq. (15), we can verify that
with this choice the smoothness term for each vertex
becomes

∑
j∈Ni

ei j ‖d j −di‖2 ∝ ∑
j∈Ni

‖d j −di‖2/σ
2
i j , (17)

so that the influence of each edge on the vertex energy is
weighted by its deformations in the available examples.



Figure 3. Reconstruction of texture coordi-
nates for the eyes. In the top image we show
the texture resulting from the push-pull algo-
rithm in the eyes region. A much better re-
sult can be obtained by applying the push-pull
algorithm on the texture coordinate data (bot-
tom).

The adaptive smoothing is achieved by weighting
each term ofEd with a coefficientλi :

E =
1
2 ∑

i∈C

λi‖vi −wi‖2 +
1
2 ∑

i
∑

j∈Ni

ei j ‖d j −di‖2. (18)

Note that the positions of the vertices without corre-
spondence are determined only by the regularization
term; its minimization produces a reconstruction of the
missing vertices which is continuous and with low re-
construction error, as shown in [2]. The coefficientsλi

should be large where the correspondence is reliable, to
let the data term dominate, and small otherwise, to reg-
ularize the result. As a measure of the correspondence
quality, we use the smoothness of the displacement field
wi −ai , defined as

si = ∑
Ni

‖(w j −a j)− (wi −ai)‖2

‖a j −ai‖2 . (19)

As shown in the example of figure 5, high values of
this quantity are an index of problems in the corre-
spondence. In our experiments, we set theλi to 10 for
si < 0.2, to 10−7 for si ≥ 1, and to 10−2 for 0.2≤ si < 1,
which produces a slight smoothing. Of course more
fine-grained choices ofλi are possible, but in our ex-
periments this choice proved to be sufficiently flexible.

The global minimum of the energy (18) is found by
setting to zero its derivative w.r.t. the unknownsvi . This
yields a sparse linear system, which can be efficiently
solved with standard algorithms (in our implementation
we used [7]). Denoting byD, A andW the N×3 ma-
trices holding the values of the vectorsdi , ai andwi , the

Figure 4. Three examples from our dataset, the
originals on the top row and the registration re-
sults on the bottom row. Note how the texture
in the last two examples is corrected during
registration in order to be consistent with the
other examples in the model.

system is

(Λ+ I − (K +KT)/2) ·D =−Λ · (A−W), (20)

whereΛ is ann×n diagonal matrix with elementsλi/2,
andK is a sparsen×n matrix with Ki j = ei j if {i, j} is
an edge of the mesh andKi j = 0 otherwise. Solving eq.
(20) for D, the registered positions of the vertices are
found asvi = ai +di .

3.2. Texture processing

With current 3D acquisition technologies, the 3D
scans are typically texture mapped with high resolu-
tion images. Therefore, due to the different nature of
the data, the texture registration is performed follow-
ing a different procedure. Using the correspondence
estimated by the optical flow, we assign to each ver-
tex of the approximation a texture coordinate of the
novel mesh. This allows to texture parts of the result
directly with the original images, without any loss of
information, but not the whole mesh. In order to ob-
tain a complete texture, we warp the original texture
to a fixed texture map, and then reconstruct the miss-
ing texture with a method based on the push-pull algo-
rithm presented in [8]. The original algorithm diffuses
the known color values to the missing regions, by itera-
tively down-sampling and up-sampling the image while
keeping constant the known area. We apply the algo-
rithm to the difference between the warping of the orig-
inal texture and the approximation obtained during the
first step of the registration. The result of the diffusion
is then added to the approximating texture. It might also
occur that holes in the acquired surface prevent the use



Figure 5. Registration of an example with
our algorithm (bottom row) and the algorithm
of [6] (top row). In the leftmost column are
the registration results and in the middle col-
umn their shape caricatures. The caricature
on top evidences the correspondence prob-
lems of the previous algorithm. On the right-
most column, a color-coded rendering (red is
lower smoothness, green higher) of the dis-
placement smoothness, shows that this mea-
sure can be used to detect correspondence
problems.

of parts of the texture images, since the texture coordi-
nates are not present if the surface is missing. In this
case we apply the push-pull method described above to
the texture coordinates before sampling them. In this
way, we can use the original texture information also
for areas where the surface could not be reconstructed
(see figure 3).

4. Results

In order to test our algorithm, we applied it to an
heterogeneous collection of 485 3D scans, acquired in
part with a Cyberware scanner and in part with a phase
shift system. The collection is equally divided in exam-
ples with neutral expression (233 scans, all with differ-
ent identities) and examples with emotional expressions
or visemes (252 scans, from 33 subjects). The whole
dataset has been registered starting from two reference
meshes of a full head with open and closed mouth. Fig-
ure 4 shows different examples of the training data and
the results of their registration.

As we mentioned in the introduction, our algorithm
is robust to errors in the correspondence estimation,
thanks to the smoothness term in the minimized energy.
Although there is no obvious way to measure its robust-
ness, we assume that the smoothness of the displace-
ment field between the registered results and their aver-
age shape is a reliable way to detect problematic areas

Figure 6. Average distance of the vertices
from the original surface, ranging from 0.0 mm
(green) to ≥ 1.0 mm (red). The black areas cor-
respond to vertices missing in at least one ex-
ample. Most of the vertices are close to the
surface.

of the results, as shown in figure 5. A comparison be-
tween the average values of this smoothness for the re-
sults of our registration algorithm and the results of an
algorithm based only on the correspondence estimation
([6]) confirms, as expected, that our method yields more
regular results (the lower the better): 0.138 (σ = 0.086)
vs. 0.204 (σ = 0.182). To rule out the possibility that
the results are too smooth, resulting in a bad approxima-
tion of the input, we also checked the distances between
the registered vertices and the input surfaces. The re-
sults, summarized in figure 6, show that the smoothing
really affects the distance from the original surface only
in small areas. On the rest of the face the vertices are
within a distance of 1.0 mm from the surface.

We conclude this section by showing that the im-
provement in the quality of the results has also a posi-
tive effect on the quality of the morphable model.To this
aim, we performed a 10-foldcross-validation(for more
details see [9]) on two models built with the registration
results of the previous comparison, in order to estimate
the generalization errorof the model. This is the ex-
pected error made by the model in reconstructing novel
data, which was not in the training set. As shown in fig-
ure 7, the new results provide a model which is much
more compact: 40 components are enough to achieve
an error smaller than using 170 components of the old
model.

5. Conclusion

We described an algorithm aimed at registering 3D
face data with arbitrary identity and expression. The
algorithm also allows us to register data with missing
values and offers a control on the regularity of the reg-
istered results, thanks to the adaptive smoothing per-
formed in the last step of the registration. In fact, the
last step is a generalized version of the surface recon-
struction method we described in [2], where we showed
that its results are better than a purely statistical recon-
struction (as in [5]).



Figure 7. Generalization errors of the 3DMMs
obtained with our algorithm and the algorithm
of [6].

With the new algorithm we were able to build a
3DMM combining both identity and expression varia-
tions, which in principle might be used in many appli-
cations, as well as in the registration itself: face recog-
nition (both in 3D and 2D), video tracking, face anima-
tion, expression normalization in images. Although we
used a linear model, one could also use abilinear model
as in [18]. In principle such a model has the advantage
of capturing the dependency between identity and ex-
pressions, at the expense of an increased complexity.
However, in the 3D face recognition experiments we
performed, the bilinear model had a worse identifica-
tion rate than the linear model, and we decided to use
the latter.
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