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Abstract

This paper presents a method for face recognition across
large changes in viewpoint. Our method is based on a Mor-
phable Model of 3D faces that represents face-specific in-
formation extracted from a dataset of 3D scans.

For non-frontal face recognition in 2D still images, the
Morphable Model can be incorporated in two different ap-
proaches: In the first, it serves as a preprocessing step by
estimating the 3D shape of novel faces from the non-frontal
input images, and generating frontal views of the recon-
structed faces at a standard illumination using 3D computer
graphics. The transformed images are then fed into state-
of-the-art face recognition systems that are optimized for
frontal views. This method was shown to be extremely ef-
fective in the Face Recognition Vendor Test FRVT 2002.

In the process of estimating the 3D shape of a face from
an image, a set of model coefficients are estimated. In the
second method, face recognition is performed directly from
these coefficients. In this paper we explain the algorithm
used to preprocess the images in FRVT 2002, present ad-
ditional FRVT 2002 results, and compare these results to
recognition from the model coefficients.

1. Introduction

Most state-of-the-art face recognition systems are opti-
mized for frontal views of faces only, and their performance
drops significantly if the faces in the input images are shown
from non-frontal viewpoints. Changes in viewpoint, how-
ever, are encountered in many real-world applications, and
face recognition from non-frontal viewpoints is one of the
main challenges in developing general-purpose face recog-
nition systems.

The goal of this paper is to make existing, view-based
systems applicable to images of faces from any viewpoint
and at any illumination by a preprocessing technique based
on a Morphable Model of 3D faces [4, 5]. Morphable Mod-
els have been shown to provide a viable computer graphics
technique for view transformation [4, 3] and for automatic
face recognition [5]. In this paper, we use a Morphable
Model in a more general setting for face recognition.
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Figure 1: Fitting the Morphable Model to an Image pro-
duces not only a 3D reconstruction, but also model coeffi-
cients oy, [3; and an estimate of head orientation, position
and illumination.

Our approach is to reconstruct 3D models of faces from
the non-frontal views and to redraw these faces at a frontal
orientation, using 3D computer graphics. The computer-
generated frontal view can then be transferred to any view-
based face recognition system for person identification or
verification. The 3D reconstruction of the face includes the
ears and the neck, but not the hair and the shoulders of the
person. For a view transformation technique to compati-
ble with most face recognition systems, the transformation
technique must be able to place a transformed face into a
“full portrait.” Our algorithm inserts the face into a stan-
dard image of a person automatically. Regions of the face
that are occluded in the non-frontal view are completed by
the algorithm, and differences in illumination are compen-
sated. Along with the faces’ 3D shapes, our reconstruction
algorithm estimates all relevant scene parameters, such as
head position, size and orientation, illumination parameters
and image contrast (Figure 1). We can, therefore, automat-
ically compute the rendering parameters from the standard
image and apply them for rendering standard views of novel
faces (Figure 2).

The core of the 3D face reconstruction algorithm is a
Morphable Model of 3D faces [4, 5] that captures general
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Figure 2: Viewpoint-transformed recognition: From a probe
image (top left), our algorithm generates a transformed
front view. This is input to a view-based face recognition
system for comparison with the set of frontal gallery views.

information about the natural variation of 3D shapes and
textures of faces in a vector space spanned by a dataset of
3D faces. This information helps to solve the otherwise
ill-posed problem of reconstructing 3D shape from a sin-
gle image: In an iterative optimization, the algorithm finds
the linear combination of example faces such that 3D com-
puter graphics renders an image that is as similar as possible
to the input image. For initialization, the algorithm requires
the image coordinates of up to seven feature points.

Figures 2 and 3 show two alternative paradigms for face
recognition with Morphable Models. In both paradigms, we
assume that gallery images of all persons known to the sys-
tem are stored, and that persons in probe images have to be
identified by finding the most similar person in the gallery,
or their claimed identity has to be verified. We address the
case of frontal gallery and non-frontal probe images, and
vice versa.

In the viewpoint-transformed recognition approach pro-
posed in this paper, all non-frontal images are transformed
into front views, and recognition is performed by a sepa-
rate, view-based algorithm. In one scenario, we assume that
the gallery images are frontal (e.g. mug-shots), so only the
probe images have to be transformed. (Figure 2). This has
been evaluated in the Face Recognition Vendor Test 2002
[9] with 10 different face recognition systems by commer-
cial firms, and we present a more comprehensive report of
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Figure 3: Coefficient-based recognition: The representation
of faces in terms of model coefficients o, 3; for 3D shape
and texture is independent of viewpoint. For recognition, all
probe and gallery images are processed by the model fitting
algorithm.

this evaluation and additional results. We are also evalu-
ating a scenario where the probe views are frontal, for ex-
ample from a security checkpoint, and the gallery images
are transformed from given snapshots of suspects. This
scenario may have even more practical relevance, since the
viewpoint transformation has to be done only for the rela-
tively small number of gallery images, and the recognition
can then be done by efficient view-based methods.

Coefficient-based recognition (Figure 3) uses the model
coefficients, which were computed by the model fitting al-
gorithm, as a viewpoint-invariant, low-dimensional repre-
sentation of faces [5]. Here, both the probe and the gallery
images can be from any viewpoint. The drawback of this
method is that each image has to be processed by the costly
model fitting algorithm. In Section 4.3, we compare the per-
formance of viewpoint-transformed and coefficient-based
recognition on the same image set, the same testing con-
ditions, the same Morphable Model and the same fitting re-
sults, which is important for a meaningful comparison of
strategies.

1.1. Related work

In an image-based approach, Beymer and Poggio have ap-
plied warping operations to generate virtual views of faces
for recognition [2]. Synthesis of novel images based on two
image-based linear object classes, which were constructed
from images of the same set of individuals, was used for
face recognition by Vetter [12]. Atick et al. presented a
method for model-based shape-from-shading, using untex-
tured 3D scans without point-to-point correspondence, and
they suggested to create images at new poses for face recog-
nition [1]. Virtual views, generated with image warping



and shape—from—shading, have also been proposed for face
recognition by Zhao and Chellappa [14]. Georghiades et al.
recovered 3D shape of faces from 3 images at a fixed pose
and different lighting, and synthesized novel views that they
used for face recognition [6]. For face recognition across
different illuminations, but at a strictly fixed pose, Sim and
Kanade presented a method that recovers surface normals
with shape-from-shading, generates images at new illumi-
nations, and trains a classifier on the extended set [11].

Due to recent advances in 3D shape reconstruction [5],
we can now explore a combination of high-resolution re-
constructions of textured 3D faces from single images, and
a variety of state-of-the-art systems for image-based recog-
nition. It is important to note that our approach does not re-
quire 3D scans of the faces that are to be recognized (gallery
or probe), but only single 2D images. Just as with our
coefficient-based algorithm [5], we use the database of 3D
faces only for learning general properties of human faces.
None of the individuals in the 3D database is in the image
database that we used for testing.

In the following two sections, we briefly summarize the
Morphable Model and the algorithm for 3D shape recon-
struction. Section 3 describes our procedure for rendering
standardized frontal views. Section 4 gives an extensive
evaluation of the combined approach with a set of differ-
ent view-based algorithms, and compares this combination
with coefficient-based recognition.

2. Morphable Models for Face Recon-
struction

The Morphable Model of 3D faces[13, 4, 5] is a vector
space of 3D shapes and surface reflectances (textures) that
is spanned by a dataset of examples and that captures the
variations found within this set. Our dataset contains 200
textured Cyberware (TM) laser scans of an equal number of
males and females aged between 18 and 45 years. Except
for one Asian female, all persons are Caucasian. Previous
work [5] indicates that the model may well be applied to
reconstruct 3D shape from images of a wider ethnic variety.

The shape and texture vectors are defined such that any
linear combination of examples

S:iaisi, T:ZbiTi. (1)
=1 1

is a realistic face, given that S, T are within a few standard
deviations from their averages. Each vector S; stores the
3D shape in terms of x, y, z-coordinates of all vertices k &

{1,...,n} of a high-resolution 3D mesh, and textures T};
contain their red, green and blue color values:
Si - (‘rlaylazthv'"7xnaynvzn)T (2)
Ti = (Ri,G1,B1,R,..., Ry, G, By)". (3)

In the conversion of the laser scans into shape and texture
vectors S;, T;, it is essential to establish dense point-to-
point correspondence of all scans with a reference scan, to
make sure that vector dimensions in S, T describe the same
point, such as the tip of the nose, in all faces. Dense corre-
spondence is computed automatically with an algorithm de-
rived from optical flow (for details, see [5]). Finally, we per-
form a Principal Component Analysis to estimate the prob-
ability distribution of faces around the averages s and t of
shape and texture, and we replace the basis vectors S;, T;
in Equation (1) by orthogonal eigenvectors s;, t;:

m—1 m—1
S=5+Y ai-si, T=t+» Bi-t; 4
i=1 i=1

3D shape reconstruction from a single input image is
achieved by fitting the Morphable Model to the image in
an analysis-by-synthesis loop: At each iteration, the current
model parameters define a 3D face, and computer graph-
ics can be used to render a coloured model image with
red, green and blue channels I pmoder (2, Y), Ig,model (T, ),
I modet (2, y). The fitting algorithm minimizes the differ-
ence between the model image and the input image,

EI - Z Z Z (Ic,input (Z‘, y) - [c,model (SC, y))za

z Yy ce{rg,b} )

in a stochastic Newton optimization [5] with respect to the
following model parameters: shape coefficients, texture co-
efficients, 3D position, 3D orientation, focal length, red,
green and blue components of ambient and parallel light,
direction of that parallel light, color offsets, gains and color
contrast. For details, see [5]. Due to the explicit, separate
parameters for pose and illumination recovered from the im-
age, we can modify any of them independently and draw the
face from any new angle and under any new illumination.

For convergence of the optimization, the system is ini-
tialized by providing 2D image positions of some feature
points, such as the tip of the nose or the corners of the
eyes. The algorithm then converges automatically in about
4.5 minutes on a 2GHz Pentium 4 processor.

Since the linear combination of textures T'; cannot repro-
duce all local characteristics of the novel face, such as moles
or scars, which in fact may be highly relevant for recogni-
tion, we extract the person’s true texture from the image
wherever it is visible. This is done by an illumination-
corrected texture extraction algorithm [4]. The boundary
between the extracted texture and the predicted regions
(where the true texture is occluded in the input image) was
still visible in some of the images used in the figures and
evaluations reported in this paper. We have recently im-
proved our algorithm to achieve a smooth transition, based
on a reliability criterion for texture extraction.



Figure 4: From the original images (top row), we recover 3D shape (second row), by finding an optimal linear combination
of example faces, and redraw the faces in frontal pose into a standard background (bottom row). In Section 4.1, the original
front view (top, center) was used in the gallery, and the four non-frontal originals (top) and all five transformed views (bottom)
were in the nine probe sets, respectively. The frontal-to—frontal mapping served as a baseline test (bottom row, center).

In the database of images used for evaluation, some in-
dividuals had facial hair or wore eyeglasses, unlike the 200
3D faces in the Morphable Model. Texture extraction cap-
tures the beard in a texture map and reproduces it on the
frontal view, even if the beard’s thickness is neglected in this
transformation. In the same way, eyeglasses are mapped on
the facial surface by the algorithm, which distorts the shape
of the glasses in rotated viewpoints. The estimate of face
shape, however, is not affected much by hair or glasses (see
[5] for examples).

3. Hair and Portrait Processing

The goal of viewpoint transformation is to render front-
views images that are optimal for the subsequent, view-
based recognition system in terms of imaging conditions.
Rendering only the part of the head covered by our model,
i.e. face, ears and neck, in front of a uniform background
might affect algorithms that expect complete face images.
Our approach, therefore, is to draw the rotated face into a
standard portrait of a short-haired person at a frontal pose
(Figure 4), so all transformed images have the same hair—
style, shoulders, and background. With additional classifi-
cation of gender and skin-complexion, which may be based
on the 3D face reconstruction, it would be possible to select
from a choice of different standard images automatically.
In order to determine head size, position, orientation and

illumination of the standard image, we fitted the Morphable
Model to the image, as described in the previous section.
To be able to draw the standard portrait’s hair in front of
the forehead, we manually defined a transparency map that
is opaque on the hair and transparent everywhere else [3].
If the transformed face is smaller than the face in the stan-
dard portraits, part of the original face would be visible in
the background. We apply a simple background continua-
tion method [3] to extend the background pattern into the
background face region along the facial contour.
Given an input image, we perform the following steps:

1. Manually define feature points, such as the tip of the
nose, the corners of the eyes, or any points along the
occluding contours on the cheeks. For the results pre-
sented in this paper, we defined an average number of
11 feature points to ensure optimum quality. However,
6 points are often sufficient. In future systems, these
points can be found by automated feature detection.

2. Run the optimization.
3. Render the 3D face in front of the standard image, us-

ing the parameters for position, orientation, size, and
illumination of the standard image.

4. Draw the hair in front of the forehead, using the trans-
parency map which has been defined once on the stan-
dard image.
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Figure 5: Compositing. From the standard image (left), we reconstruct the face in order to obtain estimates of the head’s
pose and illumination. Along the edge of the reconstructed head, we extend the background colors into the face region. Then,
we render the novel face with the standard imaging parameters and composit the hair layer in the foreground to obtain the

final image (right).
4. Results

The data in the FRVT 2002 MClInt morphable model exper-
iment was designed to examine the effects of pose variation
and morphable models on performance [9]. The data con-
sisted of five images of 87 subjects who were not in the
dataset of 3D scans used for the morphable model. All im-
ages were taken taken indoors under studio conditions with
a single incandescent photo floodlight, and all images of a
subject were taken within five minutes. The five images of
each subject consist of a frontal view and images with sub-
jects looking left and right 45 degrees and up and down 30
degrees. The pose angles of the faces are nominal because
pose was controlled by having subjects look at an object.

4.1. View Transformation of Probe Images

For the FRVT 2002 MClInt morphable model experiment
the gallery consisted of the frontal image of the 87 subjects.
Nine probe sets were constructed to measure the impact of
pose variation and morphable models on performance. Fig-
ure 4 shows examples of the nine probe sets for one indi-
vidual. The 45 left and 45 right probe sets contained facial
images facing 45 degrees to the left and right of center re-
spectively. The 45 L and 45 R columns in Figures 6 and 7
report verification and identification results for the 45 left
and 45 right probe sets. Line segments are drawn between
original and corresponding transformed probe sets for vi-
sualizing the effect of transformation. The 30 up and 30
down probe sets contain facial images facing 30 degrees up
and down respectively. The performance results for these
two probe sets are reported in the 30 U and 30 L columns.
In the remaining five probe sets, a three-dimensional mor-
phable model has been applied to the probes according to
the paradigm shown in Figure 2.

The frontal morph probe set provides a baseline for how
replacing the hairstyle and background affects a system if
the viewpoint transformation is close to O degrees: The
probe views are transformed versions of the original front
views that form the gallery. The results for the frontal

morph probe set are in column frontal (morph). If a sys-
tem were insensitive to the artifacts introduced by the mor-
phable model, then the verification and identification rates
would be 1.0. In Figure 23, sensitivity to morphable models
range from 0.98 down to 0.45.

To investigate the effects of morphable models, perfor-
mance was computed for four probe sets: 45 left morphed,
45 right morphed, 30 up morphed, and 30 down morphed.
These probe sets were produced by applying the morphable
model to the 45 left, 45 right, 30 up, and 30 down probe
sets respectively. The results for the morphed probe sets
are in columns 45 L (morph), 45 R (morph), 30 U (morph),
and 30 D (morph). The results show that with the exception
of Iconquest, morphable models significantly improved per-
formance.

4.2. View Transformation of Gallery Images

We now examine the scenario of using one or multiple non-
frontal images in the gallery and a single frontal image as
the probe. This situation is representative of applications
where non-frontal surveillance images are compared with
standardized probe images such as those captured in an air-
port lane.

Table 1 lists the verification results for viewpoint-
transformed gallery against un-transformed frontal probe
images with one of the leading algorithms from the previous
tests. The correct acceptance rate is in the same range as in
the previous scenario. Table 2 summarizes verification re-
sults for all combinations of probe and gallery views. In the
pairs of numbers listed, the first refers to the condition with
both gallery and probe images unchanged, and the second
to both gallery and probe images view-transformed. The
data show a dramatic increase in correct acceptance rate in
all conditions.

An additional question is whether, together, four non-
frontal images offer superior performance than any one
alone. We perform post-matching score-level fusion on the
results obtained with each probe view. This involves re-
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Figure 6: Verification rate for 10 different face recognition systems from FRVIO02 at a 1% false accept rate. The diagram
shows results for original probe images taken from different viewpoints (45L, 45R, 30U, 30D) and viewpoint-transformed
probe images ( “morph”, see Section 4.1). Gallery images were untransformed frontal views.

placing the four scores that result from the comparison of
an unknown probe with the four non-frontals with a single
score. The standard approach [8, 7] is to sum the scores, but
the use of the maximum, which corresponds to the assign-
ment of the most similar score, is equivalent to regarding
each of the four views as separate gallery identities. Note
that the option of fitting the Morphable Model to multiple
images simultaneously [4] is not used here.

The results shown in Table 1 form a lower bound on the
benefits attainable with more sophisticated fusion schemes.
The table suggests two conclusions. First that the view-
point transformation is effective, especially in conjunction
with even an elementary fusion scheme: The last number in
the table, max-rule fusion applied to viewpoint-transformed
images, is a 47% reduction in error (the correct acceptance
rate increased to 0.90 from 0.81) over the best single trans-
formed view. Secondly neither fusion rule is particularly
effective on untransformed views.

4.3. Viewpoint Transformation versus Coeffi-
cient Based Recognition

From fitting the model’s 99 most relevant principal com-
ponents to images, we obtain coefficients a; and (3;, i =
1,...,99 for each image. The algorithm does not only fit
the entire face model, but also separate regions around the
eyes, nose, mouth and the surrounding part, which yields
four more sets of model coefficients. We scale all coeffi-
cients by their standard deviations according to PCA, and
concatenate them to a vector c. This vector can be used for
identification using a nearest neighbour search. For verifica-
tion, we compare the difference with a threshold value that
is set such that false accept rate is at 0.01. In both recogni-

View Without With
View Transform | View Transform
30 deg up view 0.45 0.81
30 deg down view 0.54 0.80
45 deg left view 0.16 0.70
45 deg right view 0.18 0.80
fused views (sum) 0.44 0.88
fused views (max) 0.55 0.90

Table 1: Verification performance for non-frontal gallery
images with and without viewpoint-transformation, tested
with untransformed, frontal probe images. The bottom rows
are obtained with fusion of outputs from multiple views,
according to two different schemes. The figures give the
rate of correct acceptance at 1% false accept rate.

tion tasks, we use as a measure of similarity [5]

<01702>W

 leally - lleally

dw (6)
between the coefficient vectors cq, co in a scalar product
(c1,¢2)py = <c1, C;Vl02>. Cyy is the covariance matrix of
the coefficients obtained when separately fitting the model
to multiple images of the same persons, and it captures the
within-class variation of ¢ [5]. We use a matrix Cy, ob-
tained from a portion of the FERET database [10]. None of
the individuals of the FERET database are in the gallery or
probe sets used for our performance measurements.

We have evaluated the coefficient-based approach with
the original images and the recognition tasks described in
Section 4.1, based on the model coefficients «;, 5; that were
used to generate the transformed views. Even though the
coefficient-based recognition was done as a post-hoc analy-
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Gallery images were untransformed frontal views.

View 30 up 45 left frontal 45 right | 30 down
30 up -- 0.070.36 | 0.450.83 | 0.080.43 | 0.140.36
45 left 0.07 0.36 -- 0.160.74 | 0.050.51 | 0.080.43
frontal 0.450.83 | 0.160.74 -- 0.180.85 | 0.540.80
45right | 0.080.43 | 0.050.51 | 0.180.85 -- 0.12 0.52
30down | 0.140.36 | 0.080.43 | 0.540.80 | 0.120.52 --

Table 2: Cross viewpoint performance: Each pair of numbers gives the rate of correct acceptance (at 1% false accept rate)
before and after viewpoint transformation of both gallery and probe images.

sis, i.e. knowing the images, we did not fine-tune parame-
ters of the system, but used the settings from previous stud-
ies [5]. The results are given in Tables 3 and 4 in a compar-
ison with the performance of the best view-based system
from Section 4.1. Since all evaluation conditions, including
the fitting results, are identical, we can directly assess the
appropriateness of the two approaches.

The results in Tables 3 and 4 indicate that the coefficient-
based comparison and the recognition on transformed im-
ages perform equally well. The high rates of correct identi-
fication and verification indicate that diagnostic information
about identity is preserved in the viewpoint transformation
despite the fact that a projection from 3D to 2D is involved.
For some viewing angles, view transformation slightly out-
performs coefficient-based recognition, which may be due
to the fact that not all structures in the textures, such as scars
or moles, can be captured by the model coefficients, but are
still transferred to the novel viewpoint, as described in Sec-
tion 2.

5. Conclusions

We have presented a combined approach of a 3D Mor-
phable Model with state—of—the—art face recognition sys-

Coefficient Based | View Transformation
probe view gallery view gallery view
front front
up 81.6 81
down 65.5 80
right 79.3 80
left 79.3 77

Table 3: Percentages of correct acceptance for verification
with coefficient-based recognition, compared to the best
view-based system at each angle in the view-tranformation
paradigm (at 1% false accept rate).

tems for recognizing faces in images taken from arbitrary
viewpoints. In a wide range of application scenarios, the
approach can be applied both to probe and to gallery im-
ages, transforming faces into any given standard imaging
conditions.

Our evaluation, part of which was included in the Face
Recognition Vendor Test FRVT2002, has demonstrated that
the viewpoint transformation by the Morphable Model re-
duced the effect of pose changes considerably for 9 out of
10 systems tested, and achieved promising recognition re-
sults on a challenging set of test images. In the FRVT 2002,



Coefficient Based View Transformation
probe view gallery view gallery view

front | up | down | right | left front
front - 828 | 67.8 | 87.4 | 83.9 -
up 89.7 - 36.8 | 58.6 | 59.8 87
down 80.5 | 47.1 - 64.4 | 58.6 83
right 82.8 | 69.0 | 71.3 - 88.5 87
left 89.7 | 66.7 | 66.7 | 88.5 - 82

\ total || 85.6 | 66.4 | 60.6 | 74.7 | 72.7 || 84.75 |

Table 4: Percentages of correct identification with coefficient-based recognition (left columns), and results in the viewpoint
transformation paradigm with the best view-based system at each viewing angle (right column).

participants were not aware prior to the evaluation that per-
formance on viewpoint-transformed images would be com-
puted. Still, the Morphable Model significantly improved
performance of recognition from non-frontal views without
the systems adapting to the preprocessing. This suggests
that the impact will be even greater when the systems have
been tuned to the specific properties of the processed data,
or the output of the Morphable Model’s viewpoint transfor-
mation is optimized for their requirements.

Unlike other methods that involve 3D reconstruction,
our system requires only a single image per person for the
gallery, and a single probe image. Additional images can be
incorporated by fusing separate results, which has further
increased the correct acceptance rate in our experiments, or
by fitting the model to multiple images simultaneously. Our
method currently requires manual labelling of a small num-
ber of feature points in the image. We do not expect this
labelling to be a major problem in many applications, for
example if a relatively small number of suspects’ images
have to be added to a gallery that is used for search. Com-
bined with a feature detection algorithm, our system can be
fully automated.

The viewpoint transformation approach combines the ef-
ficiency of view-based methods with the versatility of the
3D Morphable Model. We have compared the performance
with an algorithm that uses the model coefficients of the
3D Morphable Model directly, and found similar recogni-
tion rates as those of the best systems in the combined ap-
proach. This indicates that the combined system does not
involve a significant loss of diagnostic identity information
when the transformed image is rendered and subsequently
analyzed in view-based recognition. As a consequence, we
may conclude that with the techniques presented in this pa-
per, transformed images may be used as a natural interface
between different face recognition algorithms.
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