Estimating 3D Shape and Texture Using Pixel Intensity,
Edges, Specular Highlights, Texture Constraintsand a Prior

Sami Romdhani

Thomas Vetter

University of Basel, Computer Science Department,
Bernoullistrasse 16, CH - 4056 Basel, Switzerland

{Sam . Rondhani ,

Abstract

We present a novel algorithm aiming to estimate the 3D
shape, the texture of a human face, along with the 3D pose
and the light direction from a single photograph by recov-
ering the parameters of a 3D Morphable Model. Gener-
ally, the algorithms tackling the problem of 3D shape es-
timation from image data use only the pixels intensity as
input to drive the estimation process. This was previously
achieved using either a simple model, such as the Lamber-
tian reflectance model, leading to a linear fitting algorithm.
Alternatively, this problem was addressed using a more pre-
cise model and minimizing a hon-convex cost function with
many local minima. One way to reduce the local minima
problem is to use a stochastic optimization algorithm. How-
ever, the convergence properties (such as the radius of con-
vergence) of such algorithms, are limited. Here, as well as
the pixel intensity, we use various image features such as
the edges or the location of the specular highlights. The
3D shape, texture and imaging parameters are then esti-
mated by maximizing the posterior of the parameters given
these image features. The overall cost function obtained is
smoother and, hence, a stochastic optimization algorithm is
not needed to avoid the local minima problem. This leads
to the Multi-Features Fitting algorithm that has a wider ra-
dius of convergence and a higher level of precision. This is
shown on some example photographs, and on a recognition
experiment performed on the CMU-PIE image database.

1. Introduction

Estimating the 3D shape of an object from 2D image
data is a central problem of Computer Vision. In this pa-
per, we address the task of recovering the 3D shape of a
human face from a single photograph without information
about its texture (albedo), its pose and the illumination en-
vironment. As a pixel value depends on these attributes,
accurately estimating the 3D shape requires recovering its
texture and the imaging conditions as well. Separating the

Thonas. Vet t er }@ni bas. ch

contributions of light and albedo of the pixel intensity from
a single image of the object is an ill-posed problem and re-
quires a model of variations of the 3D shape, texture, and
reflectance and a prior on its parameters. Hence, we use a
3D Morphable Model (3DMM) [4] that represents the 3D
shapes and textures as a linear combination of shapes and
textures principal components. These linear combinations
are performed in a vector space of shapes and textures in
which all 3D shapes and RGB textures vertices are in corre-
spondence with a reference. The correspondence between
instances of a class of object is a fundamental principle of
accurate modeling of 3D Linear Object Class [15]. Thus, in
order to recover the 3D shape and texture from an image, it
is necessary to also estimate the correspondences between
the input image and the model. The illumination is mod-
eled by a Phong reflection model and one light source that
can take into account as well as the diffuse component, the
specular highlights and the attached and cast shadows.

The Stochastic Newton Optimization [4] algorithm fits
the 3DMM to a single facial image thereby estimating the
3D shape, the texture and the imaging conditions. A draw-
back of this fitting algorithm is that it estimates the cor-
respondences, the 3D shape, the texture and the imaging
conditions from pixel intensity only. As a result, the en-
ergy function, or cost function, that it minimizes is highly
non-convex and presents many local minima. In this paper,
we present a new fitting algorithm, the Multi-Features Fit-
ting (MFF) algorithm, that uses not only the pixel intensity
but also other image cues such as the edges and the spec-
ular highlights (Figure 1). The resulting cost function is
smoother and easier to minimize, making the system more
robust and reliable. A question raised by this problem is
how to fuse the different image cues to form the optimal
parameter estimate. We chose a Bayesian framework and
maximize the posterior probability of the parameters given
the image and its features.

The problem of estimating the 3D shape of an object
from 2D images is also addressed in the context of shape-
from-shading, in which, usually, a Lambertian reflectance
model is employed, ignoring both attached and cast shad-

Image Features Model Features

—s

3DMM | | texture
prior constr.

¢ _
Fiing |~ §

Figure 1. 3D Shape, texture and imaging param-
eters are estimated using the pixel intensity, the
edges and the specular highlights detected in the
input image, shown on the top row. Addition-
ally, two model-based features are used: the 3D
Morphable Model (3DMM) prior and texture con-
straints. Second row: plots of each feature cost
function along the azimuth angle. These cost func-
tions are combined yielding a smoother function
that the one based on pixel intensity alone, which
is, then, minimized.

ows as well as specular highlights. When the light direction
and the texture is not known, several images are required to
estimate the shape. If the pose is fixed and the light direc-
tion varies, three images are necessary, when ignoring the
attached and cast shadows [13]. When the attached shadows
are considered, Belhumeur and Kriegman [1] showed that
the set of all N pixels images of an object at constant pose
lies in a N-dimensional subspace, however, seven images
were used to estimate the shape of a human face in order
to obtain good recognition results. Common drawbacks of
these photometric approaches are that 1) they use a simple
reflectance model treating the cast and attached shadowed
pixels, which do convey substantial information, as outlier
and 2) they require multiple images of the same object to
estimate the shape owing to the simple image model that
they rely on. Here, the image model used is more complex
and includes a prior on the shape, on the texture and a more
general reflectance model, enabling the estimation from a
single image.

Recently, Xiao et al. [16] presented an algorithm esti-
mating the 3D shape of a face from a single image by fitting
a 2D Active Appearance Model (AAM) and constraining
the resulting shape to be a valid 2D projection of a 3D shape
modeled by a 3DMM. They demonstrated that a 2D AAM
is capable of instantiating the projection of any 3D shape
in the span of a 3DMM, at the expense of using up to six

times more parameters. They showed good fitting results
obtained on the same individual used to train the 2D AAM.
However, the accuracy of the recovered depth is question-
able as the lighting is not estimated and hence the shading,
which conveys most of the depth information in an image,
is not explicitly employed.

The next section of this paper briefly reviews the main
characteristics of the 3DMM. The third section motivates
the use of multiple features to fit the 3DMM and presents
the formula that combines the different features to maxi-
mize the posterior of the parameters. Then, the five features
used by the Multi-Feature Fitting (MFF) algorithm are de-
tailed in Section 4 before we conclude in Section 5.

2. 3D Morphable M odel

The aim of this paper is to present a method able to es-
timate the 3D shape and texture of a face by registering a
single image to the 3D Morphable Model (3DMM). The
3DMM is a correspondence-based model introduced in [3]
and detailed in [4]. Its main properties follow: Firstly, the
3D shape and the texture of the faces of all individuals are
represented on the reference frame (u, v). Hence a vertex of
the reference frame represents the same facial feature across
all heads instantiated by the model. The shape and texture
are each modeled by PCA space. The pose and illumination
variations are addressed using popular Computer Graph-
ics techniques, such as the Phong reflectance model. Us-
ing a dense sampling of the reference frame, photo-realistic
renderings are produced from the model parameters, 6, by
warping an illuminated texture, t©, to the image frame us-
ing the inverse shape projection that maps the image frame
to the reference frame [11]:

I"™(2,y;0) = t(u,0;0) o p~H(z,550) (1)
3. Using multiple features

To date, the fitting algorithm that estimate the facial
3D shape and texture from a single image the most accu-
rately, is the Stochastic Newton Optimization (SNO) algo-
rithm [4]. Often it converges to a minimum close enough to
the global minimum, such as the recovered shape and tex-
ture approximate well those of the photographed individual.
However, in many cases, it converges to a local minimum
far from the global one, yielding an unrealistic face, as seen
on Figure 2. The second column on this figure shows the fit-
ting results obtained with the SNO algorithm and a profile
view synthesized using the recovered shape and the texture
extracted from the input image. It is apparent on this ren-
dering that the eyebrows are not properly recovered due to
a lack of correspondence between the input image and the
model. It is also clear that the contour is not accurately fit-
ted as some of the background is visible on the extracted
texture (bottom row). These artifacts are not present on the

face estimated using the Multi-Feature Fitting (MFF) algo-
rithm presented in this paper (third column).

Input SNO MFF

Figure 2. Example of poor fitting yielded by the
Stochastic Newton Optimisation algorithm. Top
row: fitting results with the SNO algorithm and
with the algorithm presented in this paper using
as input the photograph on the left. Bottom row:
Novel view of the fitting result of the top row.

The contribution of this paper is a fitting algorithm that is
more robust to the local minima problem. It is inspired from
the field of pattern classification in which stronger classi-
fiers are constructed from multiple weaker classifiers.

A fitting algorithm using multiple features aims at max-
imising the posterior probability of the model parameters
given not only the input image, as it is done in SNO, but
also different features of it. To make the notations more
readable, we derive the posterior probability using two fea-
tures, f1 and f2, and making their dependence on the input
image I implicit. Using the Bayes rule and denoting by 6
the ensemble of model parameters, we obtaine the follow-
ing, assuming that the features are independent:

p(f110) - p(f*16) - p(6)

p(Olf*, f?) = 2

O T =20 o) @

The aim of the MFF algorithm is to maximise the above

equation with respect to the model parameters, 0. If we use

deterministic algorithms for the feature extraction, then this
equation is simplified to:

p(OIf*, £2) = p(f110) - p(f?10) - p(6) ®)

Maximising this equation is equivalent to minimising the
negative of its logarithm:

—Inp(0|f', f?) = —Inp(f'|6)—Inp(f?|0)—Inp(h) (4)

Hence, in the rest of this paper, the negative of the loga-
rithm of a probability function is called a cost function, as
it is to be minimized. As a result, this equation says that if

the features are independent and deterministic, maximizing
their joint posterior probability is equivalent to minimizing
the sum of their cost functions.

The use of combined classifiers, in the pattern classifica-
tion field, stems from the fact that each classifier has differ-
ent strengths and their combination maximises the overall
performances. For example, an optimal cascaded classifier
is constructed with a chain of classifiers such as the classi-
fier ¢ achieves its maximum discriminations on the patterns
that are poorly discriminated by the first ¢ — 1 classifiers
[12]. Similarly, for the fitting problem, optimally, the local
minima of the features cost functions should be located in
different areas of the parameter space. Then, the combina-
tion of the multiple cost functions would have fewer local
minima and a smoother behaviour on the parameter space
as it is shown in Figure 3.

() np(Pls) npif, £)

Figure 3. Two single feature cost functions with,
each, two minima. The last plot shows the multiple
feature cost function (plain line) with one global
minimum yielded by the addition of the two weak
cost functions (dashed lines).

If there is a local minimum that is persistent across all
features, then it would persist in the combined cost function.
If the features are independent, this is not likely to happen.
To make this even less likely to happen, a good strategy is
to use as many features as possible.

4. Multi-Features Fitting algorithm

In this section, we motivate and derive a cost function for
each feature used in this work: the pixel intensity, the edge,
the specular highlight, the prior, and the texture constraints
features.

4.1. pixel intensity feature

Fitting the pixels intensity aims to recover the correspon-
dence, the 3D shape, the texture, and the imaging parame-
ters, by matching the color of the model image to the color
of the input face image. Hence, the feature used to fit the
pixel color, f¢, is simply the input image:

f(z,y) = 1(z,y) ®)

If the pixels are assumed independent and identically dis-
tributed with a Gaussian probability, the pixel intensity cost

function is given by:

~Inp(I(,)16) o 5 3 (e yi) — ™ (weo))? ©)

i

The cost function, C¢, can then be written as the inner prod-
uct of the error vector e®:

Cc — _ecT 'ec

LT e,)
with ef = I(z;, ;) —t°(u,v;0) op~H(zi,9::60) (8)

Composing this last equation on its right with the forward
shape mapping p(u, v; #), detailed in [11], using the shape
composition axiom [11], and sampling the reference frame
instead of the image frame, yields a cost function that de-
pends on the forward shape mapping:

ef = I(zi,yi) o p(us, vi; 0) *tc(ui,vi;e))
The SNO algorithm minimizes the sum of this cost func-
tion and a cost function that depends on the prior (Section
4.4). Unfortunately, this former cost function is perturbed
by many local minima, as it is shown on Figure 4 that plots
values of the pixel intensity cost function obtained by vary-
ing the azimuth angle around its global optimum and using
average values of the other model parameters.

Cost function of the Pixel Color Feature
74 T T T T T T T

62
0

5 10 15 20 25 30 35 40
azimuth angle, @

Figure 4. Plot of the Pixel intensity cost func-
tion along variations of the azimuth angle of +£20°
around the optimum.

Representing a shape in the 3DMM requires putting it
in correspondence with the reference frame. Its depth is
estimated using the shading recovered from the pixel inten-
sity by estimation of 1) the texture (using the prior model)
and 2) the lighting environment. In the SNO algorithm, the
pixel intensity feature is used to recover both the correspon-
dence and the shading. As the shading depends directly on
the pixel intensity, it is reasonable to estimate it from the
pixel intensity feature. However, the correspondences are
implicit in the cost function of Equation 4, this feature is,
then, not optimal to evaluate them.

4.2. Edge feature

The image edges provide informations about the 2D
shape independently of the texture and of the illumination.
Hence, the cost function used to fit the edge features pro-
vides a more direct constraint on the shape and pose param-
eters. This is why its plot across azimuth direction (made
on the same image and with the same parameters as plot of
Figure 4, but on a wider range) is much smoother. The edge
feature is useful to recover the correspondences of specific
facial characteristics (eyes, eyebrows, mouth, nose). On the
other hand, it does not carry much depth information. So, it
is beneficial to use the edge and intensity features in combi-
nation.

Cost function of the Edge Feature
25

20

15

Cost

0 20 4‘0 éD 80
azimuth angle, @
Figure 5. Plot of the edge cost function along vari-

ations of the azimuth angle of +60° around the
optimum.

The edge feature is defined as the binary edge map
given by a canny edge detector [6]: f°(I(z,y)) =
canny (I(z,y)). If the image edge pixels are independent
and identically normally distributed over the image, then the
edge feature cost function is given by the following equa-
tion:

—Inp(f*(1)[6) o C° = &7 - e, (10)
with e2(6) = |13, — pi(0)] (11)

where i) is the 2D position of an image edge pixel in
correspondence with the model edge point whose index is
1 and that is projected in the image frame to p;, with i =
1,..., N, where N, is the number of model edge points.
The mapping between the image and the model edge points
is denoted by k(7). To estimate it, we use the same rule as
the Iterative Closest Point (ICP) algorithm [2]: The model
edge point i is set in correspondence with the input image
edge point, g5, closest to it:

N . e .
k(i) = arg min _{lq7 — pill (12)
where J is the number of image edge points. Similar to

the ICP algorithm, fitting the edge involves, at each iter-
ation, the following two steps: First, the correspondence

mapping, k(7), is computed. Then, given this mapping, the
model parameters are updated to reduce the cost function of
Equation (10). However, performing these two steps sepa-
rately is not optimal, as modifying & (¢) alters the minimum.
Hence, it is desirable, to update k(i) along with the param-
eters 6. Levenberg-Marquardt ICP (LM-ICP) is an algo-
rithm, proposed by Fitzgibbon [8], addressing this problem.
The difference between the Fitzgibbon algorithm and this
one, is that in [8], only the rigid parameters were estimated.
Here, not only the rigid parameters are estimated but also
the non-rigid parameters.

The trick is to use the Chamfer Distance Transform
(CDT) [5]. It is defined as the mapping D(x) that asso-
ciates a point of the image space, x, with the distance to the
closest edge point:

D(x) = min |qf —x| (13)

The CDT at the image point, x, in essence, incorporates
two pieces of information: The closest edge point to x
(which, according to the ICP algorithm, is set in correspon-
dence with x); and the distance between these two points.
Hence, it replaces both the mapping k(¢) and the distance
||qi(i) — p;||. As a result, using the CDT, the edge cost
function is transformed to:

i (0) = D(pi(0)) (14)

The edge cost function is computed simply by sampling the
CDT at the position where the edge model points are pro-
jected under the shape and projection parameters.

Note that the CDT depends only on the input image, not
on the model parameters. Hence it can be computed only
once, at the beginning of the fitting algorithm. An efficient
implementation of the computation of D(x) is proposed in
[7]1 , whose complexity is O(2wh), where w and h are the
width and height of the input image.

Differentiating the edge cost function of Equation (14),
with respect to a model parameter 6, is straightforward and
yields:

e

e 0D op? 9D op?

6, = 92 P g gy P gy,

The advantage of the LM-ICP algorithm is that the deriva-
tives of the CDT encode both the derivative of the mapping
function k(7) and the one of the distance between corre-
sponding points. As opposed to the ICP algorithm, in which
the derivatives do not depend on the mapping and hence re-
gard it as being constant for each update of the parameters.
As aresult, in the LM-ICP algorithm, used here, the param-
eter update takes into account the variation of the mapping
function. This is the reason why this scheme is called "soft
correspondence’.

(15)

Model Edges The cost function of Equation 10 depends
on the model edge points p;, with i = 1,..., N,, which

form a subset of the model vertices. We distinguish between
two types of model edges: The textured edges result from
a texture change in the inner part of the face and delimit
the facial features such as the lips, eyes and eyebrows. The
contour edges, on the other hand, are defined by the points
that are on the border between the face area and the non-face
area in the image plane.

The location of the textured edges is constant on the ref-
erence frame. As the reference frame is densely sampled
by 3D vertices, the textured edges form a constant subset
of model vertices. The subset of model vertices chosen as
textured edges is shown in white on the texture map of the
average head on Figure 6.

Figure 6. The textured edges on the face surface
are shown on this figure in white on the texture
map of the average head.

As opposed to the textured edges, the contour edges do
depend on the rigid parameters. The fitting of contour edges
proceeds in two steps: First, the model vertices on the con-
tour for the current rigid parameters are selected, then these
vertices are fitted to the input edges in the same way as for
textured edges, i.e. using the CDT. The selection of model
contour edges is performed by the following algorithm that
includes four step whose results, on an example image, are
shown in Figure 7.

1. Vertex map: First the vertex map is constructed. A
vertex map is a rendering of the face, but instead of
setting the R, G, B color at one pixel, a vertex index is
set. The vertex whose index is set at one pixel, is the
one that is projected nearest to this pixel.

2. Binary vertex map: The vertex map is converted to a
binary format by thresholding the vertex map to one.
The binary vertex map has, hence, a value of one for
any pixel in the face area of the image, and zero, for
any pixel outside the face area.

3. Erosion and subtraction: The morphological operation
of erosion is applied to the binary vertex map, using as
structuring element a disk of radius of one pixel. Then
this eroded binary image is subtracted to the binary
vertex map obtained at step 2. The resulting binary im-
age is the contour map. Each pixel on this contour map

set to one is on the contour of the face. Sampling the
vertex map (obtained at step 1) on these pixels yields
the indexes of the model vertexes on the contour.

4. Contour vertex indexes: The 3DMM does not model
the entire skull. 1t only models the points ranging from
one ear to the other and from the top of the forehead
to the neck. As a result, some parts of its contour, on
the lower part of the neck and on the top of the fore-
head, are artificial. These artificial contour points are
removed at this step. The good news is that this artifi-
cial contour is present always in the same area of the
face. Hence, it is constant. Thus, a list of the vertex
indexes on the artificial contour can be made, and all
the contour vertex indexes yielded by step 3 that are on
the artificial contour list are removed. This step yields
the indexes of the contour vertex used for fitting.

Model image Step 1 Step 2

Step 3 Step 4
///‘/_\ Y
I R)
((({
\)f‘ N /)

L J

~_/

Figure 7. Rendering of the images yielded by the
four steps of the algorithm computing the model
contour, when applied to the 'Model image’ shown
in the upper left part of this figure.

4.3. Specular highlight feature

The specular highlights are easy to detect: The pixels
with a specular highlight saturate. Additionally, they give a
direct relationship between the 3D geometry of the surface
at these points, the camera direction, and the light direction:
A point on a specular highlight has a normal that has the
direction of the bisector of the angle formed by the light
source direction and the camera direction (see Figure 8).

The benefit of the specular highlight feature is shown on
an example on Figure 9. Image (a) presents an input image
(at a frontal pose) with a specular highlight on the left of
the tip of the nose. Two fittings of this photograph are per-
formed. The first one without the specular highlight feature
(second column) and the second one using this feature (third
column). Renderings of these two fittings at a frontal pose

S

Figure 8. The light vector, 1, is reflected along the
reflection vector, r.

(top row) appear to be similar. Renderings of the contour at
a profile view (using the fitted parameters of the top row) are
shown on the bottom row. It is clearly apparent that the tip
of the nose is much closer to the ground truth on the fitting
result obtained with the specular highlight feature. To sum
up, the specular highlight feature provide additional depth
information improving the 3D shape estimation.

)

(d) ©

Figure 9. Comparison of fitting results with and
without the specular highlight feature. (a) Input
photograph. (b) Fitting result of the photograph
(a) without specular highlight feature. (c) Fitting
result of the photograph (a) using the specular
highlight feature. (d) Contour of the fitting result
(b) at a profile view rendered on top of a profile
photograph of the same person. (€) Contour of
the fitting result (c) at a profile view.

A point on a specular highlight as a normal equal to:
r+1 v(0) +1
n = =
O = e = Vo«

where r is the reflection vector, which, for a point on the
specular highlight, has the same direction as the viewing
vector v(6), that connects the point to the camera. Hence,
we define the specular highlight cost function as follows:

C° =e%-e*,with e =n;(0) — (vi(d) +1) (17)

(16)

where €f is a three elements sub-vector of e®; n; and v;
are, respectively, the normal and the viewing vector of the
vertex s that is projected on a pixel on a specular highlight.

4.4, Gaussian Prior feature

The 3DMM is based on a Gaussian probability model
for both the 3D shape and the RGB texture. In the model
construction, a PCA is applied to diagonalize the shape and
texture covariance matrices. Hence the cost function of the
prior feature is as follows:

2 2

% S %

(18)

where «; and ; are the shape and texture PCA coefficients
(i.e. they are elements of the vector §); og; and o7 ; are,
respectively, their standard deviations. This prior term is
also used in the SNO fitting algorithm [4].

4.5, Texture constraint feature

In order to accurately estimate the 3D shape, it is re-
quired to recover the texture, the light direction and its in-
tensity. To separate the contribution of the texture from light
in a pixel intensity value, a texture prior model is used (see
previous section). However, it appears that this prior model
is not restrictive enough and is able to instantiate invalid
textures. To constraint the texture model and to improve the
separation of light from albedo, we introduce a feature that
constraints the range of valid albedo values.

An example is presented in Figure 10. The second col-
umn shows a poor fitting where the light intensity is under-
estimated and the texture over-estimated. As these effects
compensate each other, the fitting result rendered in image
(b) look plausible. However when the texture from the im-
age is extracted and the illumination inverted, the result is
affected by some blueish regions that look unnatural (im-
age (d)). The process of texture extraction and inverse illu-
mination, which is required to perform a re-rendering of a
photograph in novel conditions, is detailed in [10].

The valid intensity range of a pixel is [0, 255]. This con-
straint is not enforced by the Gaussian prior texture model.
Imposing a valid range over all the texture points make the
texture less likely to be over-estimated, as in the second col-
umn of Figure 10, and hence, make the light intensity less
likely to be under-estimated. The results shown in the third
column of the same figure are obtained by imposing, during
fitting, the model color to be in the range [5,250]. This is
achieved by using the following cost function:

t:(0) — 1

) if £,(0) < |
Ct = §etT-et, with et =<¢0

i1 < t,(0) < u
(19)

K3

Figure 10. Comparison of fitting results with and
without the texture constraint feature. (a): Input
photograph. (b) and (c): Rendering of the fitting
result obtained without and with, respectively, the
texture constraint feature. (d) and (e): Inverse illu-
minated extracted texture obtained from the fitting
results shown in images (b) and (c), respectively.

where ¢;(0) is the color intensity of a channel of a model
vertex used for fitting, and / and « are the lower and upper
bounds of the valid intensity range. Note that this feature is
not a hard constraint, but is rather a soft constraint, whose
influence on the resulting estimate is relative to the other
features.

4.6. Multi-Features Fitting algorithm

Equation (4) says that when the features are independent
and deterministic, maximizing the posterior of the model
parameter is equivalent to minimizing the sum of the neg-
ative likelihoods. As the negative likelihood of a feature
is proportional to the feature cost function, the overall cost
function is a linear combination of the features cost func-
tions:

mein T¢CC + 16C°¢ + 15C° + 7PCP + 7ICY (20)

In this function, the 7’s are the feature weighting factors.
It is minimized using a Levenberg-Marquardt optimization
algorithm [9]. Similarly to the SNO algorithm, the fitting
is initialized using a set of five to seven (depending on the
pose) manually set anchor points located at the eyes corners,
nose tip, mouth corners and on the contour. Standard initial
values of the shape, texture, illumination and rigid param-
eters are used (average shape and texture, frontal pose and
one frontal directed light).

A Matlab implementation of the MFF Fitting algorithm
requires, on average, 70 seconds to reach convergence on a
3.0 GHz Intel Pentium IV computer. On the other hand, the
SNO algorithm requires 4.5 minute on a 2.0 GHz computer.

Identification The MFF algorithm was experimented us-
ing the |i ght portion of the CMU-PIE facial image
database [14] that includes 22 different illumination condi-
tions at three poses (front, side and profile) for 68 individu-
als. Several identification experiments, using one image per
individual at a side view as the gallery, and a cosine-based
distance measure between shape and texture model parame-
ters, were performed. Averaging all these experiments over
the probe sets (one probe set includes photographs taken at
one of the 3 poses with one of the 22 flash lights), yielded
94.6% correct identification with the MFF algorithm and
94.2% with the SNO algorithm [4, Table 2]. More infor-
mation about these experiments is available in [4]. To sum
up, the identification performances of both algorithms are
similar, however, the efficiency of MFF is substantially im-
proved, owing to the fact that the cost function is smoother
and a stochastic optimization is not required.

5. Discussion and Conclusion

The image analysis problem tackled in this paper is the
estimation of the 3D shape, the texture of a face and the
imaging parameters from a single input facial image. The
only clue available in a single image about depth is con-
tained in the shadings and the shadows. However using this
information requires the illumination environment and the
texture of the face to be known. As these are not known,
the problem is ill-posed. One way out of this dilemma is by
using prior knowledge. Therefore, texture and shape PCA
models are employed to constraint the set of possible solu-
tion. A lighting model is also used, the Phong reflectance
model, which has a few parameters when only one light
source is handled. However, even applying this prior mod-
els is not enough to obtain an accurate estimate of the 3D
shape when just a few manually set anchor points are used
as input. This is because the cost function to be minimised
is highly non-convex and exhibits many local minima. In
fact, the shape model requires the correspondence between
the input image and the reference frame to be found. Using
only facial color information to recover the correspondence
is not optimal and may be trapped in regions that present
similar intensity variations (eyes/eyebrows, for instance).
Other features could be used to obtain a more accurate esti-
mate of the correspondence and, as a result, of the 3D shape.
One example of such feature is the edges. Other features
that improve the shape and texture estimate are the specular
highlights and the texture constraints. The specular high-
light feature uses the specular highlight location, detected
on the input image, to refine the normals and, thereby, the

3D shape of the vertices affected (see Figure 9). The tex-
ture constraint enforces the estimated texture to lye within
a specific range, which improves the illumination estimate
(see Figure 10).

To avoid getting trapped in local minima, the SNO algo-
rithm used a stochastic optimization that introduced a ran-
dom error on the derivative of the cost function. This is
performed by sampling the cost function at a very small
number of points (40 pixels). This random error enables the
algorithm to escape from local minima. On the other hand,
the MFF algorithm, presented in this paper, has a smoother
cost function owing to the various sources of information
used. Hence, it is not required to use a stochastic optimiza-
tion algorithm and the pixel intensity feature may be safely
sampled at many more points providing a more stable pa-
rameter update. Hence, much fewer iterations are needed to
reach convergence (a few tens instead of several thousands
in the case of SNO). As a result, as well as being accurate,
MFF is also more efficient than SNO.

References

[1] P. Belhumeur and D. Kriegman. What is the set of images of
an object under all possible illumination conditions. 1JCV,
28(3):245-260, 1998.

[2] P.J. Besland N. D. McKay. A method for registration of 3d
shapes. PAMI, 14(2):239-256, 1992.

[3] V.Blanz and T. Vetter. A morphable model for the synthesis
of 3D-faces. In SIGGRAPH 99, 1999.

[4] V. Blanz and T. Vetter. Face recognition based on fitting a
3d morphable model. PAMI, 2003.

[5] G. Borgefors. Hierarchical chamfer matching: A parametric
edge matching algorithm. PAMI, 10(6):849-865, 1988.

[6] J. Canny. A computational approach to edge detection.
PAMI, 8(6), 1986.

[7] P.Felzenszwalb and D. Huttenlocher. Distance transforms of
sampled functions. Technical Report TR2004-1963, Cornell
Computing and Information Science, 2004.

[8] A. Fitzgibbon. Robust registration of 2d and 3d point sets.
In BMVC, volume 2, pages 411-420, 2001.

[9] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery. Numerical recipes in C : the art of scientific com-
puting. Cambridge University Press, 1992.

[10] S. Romdhani. Face Image Analysis using a Multiple Feature
Fitting Strategy. PhD thesis, Univeristy of Basel, Jan. 2005.

[11] S. Romdhani and T. Vetter. Efficient, robust and accurate
fitting of a 3d morphable model. In Proceedings of the In-
ternational Conference on Computer Vision, 2003.

[12] J. Schirmann. Pattern classification: a unified view of sta-
tistical and neural approaches. J. Wiley & Sons, Inc., 1996.

[13] A. Shashua. On photometric issues in 3d visual recognition
from a single 2d image. 1JCV, 21:99-122, 1997.

[14] T. Sim, S. Baker, and M. Bsat. The cmu pose, illumination
and expression (pie) database of human faces. Technical
report, CMU, 2000.

[15] T. Vetter and T. Poggio. Linear object classes and image
synthesis from a single example image. PAMI, 1997.

[16] J. Xiao, S. Baker, I. Matthews, R. Gross, and T. Kanade.
Real-time combined 2d+3d active appearance model. In
CVPR, pages 535-542, 2004.

