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Abstract. Two view-based object recognition algorithms are compared:
(1) a heuristic algorithm based on oriented filters, and (2) a support vec-
tor learning machine trained on low-resolution images of the objects.
Classification performance is assessed using a high number of images
generated by a computer graphics system under precisely controlled
conditions. Training- and test-images show a set of 25 realistic three-
dimensional models of chairs from viewing directions spread over the
upper half of the viewing sphere. The percentage of correct identifica-
tion of all 25 objects is measured.

In computer vision, view—based models of object recognition have become more
and more influential in recent years. Moreover, psychophysical evidence has been
found for a view—based representation of objects in humans (Biilthoff and Edel-
man, 1992). Unlike viewpoint-invariant representations using structural descrip-
tions (e.g. Marr and Nishihara, 1978), viewpoint-dependent models do not re-
quire a three-dimensional representation (Poggio, Edelman 1990, Lades et.al.,
1993). The present study compares two recognition algorithms that are explained
in the following sections.

1 Recognition by Oriented Filters

If a three-dimensional object is rotated about a frontoparallel axis, orthographic
projections of surface points will move in the image plane in a direction perpen-
dicular to the axis. To a great extent this also applies to perspective projection
under realistic viewing conditions. Thus, images of an object can be made in-
sensitive to rotations about a particular frontoparallel axis by lowpass filtering
in one direction.

In order to compensate for relatively large displacements, the lowpass filter
operation extinguishes much of the high spatial frequency structure in one di-
rection. Due to a centering process described below, the lowpass filtering has
to account also for displacement components along the axis of rotation. As a
consequence, performance cannot be improved significantly by choosing image
resolutions higher than 16x16 pixels. In order to retain some of the high spatial
frequency information from the initial image, the representation also contains
images with an edge detection performed before downsampling.

The algorithm uses a set of stored views of each object. They are preprocessed
and stored in a representation of low resolution. To classify a test image, it is
preprocessed in the same way and compared one by one with all of the stored
views.
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Fig. 1. Recognition by Oriented Filters: In preprocessing, a representation consisting of
five low-resolution images ro...rs is generated. For a comparison, these are convoluted
with matrices ki...ks. The results are combined to 5*16*16-dimensional vectors v;...v4.
Fuclidean distance between vectors v; is used to measure similarity between images.

The algorithm performs the following steps:

Preprocessing:

1. Centering: The picture is centered with respect to the center of mass of
the binarized image. All objects are shown on a white background, so the
binarized image segregates figure from ground.

2. Edge detection: Four one-dimensional differential operators (vertical, hor-
izontal, diagonal) are applied to the image and the modulus is taken.

3. Downsampling: Reducing resolution of all five images from 256x256 to
16x16 pixels, we obtain images rg...r4. In this representation, each view re-
quires 5*16%16=1280 bytes. In our simulation, we stored 25 views per object,
summing up to a total of 32kB per object.



Image comparison: To compare a given image that has been preprocessed to
vectors rg...r4 with a stored view rf...ry, we perform the following steps:
1. Oriented filters: Images are lowpass filtered in four directions, using the
filter matrices k1...k4 shown in figure 1. Each of them is applied to all five low
resolution images of a view. The resulting images are combined to a vector

v; = (k’i®7’0, ki @ry, ki @ra, ki @ ra, ki®7’4), 1 =1...4. (1)

2. Euclidean distance: As a measure of similarity of two views, we compute
sums of squared differences of corresponding pixel values. This yields four

distance values d; = |Jvi — vl||, i = 1.4, 2)

Training: During training, a set of views of each object is preprocessed and
stored. For each object, the same viewing directions are used. The selection of
these views is done externally, but different ways for an automatic selection
process are conceivable. For each of the four distances d; of each view of each
object, a threshold is calculated and stored. It is found by comparing the given
view with all views of all other objects and choosing a value that leads to a false
alarm rate below a fixed value on the training set.

Decision rule: If two images show the same object, at least one distance value
of one object should be below threshold. It has proved to be most reliable to
compute distance values with all stored views and then choose the object with
the highest number of below-threshold distances.

2 Support Vector Learning Machines

To construct decision rules that generalize well, the support vector algorithm
uses the Structural Risk Minimization (SRM) principle (Vapnik, 1995). SRM is
based on the result that the error rate on an independent test set is bounded by
the sum of the training error rate and a term which depends on the so—called
VC(Vapnik—-Chervonenkis)-dimension of the learning machine. By minimizing
the sum of both quantities, high generalization performance can be achieved. For
linear hyperplane decision functions f(x) = sgn ((w - x) + b) , the VC-dimension
can be controlled by controlling the norm of the weight vector w (Vapnik, 1995).
Given training data (x1,¥1),..., (X, ¥), Xi € RY y; € {£1}, a separating
hyperplane which generalizes well can be found by minimizing (Cortes & Vapnik,

1995) ,
[wl* +75- Y& (3)
i=1

subject to
E>0, yi-((x-w)y+b)>4+(1-&) fori=1,...¢ (4)

(v is a constant which determines the trade—off between training error and VC-
dimension).

The solution of this problem can be shown to have an expansion w =
Zle Aix;, where only those A; are nonzero which belong to an x; precisely
meeting the constraint (4) — these so—called Support Vectors lie closest to the
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Fig. 2. The dataset of 25 3D-models of chairs.

decision boundary. The A; are found by solving the quadratic programming
problem defined by (3) and (4). Finally, this method can be generalized to non-
linear decision surfaces by first mapping the input nonlinearly into some high—
dimensional space, and finding the separating hyperplane in that space (Boser,
Guyon & Vapnik, 1992). This is achieved implicitely by using different types of
symmetric functions K (x,y) instead of the ordinary scalar product (x-y). This
way one gets decision functions

f(x) =sgn (Z Ai - K(x,x;) + b) . (5)

i=1

In the present study, we used polynomial classifiers K(x,y) = (x -y)" of degree
n = 5, and a value y = 10. Other choices of K allow the implemetation of neural
networks and radial basis function classifiers. In handwritten digit recognition,
the support vector set has empirically been shown to be largely independent of
the type of support vector machine constructed, and it contains all the informa-
tion necessary to solve the classification task (Scholkopf, Burges, and Vapnik,



1995).

To construct the multi—class classifier needed for our purposes, we simply
combined binary classifiers which were trained to recognize individual objects.
This is done by choosing as the output of the multi—class classifier the class
where the argument of the decision function (5) is maximal.

3 Experimental Results

The object database consisted of 25 different 3D-models of chairs (figure 2). All
of them had a uniform grey surface. They were rendered in perspective projection
in front of a white background on a Silicon Graphics workstation using Inventor
software. The initial images had a resolution of 256x256 pixels.! In all viewing
directions, image plane orientation was such that the vertical axis of the object
was projected in an upright orientation. Both in training and test set, only views
on the upper half of the viewing sphere were used. The training set consisted
of 89 equally spaced views of each object. The test set contained 100 random
views of each object. In both algorithms, the images (rg...r4) were rescaled based
on their variances on the training set. Performance was measured in terms of
correct identification of all 25 objects from all viewing directions.

Results for oriented filters: We stored only 25 equally spaced views per
object, but used the full training set for calculation of the thresholds. Under
these conditions, a classification error of 4.7% was achieved. Ignoring all data
(r1...r4) from edge detection and relying only on rq increased the error to 21%.

Results for a Support Vector Learning Machine: Trained on the
rescaled images, the support vector machine had an error rate of 1.0%. Without
rescaling, error rate increased to 1.6%. Using only the images, i.e. g, the error

was 8.4%.

Discussion: Images generated by means of computer graphics provide a useful
basis for studying and comparing object recognition algorithms. However, gen-
eralizations of absolute performance values from simulations to real-world prob-
lems may be problematic. For the algorithms used in this work, noise should have
only small effect because most of the processing is performed on a low spatial
frequency domain. Much more impact has to be expected from a realistic, non
uniform background. On the other hand, objects with different albedo and color
can faciliate recognition significantly.

For both algorithms, performance data for this relatively difficult classifica-
tion task were below 5% — with a fully connected feed-forward neural network
with one hidden layer, we were not able to get error rates below 10%. Given the
simple design of the oriented filter algorithm, its recognition rate was surpris-
ingly high. A closer investigation of some of the image vectors (rg...r4) shows
that vectors of a single object change drastically with viewpoint. As it seems, the
support vector machine is very much capable of dealing with such a complicated
decision surface.

! For benchmarking with other recognition algorithms, we will make the set of images
available on our ftp-server.
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