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Abstract 

 
Facial surgeons require a vast amount of knowledge about the human face, in order to decide 
how to reconstruct an injured or traumatized part. Does this knowledge consist only of explicit 
notions about face anatomy, or is there also an implicit knowledge of the normal appearance 
of a face? And if the answer to the latter question is affirmative, is there a way for a computer 
to automatically learn this implicit knowledge and exploit it to predict the optimal 
reconstruction of part of a face?  A set of examples of human faces, acquired as 3D surfaces, 
can be used to build a statistical model, which can generate synthetic faces or analyze novel 
ones. Such a model is also able to reconstruct the missing part of a face in a statistically 
meaningful way: any face which can be generated by such a model has a certain probability, 
and the optimal reconstruction can be defined as the one which maximizes it, given the 
available data. However, since the model is built from a finite set of examples, it cannot 
generate any possible face, and therefore the purely statistical reconstruction will not perfectly 
fit the available data, leading to discontinuities at the boundary between the missing and the 
available data. In order to avoid this, we look for the surface that explicitly satisfies the 
continuity constraints at the boundary, and at the same time approximates the first derivatives 
of the statistical prediction. This leads to a partial differential equation, which can be solved 
numerically as a linear system. As an example, we show how this method performs 
reconstructing the noses of a set of test faces.  

 
 

1. Introduction 
 

We define the problem of surface reconstruction as the one of estimating the optimal shape of 
a three-dimensional surface’s region, which for some reason is not considered trustworthy, or 
is altogether missing. In Computer Graphics, this problem often arises in the context of post-
processing three-dimensional surfaces acquired with range scanning devices, in order to 
remove artifacts due to errors or limitations of the acquisition process. However, the problem 
has a more general application scope than just post-processing raw acquisition data, and is 
especially interesting for medical applications, e.g. to reconstruct the shape of a traumatized 
region. 
The optimality of a given reconstruction is set by two requirements:  

• Continuity (or smoothness) at the boundaries of the reconstruction;  
• Minimal distance from the true surface (known as reconstruction error).  

Variational approaches typically satisfy the first requirement: the optimal reconstruction is 
defined as the one which satisfies the given boundary conditions and minimizes a certain 
functional (e.g. membrane or thin-plate energy) of the surface over the invalid region. With 
respect to the second requirement, these methods work well if the energy to be minimized 
captures some of the properties of the surface, for example when modeling a surface resulting 
from a well-understood physical phenomenon. But in case we want to reconstruct something 
with a more complex structure, like the nose of a face, a variational approach, by itself, is not 
sufficient, as shown in fig.1(a,b). 
The minimization of the reconstruction error, on the other hand, is the explicit goal of 
statistical reconstruction methods. In the case of faces, since the surface belongs to a specific  
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Figure 1. Examples of variational reconstruction applied to the nose. (a)-(b) Reconstructions obtained by 
minimization of the membrane and the thin-plate energy, respectively. Note that the former results in continuity, 
while the latter in smoothness at the boundaries. In both cases the shape of the nose is not recovered. (c) Result of 
a Poisson reconstruction using (d) as a guidance surface. 

class of objects, we can build an example-based statistical model in order to infer a realistic 
nose from the known portion of the face. The disadvantage of this approach is that it works 
globally, reconstructing a full face that is generally different from the input. Trying to cut the 
nose from the reconstruction and paste it into the input face will result in discontinuities at the 
boundaries. 
To summarize, each of the two approaches satisfies one of the two requirements: our goal is to 
combine them into a method that satisfies both. As we will see, the statistical reconstruction 
can be further refined solving a variational problem, so that it also achieves continuity at the 
boundaries. 

 
1.1 Previous Works 

 
We formalize the problem by explicitly defining the three-dimensional surface as a function 
from a parameterization domain S to R3, where S is a closed subset of R2. Part of this surface is 
invalid or unknown, and we denote by S⊂Ω  the corresponding of the parameterization 



domain. The subset of S outside Ω  is denoted by Ω∂ , and on this subset the surface is known. 
We denote by f* the valid surface defined only on Ω∂ , and by f the unknown, full surface 
defined on the whole S. The problem consists in finding the function f satisfying the two 
requirements mentioned in the previous section: (1) continuity, which we can write as 

*ff =
Ω∂ , and (2) minimal reconstruction error. However, we will first consider a class of 

methods that address the problem by minimizing various kinds of surface energies rather than 
the reconstruction error. 

 
Figure 2. A schematic representation of the continuous formulation for a one-dimensional surface embedded in 
R2. We denote by Ω∂  not just the boundaries of Ω , but also the whole subset of S that is outside Ω∂ , so that 

Ω∂∪Ω=S . The solid line is the known part of the surface f*, while the dashed line is the unknown part 
which has to be reconstructed. 

Variational methods define the optimal f as the one minimizing a given functional as well as 
satisfying the boundary constraints. Typical choices for the functional of the surface are the 
membrane and the thin-plate energy, and depending on the choice more strict constraints can 
be imposed on the boundary, requiring for instance C1-continuity (smoothness). The 
variational problem is transformed to a partial differential equation (PDE), which is discretized 
over a polygonal mesh and solved as a sparse (typically non-symmetric) linear system.  
Examples are the methods of [1], which uses a simple discretization of the thin-plate energy, 
and of [2], using the Willmore energy. Both methods ensure C1-continuity at the boundaries. 
Note that the discretization of the PDE requires the topology of the polygonal mesh in Ω  to be 
defined, which is not true if Ω  corresponds to an actual hole in the data; in such a case, a 
necessary preprocessing step is the identification and triangulation of the hole. However, this 
is not necessary if the surface f has been registered against a template surface g as in [3], 
where the author makes use of the difference (f – g) to obtain f as a deformation of g, using 
volume splines. 
The problem of the missing topology can also be avoided by defining the surface implicitly 
rather than explicitly. In this case S and Ω  are subset of R3, and the surface is defined by a 
level set of the function f from S to R. The invalid regions have still to be identified, but since 
the topology of the surface is implicitly defined in f, the reconstruction of the latter yields both 
the shape and the topology of the surface. In [4] the authors use as f a clamped signed distance 
function, and define a function discriminating the valid regions from the invalid ones. The 
reconstruction is obtained by a diffusion of both functions in the invalid regions. A more 
sophisticated approach uses anisotropic diffusion ([5], an extension to surfaces of the image 
inpainting method presented in [6]). Also using implicit functions is the method of [7], which 
minimizes the L1-norm, measured on the implicit surface, of a distance function from the valid 
data. The method is in fact intended for surface reconstruction, but hole filling descends as a 
side effect. 
All the methods discussed so far do not try to explicitly minimize the reconstruction error in 
the invalid region; in fact, the solution depends only on a small region surrounding the hole, if 



not simply on its boundary. Since all other information about f is discarded, it is difficult for 
such a method to obtain convincing results if the invalid surface has a complex structure. Sharf 
et al. ([8]) propose a method that uses the valid surface to predict the structure of the invalid 
region: using an implicit representation for the surface, the invalid voxels are filled in a multi-
resolution approach with examples extracted from the available surface. The choice depends 
on the context of the voxel, defined by its valid neighboring voxels. This is an interesting 
approach, in that it makes use of the information provided by the whole valid surface, but it 
would still be unable to solve the nose problem we mentioned previously. 
Our method is based on [9] and [10]. The first work shows how, given a surface registered 
with a 3D morphable model ([11]), the reconstruction problem can be formulated in a 
statistical framework. As previously mentioned, since the surface is registered, the topology of 
the mesh in the invalid region is known even in the case of a hole. This method however does 
not ensure a solution continuous at the boundaries. In the second work a variational method 
for image editing is presented, by which the gradient of an image can be used as a guidance 
field for reconstructing part of another image: as a result the reconstruction has the appearance 
of the guiding image, but is continuous at the boundaries. This method has also been applied 
to polygonal meshes in [12], but only to the aim of editing the shape of the meshes, rather than 
to the reconstruct their surface.  
We will show how the statistical reconstruction of [9] can be used as guidance in a variational 
problem that yields a reconstruction close to the statistical one but continuous at the 
boundaries. We will first describe in detail the statistical reconstruction method (section 2); 
then, in section 3, we will describe the variational method of [10] applied to a polygonal 3D 
mesh, and show how to use it for refining the results of the statistical method.  

 
2. Statistical Reconstruction 

 
In order to approach the problem from a statistical point of view, we assume that the surfaces 
we want to reconstruct belong to a specific object class (e.g. human faces, teeth, cars), which 
can be modeled statistically. That is, we assume there exist a parameterized class of functions 
αf , where α  is a vector holding the parameters of the surface, such as for any surface f of this 

class there is a choice of α  for which αff = . Moreover, not all choices of the parameters α  
are equally probable, but rather α  follows a certain probability distribution P(α ), which 
depends on the type of model used. We will use a linear model  
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where the surfaces are a linear combination of k+1 registered examples fi. By registered we 
mean that: (1) all the exemplar surfaces share a common parameterization domain S, and  (2) 
that every point (u,v) of the common domain corresponds to a unique physical point in all 
examples (e.g. the tip of the nose). Of course, when 3D models of faces are acquired, they are 
not registered, and they have to be processed in order to be used for building such a linear 
model. We refer to [11] and [13] for methods on how to register 3D models of faces, and we 
will assume in the following that we have access to such a database of registered examples. 
Given such a model and a partial measurement f* of an unknown complete surface f̂ , our goal 
is to obtain a reconstruction αf  as close as possible to f̂  (for the moment we will not consider 
the continuity at the boundaries). More precisely, we want to minimize the generalization error 
defined as the mean reconstruction error over the whole objects class:  

∫∫ −=
2

f̂fE α  



given a certain probability distribution P( f̂ ) of the surfaces. Note that this equation sets the 
goal, but that it cannot be explicitly used for estimating the reconstruction since f̂  is 

unknown; what can be done is to minimize the error over the known surface 
2*ff −

Ω∂α , but 
it is well known that this method may lead to overfitting. In the following section we describe 
a statistical approach that reduces this problem.  
 

2.1 3D Morphable Models 
 
We will now proceed to define the linear model in discrete terms, in order to apply it to the 
case where the surfaces are actually described by triangular (or in general polygonal) meshes. 
Remember that such a mesh consists of an ordered list of vertices in R3 connected by edges: 
we denote by pi the i-th vertex of the mesh, and by i* the set of indices of its neighboring 
vertices. In the discrete formulation we denote by S, Ω and Ω∂  the sets of indices of, 
respectively, all the vertices of the mesh, the invalid vertices, and the valid vertices. If Ω∂∈i , 
the i-th vertex is valid, and we denote its known position by pi

*, in analogy with f*. 
If the mesh has N vertices, we can represent its full shape (the positions of all the vertices) in 
two different ways, which we will use depending on the context. One way is to put all vertices 
positions in a N×3  matrix P, where the i-th column of P corresponds to the i-th vertex pi: 

N
N R ×∈= 3

1 )p,,(pP …  
Alternatively, we can use a 3N-dimensional vector v, where the vertices positions are stacked 
one after the other: 
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1

×∈= NTT
N

T R)p,,(pv …  
The two forms are obviously related, and when necessary we can convert one to the other by 
rearranging their elements. In particular, we denote the conversion from P to v as v = vec(P), 
where the vec operator stacks the columns of P one after the other into a single column vector. 
The opposite conversion is denoted by P = v(3): given an n-dimensional vector x, we denote by 
x(m) the )/( mnm×  matrix obtained by splitting x in contiguous blocks of m elements, and 
rearranging them in (n/m) columns. 
The term 3D Morphable Model was introduced by [11] to denote a statistical linear model for 
3D meshes, learned from a set of registered examples: a generic surface shape v is modeled as  
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where v  is the mean of the model, C is the kN ×3  generative matrix, kR∈α  is the vector 
holding the coefficients of the model, and ε  is a gaussian noise (this last term expresses the 
fact that in general our model will not be able to generate any possible shape v). Both α  and ε  
are normally distributed, and the model parameters ( v ,C,σ ) are estimated from the set of 
examples (see subsection 4.1).   
Assume now an incomplete vector v* is given, built with the known vertices positions *

ip : the 
reconstruction problem consists of inferring, given a model defined by the parameters 
( v ,C,σ ), the optimal model coefficients α  for v*, where the optimality is defined in terms of 
the posterior probability:  
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That is, the optimal model coefficients will be the one with maximal probability, conditioned 
to v*. The two terms on the right hand side of the equation can be derived from the definition 



of the model. We know that the probability distribution of the model coefficients is normal 
with covariance equal to the identity, and therefore we have the following expression:  
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The second component of the posterior probability, )( * αvP , is the likelihood of the observed 
data given the estimate, and we can derive it again from the definition of the model, taking 
into account the invalid dimensions by a matrix L which maps them to zero:  
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The matrix L is a diagonal NN 33 ×  matrix, with element equal to one if it correspond to the 
x, y or z coordinate of a known vertex, and zero otherwise. It is convenient to maximize the 
posterior probability )( *vαP  by minimizing its log-inverse. Defining the matrix Q = LC, the 
log-inverse is  
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The effect of the first term of E is to penalize choices of α  which, according to the model, 
have low probabilities; the second term is a cost that depends on how well v fits the available 
data. Observe that the parameter σ  is practically weighting the importance of a good fit to the 
data with respect to the likelihood of it: for very low values of σ , the likelihood will have no 
influence on the result, and the model will be very flexible; on the contrary, for very high 
values, the original data will have no importance and the likelihood will be maximized by 
setting all the model coefficients to zero. 
It can be shown (see appendix A for details) that decomposing the matrix Q via Singular 
Value Decomposition (SVD) as  

Q = U W VT 

the global minimum of E is given by  
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Figure 3. The nose is statistically reconstructed with different values of σ . Without noise the reconstruction 
correspond to an orthogonal projection into the subspace of the linear model; increasing the value of the noise 
regularizes the reconstruction until, for high values, the reconstruction is equal to the model mean. Note also the 
evident discontinuities at the boundary of the reconstructed region. 
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A complete reconstruction of v* is therefore  

)vL(vWUI)V(WCvv −+⋅+= − *122 Tσ  
Here again we can note how the noise parameter acts as a regularization factor, smoothly 
constraining the degrees of freedom of the model. If the noise of the model were null, the 
equation above would reduce to the familiar orthogonal projection onto the subspace spanned 
by the columns of C: 

)vL(vQCvv −⋅⋅+= + * , with TUWVQ ⋅⋅= −+ 1  
where Q+ is called the pseudoinverse of Q. But as the noise value increases the reconstruction 
gets closer to the mean of the model, as shown in fig. 3. 

  
3. Refinement via Variational Methods 

 
The statistical reconstruction described in the previous section is global, in the sense that 
provides an estimate not only for the positions of the invalid vertices, but also for the valid 
ones. Since in general the statistical model will not be able to achieve a perfect reconstruction 
of the valid vertices, the constraint 

*ff =Ω∂  used throughout the introduction is not 
respected, and therefore the method cannot guarantee continuity at the boundaries of Ω . We 
will now examine a variational method by which the problem can be overcome. 
 

3.1 Laplacian Reconstruction 
 
As noted in the introduction, variational methods reconstruct the surface f in the invalid region 
Ω  by minimizing a functional, and an often used one is the membrane energy, in which case 
the variational problem is  

∫∫ ∇Ω
2min f

f
 with 

*ff =Ω∂ . 

Thinking to the surface in terms of an elastic membrane, the minimization of the integral on 
the left ensures a surface with minimal tension, while the conditions on the right ensure the 
continuity of f at the boundaries of Ω . The solution of the above problem is defined by its 
Euler-Lagrange equation, a PDE of simple form (a Laplace equation with Dirichlet boundary 
conditions):  

0=∆ Ωf  with 
*ff =Ω∂ . 

To solve the problem numerically we define a discrete approximation of the Laplacian 
operator and rewrite the above equation as a system of linear equations. With the notation 
introduced in the previous section, we define a discretization of f∆  known in Computer 
Graphics as the umbrella-operator ([14], [15]):  
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where 
*i  is the valence (the number of neighbors) of pi. U(pi) is the average of the distance 

vectors between pi and its neighbors. By representing the shape of the mesh with the matrix P 
introduced in the previous section, the action of U on the whole mesh can be compactly 
represented in matrix form; the discrete approximation of the Laplacian for all the vertices of 
the mesh can be written as  

U(P) = KPT 

where NNR ×∈K  is a sparse matrix, with  
1)( −=iiK  and **/1)( ijiij ∈∀=K  



which depends on the connectivity of the mesh. As an example, let us consider a tetrahedron. 

Each vertex has three neighbors, so that 3* =i  for any vertex, and  
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Note that some of the rows of K would be typically discarded, since they operate on vertices 
outside Ω . Without changing the shape of the matrix K, the same effect can be obtained 
defining a diagonal matrix NNR ×∈Λ , with elements }1,0{=iλ  whose values depend on 
whether Ω∈i  or not. Using Λ  the Euler-Lagrange equation can be written in matrix form, 
together with the boundary conditions, as  

TT *ΛPΛ)K)P(I(Λ =−+ , 
where P* is as P a N×3  matrix, where the i-th column is either pi

* if the i-th vertex was valid, 
or a zero vector otherwise. If the vertex is outside, then 1=iλ , and its linear equation will 
reduce to  

pi=pi
* 

On the other hand, if the vertex is inside, then 0=iλ  and the corresponding equation will be 
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The linear system is sparse, separable in the x,y,z coordinates, and efficiently solvable by LU 
decomposition (e.g. using the UMFPACK library, see [16]). 

 
3.2 Poisson Reconstruction 

 
We show in fig. 1(a) the results of solving the linear system for one of our test cases: as we 
would have expected the minimization of the membrane energy only cares about continuity at 
the boundaries. Trying to use a different functional does not improve the situation either: see 
the result obtained with a thin-plate energy, in fig. 1(b). 
The method for image editing presented in [10] offers a simple way to improve the results: if 
we know something about the gradient of f in Ω , we can use this information along with the 
boundary conditions. Let w=(u,v) be an R2 vector field, called guidance field, defined on Ω . If 
we modify the membrane energy to take w into account, the variational problem becomes 

∫∫ −∇Ω
2min wf

f
 with 

*ff =Ω∂ , 

and the Euler-Lagrange equation becomes a Poisson equation with Dirichlet boundary 
conditions  

y
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where w⋅∇  is the divergence of the field.  
This equation can be further simplified in the case where the guidance field is itself the 
gradient of a known function g, and we have therefore gg ∆=∇⋅∇=⋅∇ w . The above Poisson 
equation reduces again to a Laplace equation:  

0)( =−∆ Ωgf  with 
*ff =Ω∂ , 

which can be solved as shown above. It is useful to reformulate the problem by defining the 
displacement function h = f - g:  



0=∆ Ωh  with Ω∂Ω∂ −= gfh * , 

from which is evident that the reconstruction will be the sum of the function g (which provides 
the structure) and of h (which provides continuity at the boundary of Ω ). In a discrete 
formulation the reconstruction will given by P=G+H, where H is the solution to  

TT *ΛHΛ)K)H(I(Λ =−+  with GPH −= ** . 
Fig. 1(c) shows how the solution follows the shape of the guidance function, while at the same 
time respecting the boundary constraints.  
As already mentioned, in [10] the method was used for image editing rather than 
reconstruction, since for this latter use a good guess of the guidance function g from the 
known surface would be needed. In our case, this can be provided by the result of the 
statistical reconstruction.  
The combination of the two methods yields the following scheme:  
• given a model defined by the parameters ( v ,C,σ ), the statistical reconstruction v of v* is 
computed, as in shown in section 2.1;  
• setting G=v(3), the solution H of the above sparse linear system is computed;  
• the final reconstruction is given by P=v(3)+H 
This method has all the advantages of the statistical reconstruction, while at the same time 
removing the discontinuities at the boundary of Ω . Moreover, results show an improvement 
of the performance in terms of generalization error (see section 5). 

 
4. Technical Aspects 

 
Before examining the results, we want to describe more in detail two technical issues:  

• In section 4.1 we explain how the three parameters ( v ,C,σ ) of the model are 
estimated, in particular the noise level;  

• In section 4.2 we examine a more general definition for a discrete Laplacian operator 
than the umbrella operator, and consider if it can yield any advantage.  
 

4.1 Model Estimation 
 

  
(a) (b) 

Figure 4. The nose is first reconstructed statistically, shown in (a). To remove the evident discontinuities the 
statistical reconstruction can be used as guidance surface by the Poisson reconstruction, yielding the result in (b). 



 
Figure 5. Variation of the generalization error with respect to different values of the noise variance. The error is 
computed by 5-fold cross validation on the reconstruction of the invalid vertices, given the valid ones. The global 
minimum is at about 1010. 

The optimal model parameters are estimated from a set of training examples {vi|i=1…m}, 
arranged into a data matrix A=(v1,…,vm). The optimal estimate of v  is always the sample 
mean:  

∑=
i
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. 

The other two parameters C and σ  can be estimated from the centered data matrix  
)(~

1 vv,,vvA −−= m…  
using an EM-algorithm as shown in [17] and [18]. However, in the case of m<3N the 
estimation is simplified by the fact that the estimated value for σ  will always be zero: in this 
particular case the matrix C can be estimated by Principal Component Analysis (PCA). In 
practice, given an SVD of the centered data matrix TUWVA =

~
, the optimal estimate of C is:  

C = UW. 
Our training set has m=200 examples, but 3N is of the order of 106, and therefore we 
estimated C as above. It must be clear however that, although the optimal estimate of the noise 
variance is zero, this is due to the relatively small number of training vectors with respect to 
their dimensionality, and not because the model can generate any possible shape. Therefore we 
estimated the optimal value for σ  by performing a 5-fold cross-validation (see [19]) of the 
model with different values of σ  and choosing as optimal the value for which the 
reconstruction error of the invalid vertices is minimal. As shown in fig. 5, the reconstruction 
error has a minimum when the noise variance is equal to 1010, and we will use this value for 
the experiments detailed in section 5. 
 

4.2 Discrete Laplacian Design 
 



As shown in [15], there is a more general form of the umbrella operator by which the 
Laplacian operator can be discretized over a polygonal mesh:  
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where the coefficients wij weight the contribution from the different neighbors to the Laplacian 

of each vertex, and are constrained to sum up to one for a given vertex, that is ∑ ∈
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The weighting coefficients can be derived from a set of positive values jiij φφ =  defined over 
the edges of the mesh as  
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It is easy to see that by setting 1=ijφ  for every edge we obtain the same discretization of the 

umbrella operator; another sensible choice is 
1−

−= jiij ppφ , which weights the contribution 
of a given neighbor with the inverse of its distance from the vertex. Note in passing that in 
general K is not symmetric since we could have  
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even for simple choices of φ  (like for the umbrella operator if the vertices have different 
valence). 
The question we want to address now is the following: given that our goal is not to 
approximate the Laplacian of the continuous surface, but rather to minimize the generalization 
error, is there a better choice for the discrete Laplacian than the umbrella-operator?  
In order to answer to this question it helps to note that the condition on the invalid vertices 
KPT=0 defines the global minimum of the energy 

∑ −=⋅⋅=
2
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T wE ppPKP , 

which can be seen as a discrete formulation of the membrane energy in terms of edges 
elongations. From the above equation we can observe that the values wij determine the 
stiffness of each edge: edges with a low value will deform more easily than others with a 
higher one, since their contribution to the overall energy will also be lower.  
We argue that this property can be used, by learning the values wij from the set of training 
examples that we used to estimate the statistical model. In fact, the most sensible choice is to 
set  

2

1

ij
ij σ

φ =  

where ijσ  is the standard deviation of the edge length in our example set. We will investigate 
in the next section if this choice yields any improvement to the reconstruction performance. 

  
5. Results 

 
In order to prove the validity of our method we have to verify the following points:  

• Let alone the issue of the continuity at the boundaries, does our method perform better 
than the statistical reconstruction alone?   

• Does it perform better than a variational scheme using as guidance the mean shape v , 
rather than the statistical reconstruction?   

• Does the particular choice of the discrete Laplacian operator, described in the previous 
section, improve the results?   



 
We answer to these questions by comparing the generalization errors of the different 
reconstruction methods, not only in terms of vertex positions, but also of normals directions. 
The tests are carried on by 5-fold cross validation on a set of 200 examples: for each method 
the examples set is split in 5 groups, and each group is used in turn as test set, while the other 
groups are used as training set. With the training set we estimate the model parameters, apart 
from the noise variance, which is set to 1010; then, for the examples in the test set, the vertices 
of the nose are reconstructed. For each method, the error on the vertices positions is computed 
as  
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while the error on the normals directions is computed as  
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The results are shown in the histograms of fig. 6-7. With respect to the first question, we can 
observe that our method improves the performance of the statistical reconstruction both in 
terms of positions and normals errors. It is also clear that using the mean shape as guidance for 
the variational method yields the worse results. However, with respect to the last question, the 
advantage of the operator described in section 4.2 with respect to the umbrella operator is less 
evident: especially for the position error, the improvement is marginal. Finally, we have to 
qualify the results by saying that we did these tests only on the reconstruction of the nose, and 
it may be that on other regions the results would be different. 

 

Figure 6. Comparison of the error in generalizing the vertices positions, for the different reconstruction methods: 
statistical ( 31043.1 ⋅ ), Poisson using the umbrella operator ( 31027.1 ⋅ ), Poisson using the operator described in 
section 4.2 ( 31024.1 ⋅ ), and the Poisson using the latter operator but the mean as guidance ( 31061.1 ⋅ ). 

 



 
Figure 7. Comparison of the error in generalizing the normals directions, for the different reconstruction 
methods: statistical (8.30 degrees), Poisson using the umbrella operator (8.44), Poisson using the operator 
described in section 4.2 (8.06), and the Poisson using the latter operator but the mean as guidance (9.00). 

A sample of the results obtained during the tests are in fig. 8, where we selected the four 
examples with maximum and minimum error, both in terms of vertex positions and normal 
directions. Visually, the reconstructions with minimum error are very close to the original 
shape of the nose. The reconstructions with maximum error are in fact different from the 
originals; note however how they still fits very well with the overall shape of the face. 
 

6. Conclusions 
 
We presented a method to reconstruct invalid or missing areas of a surface by first computing 
an approximation via a statistical approach, and then refining it by solving a variational 
problem. The results satisfy the two requirements we set at the beginning: they are smooth at 
the boundaries and minimize the generalization error. The performance in terms of two 
different measures of the error between the reconstructed surface and the ground truth, prove 
that the method does not only remove the discontinuities from the statistical reconstruction, 
but also that it improves the results of the latter. 
The method could be improved from two sides: first, by substituting the membrane energy 
with a functional that would yield a smooth solution at the boundaries (rather than only a 
continuous one), and second, by reducing the generalization error of the statistical 
reconstruction. Regarding the first point, we are currently investigating the possibility of using 
a guidance field in conjunction with a thin-plate energy; this should directly provide a smooth 
solution. With respect to the second point, we assume that choosing a subset of the known 
vertices to drive the statistical reconstruction could reduce its generalization error; in 
particular, it seems reasonable to select only the vertices that are highly correlated with the 
missing ones. 
 



  

  

  

  
Figure 8. Some results of the experiments: in the left column are the originals, in the right column the 
reconstructions. The first two rows shows the examples with minimum and maximum average error on the 
vertices positions ( 21049.6 ⋅  and 31084.2 ⋅  micrometers respectively), the last two rows are the examples 
with minimum and maximum average error on the normals directions (5.21 and 11.3 degrees respectively). 
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A. Optimal PPCA reconstruction 
 
In section 2.1 we have shown how the optimal model coefficients α  given an incomplete 
vector v* are obtained from the minimization of the following energy:  

22*2 2/2/ σαQ)v(vLα ⋅−−⋅+=E . 
Deriving E with respect to α , we can find the global minimum as the solution of the following 
linear system: 

)( *2 vL(vQαI)QQ −⋅=⋅+ TT σ , 
Let Q=XWVT be the singular value decomposition of the matrix Q, where W is a diagonal 
matrix. The equation above can be then rewritten as 

)( *2 vL(vVWXαI)XWVVWX −⋅=⋅+ TTT σ  
Remembering that XTX=I and VTV=VVT=I, we can manipulate the equation further: 

)( *22 vL(vVWXα)VVVVW −⋅=⋅+ TTT σ , 
and finally: 

)( *22 vL(vVWXαI)VWV −⋅=⋅+ TTσ . 
The matrix on the left hand side can be inverted and brought to the right hand side, yielding 
the equation for the optimal coefficients α : 

)( *122 vL(vWXI)WVα −⋅+= − Tσ  
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