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Abstract—
General information about a class of objects, such as human

faces or teeth, can help to solve the otherwise ill-posed problem of
reconstructing a complete surface from sparse 3D feature points
or 2D projections of points. We present a technique that uses a
vector space representation of shape (3D Morphable Model) to
infer missing vertex coordinates. Regularization derived from a
statistical approach makes the system stable and robust with
respect to noise by computing the optimal tradeoff between
fitting quality and plausibility. We present a direct, non-iterative
algorithm to calculate this optimum efficiently, and a method
for simultaneously compensating unknown rigid transformations.
The system is applied and evaluated in two different fields: (1)
reconstruction of 3D faces at unknown orientations from 2D
feature points at interactive rates, and (2) restoration of missing
surface regions of teeth for CAD-CAM production of dental
inlays and other medical applications.

I. INTRODUCTION

Dentists and dental technicians are highly-trained experts
in restoring parts of teeth that are missing, for example
due to caries. They design fillings and inlays that fit the
boundaries and the overall shape of the remaining tooth, but
also contain characteristic morphological patterns, such as
cusps and grooves [1]. Human experience with shapes of teeth
makes this otherwise underconstrained problem tractable, and
guarantees morphologically adequate results. We present an
automated system for 3D surface reconstruction that adopts
this knowledge-based strategy.

A related problem from a different field is to reconstruct 3D
shape of objects, such as human faces, from 2D image coordi-
nates of a few feature points. This problem is underconstrained
not only because we have to interpolate between sparse feature
points, but also due to the 2D projection of 3D points into
the image plane. Our algorithm assumes this projection to be
orthographic, which is approximately the case for images of
faces taken from distances of 2 meters or more. Pose, location
and scale of the face may be arbitrary and unknown.

Fig. 1. Given the remaining material of a tooth and 10 hand-labeled
feature points (left), our algorithm reconstructs missing surface regions.
The reconstruction (right) does not only fit to the original material, but
also contains typical features of dental morphology, which are represented
statistically in a Morphable Model of 3D teeth.
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Fig. 2. Based on a vector space representation and an estimate of the
probability density of 3D faces, the system computes a complete 3D surface
from a sparse set of 2D or 3D point coordinates.

Our learning-based approach relies on a dataset of 3D
scans, which are converted into a vector space representation
(Morphable Model). Restricting possible solutions to the span
of examples, we can infer missing information about additional
points, using correlation between vector components which
is implicitly stored in the Morphable Model. We show that
additional regularization is necessary for robust and stable
results, and use a statistically motivated regularization based
on the probability density of the examples. The regularization
finds a tradeoff between fitting the surface to the feature points,
and producing a plausible solution in terms of prior probability.
This optimum is computed in a direct, non-iterative way at
interactive rates using a Singular Value Decomposition (SVD).
By simultaneously estimating 3D shape and rigid alignment,
our algorithm is robust with respect to unknown orientation.

The general technique can be used for all problems where
sparse measurements are given and the full solution is in the
linear span of a set of examples. The measurement can be
any linear mapping from the full vector, such as a product
of the following operators: a projection that selects a subset
of vector coordinates (sparse features or surface regions), a
3D rotation, and a projection into the image plane. After a
theoretical derivation of the algorithm, we present a compen-
sation scheme for unknown rigid alignment, and introduce
constraints that restrict points only in one direction while
leaving them unconstrained along planes or lines, such as the
eyebrows. Individual weights can be assigned to each feature
point, and an iterative refinement paradigm captures details of
the input data. We present an interactive program for model-
based surface reconstruction, give an experimental evaluation
that demonstrates the effect of regularization, and present a
full system for restoration of teeth in dentistry.
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II. PREVIOUS WORK

Completion of missing data with Eigenspace-approaches
has been used for reconstructing an image of a face from a
few pixels [2], and for reconstructing 2D shape and color from
a set of 2D point coordinates [3], [4]. However, these methods
applied a least-squares fit without regularization, which makes
the solution very unstable. Our statistical approach solves this
problem by computing an optimal tradeoff both in overcon-
strained and underconstrained situations and in the presence
of noise. Moreover, these entirely image-based methods are
restricted to frontal views, while our 3D approach and the
automated 3D alignment scheme works for any unknown
orientation. Filling-in missing information was also achieved
as a side-effect in iterative reconstruction methods [5] and [6].

Regularization has been applied to surface reconstruction
from sparse, contradictive or noisy measurements in computer
vision in a technique that defines a unique solution for these
otherwise ill-posed problems by minimizing an additional
smoothness functional [7]. In contrast, we use a class-specific
prior probability learned from examples [6], [8] for regulariza-
tion in a statistically motivated approach based on a maximum
posterior probability estimator [9], [10]. We present a direct
solution without costly iterations, and without marginalization.

3D alignment of rigid shapes is an important problem in
many fields, such as 3D shape acquisition, medical image
registration and computer vision, and a number of solutions
have been proposed (for an overview, see [11]). Among the
non-iterative methods, some involve an SVD of the 3 × 3
matrix H = 1

p

∑p
i=1(qi − q)(q′

i − q′)T between two point
sets qi and q′

i, and their respective averages q, q′ [12],
[13], [14]. Others use a linearization of product terms to
reproduce the pairwise point distances of feature points [15].
Alignment of rigid surfaces is also achieved by iterative
closest point algorithms [16], [17]. We adopt the strategy of
iteratively updating point correspondences in Section X-A. A
first-order Taylor expansion of the projected 2D coordinates
and subsequent SVD is described in [14]. In contrast, we
expand the rotation operator in 3D. This allows us to combine
rigid alignment with shape estimation and regularization for
fitting unknown, deformable surfaces.

From a variety of methods to reconstruct smooth surfaces
from point-cloud data, we mention three related approaches:
Fitting algebraic surfaces [18] uses a parameterized class of
surfaces, such as spheres, but cannot handle more natural
shapes. Implicit surfaces with radial basis functions [19] can
describe any shape, achieving smooth results with a regulariza-
tion functional based on second derivatives. Other methods use
local polynomial approximations [20]. All of these methods
can only interpolate between given points without inferring
missing structures from class-specific information.

Deformable 3D models have been fitted to 2D and 3D
data before. Reconstruction from 2D feature points has been
achieved with Levenberg-Marquardt optimization [21], [22],
and tree search [23]. For separate estimation of pose and
shape, linearized approximations of 3D rotation similar to ours
have been used [22]. An alternative solution that approximates
3D rotation by 2D affine transformations and pre-learned
parallax has been proposed in an algorithm based on SVD,
but without regularization [24]. A number of methods have
analyzed frame-to-frame motion in video to recover pose and

non-rigid deformation for tracking of faces, using a linearized
system based on a matrix factorization [25], or combinations of
optical flow with constraints derived from deformable models
[26], [27], [28]. Unlike these methods, our approach relies on
a single image for estimating depth.

Reconstruction of 3D shape and texture from color values is
described in [6], [8]. However, the iterative optimization in this
analysis-by-synthesis system is computationally expensive. A
similar method has also been used to fit the Morphable Face
Model to 3D range scans in a cylindrical parameterization
r(h, φ) [6]. The method that we present here is related to this
approach, but uses only feature point coordinates. This simpli-
fied setting allows us to formulate a faster and mathematically
more elegant solution that involves nothing more than an SVD
of a matrix of moderate size.

III. CLASS-SPECIFIC SHAPE PROPERTIES

The characteristic shape properties of objects classes are
derived from a dataset of 3D scans. Having defined a ref-
erence scan or mesh with p vertices, dense point-to-point
correspondence with all other scans is established with an
automated technique [6], so corresponding points such as the
tip of the nose are identified on all examples. For each scan
i ∈ {1, . . . ,m}, the coordinates of these p corresponding
surface points are concatenated to a vector
vi = (x1, y1, z1, . . . , xp, yp, zp)

T ∈ IRn, n = 3 · p. (1)

In this representation, any convex combination

v =
m

∑

i=1

aivi, ai ∈ [0, 1],
m

∑

i=1

ai = 1 (2)

describes a new element of the class. In order to remove
the second constraint, we use barycentric coordinates relative
to the arithmetic mean:

x = v − v, v =
1

m

m
∑

i=1

vi, (3)
so (2) becomes

x =

m
∑

i=1

bixi, xi = vi − v. (4)

Note that the set of xi is linearly dependent:
∑m

i=1 xi = 0.
The constraint ai ∈ [0, 1] would define a sharp boundary of
the object class. We prefer to describe the class in terms of a
probability density p(v) of v being in the object class. p(v)
can be estimated by a Principal Component Analysis (PCA,
see [29]): Let the data matrix X be

X = (x1,x2, . . . ,xm) ∈ IRn×m. (5)

The covariance matrix of the data set is given by

C =
1

m
XXT =

1

m

m
∑

j=1

xjx
T
j ∈ IRn×n, (6)

PCA is based on a diagonalization C = S·diag(σ2
i )·ST . Since

C is symmetrical, the columns si of S form an orthogonal set
of eigenvectors. σi are the standard deviations within the data
along the eigenvectors. The diagonalization can be calculated
by a Singular Value Decomposition (SVD, [30]) of X.

The space spanned by xi is at most m′ = (m − 1)
dimensional, and the rank of X and C is at most m′, so σm =
0, and sm is not meaningful. If we use the scaled eigenvectors
σisi as a basis, vectors x are defined by coefficients ci :

x =

m′

∑

i=1

ciσisi = S · diag(σi)c (7)
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The variance of the original data is 1 in each coefficient ci,
so the estimated normal distribution takes the simple form

p(c) = νc · e
− 1

2
‖c‖2

, νc = (2π)−m′/2. (8)

‖c‖2 is the distance from the average, scaled according to
the normal distribution (Mahalanobis Distance).

IV. MODEL-BASED SURFACE COMPLETION

Given the positions of a reduced number f < p of feature
points, our task is to find the 3D coordinates of all other
vertices. Similar to Equation (1), we write the 2D or 3D
coordinates of the feature points as vectors r ∈ IRl (l = 2f
or l = 3f ), and assume that r is related to v by

r = Lv L : IRn 7→ IRl. (9)

L may be any linear mapping, such as a product of a
projection that selects a subset of components from v for
sparse feature points or remaining surface regions, a rigid
transformation in 3D, and an orthographic projection to image
coordinates. Until Section VI, we assume that L is known
precisely. Let

y = r − Lv = Lx (10)

If L is not one-to-one, the solution x of (10) will not be
uniquely defined. To reduce the number of free parameters, we
restrict x to the linear combinations of xi, which makes sure
that x is in the object class. Depending on the number l of
feature coordinates and the dimension of the span of examples,
the solution of (10) is still not unique. We address this issue
at the end of this section.

As we cannot expect to find a linear combination of the
examples that solves (10) exactly, we minimize

E(x) = ‖Lx − y‖2. (11)

Let qi = L(σisi) ∈ IRl be the reduced versions of the
scaled eigenvectors, and

Q = (q1,q2, ...) = LS · diag(σi) ∈ IRl×m′

. (12)

In terms of model coefficients ci from (7), (11) is

E(c) = ‖L
∑

i

ciσisi − y‖2 = ‖Qc − y‖2. (13)

The optimum can be found by a Singular Value Decompo-
sition [30]

Q = UWVT (14)

with a diagonal matrix W = diag(wi), and VT V = VVT =
idm′ . The pseudo-inverse (see [30]) of Q is

Q+ = VW+UT , (15)

W+ = diag

(

w−1
i if wi 6= 0
0 otherwise

)

. (16)

To avoid numerical problems, the condition wi 6= 0 may be
replaced by a threshold wi > ε. The minimum of E(c) can
be computed with the pseudo-inverse: c = Q+y.

This vector c has another important property [30]: If the
minimum of E(c) is not uniquely defined, c is the vector
with minimum norm ‖c‖ among all c′ with E(c′) = E(c). In
our case, this means that we obtain the vector with maximum
prior probability (Equation 8).

By Equation (3) and (7), c is mapped to IRn:

v = S · diag(σi)c + v. (17)

For solving Equation (10), it might seem more straightfor-
ward to compute x = L+y with the pseudo-inverse L+ of L.
However, the result would, in general, neither be in the span
of examples, nor would it minimize ‖c‖, so none of the model
information would be considered.

V. STATISTICAL SHAPE RECONSTRUCTION

The previous solution will ensure that E is minimized, and
in particular that E = 0 whenever this is possible. Prior
probability is only considered among solutions of equal E(c).

However, it is well known in statistical learning that optimal
generalization (in our case to the unknown surface regions)
in terms of the expected error is not always achieved by
reproducing the given data precisely [31]. In regression, for
example, a smooth curve that passes the measured data points
at some distance may lead to better generalization than a
complicated curve that passes through all measurements and
shows overfitting effects elsewhere. Regularization provides a
powerful tool to resolve this problem. In the following, we
derive a regularization framework from statistical assumptions
and a maximum a posteriori approach.

There are a number of reasons why measurements y should
not be fully reproduced by the method described in the
previous chapter: y may be subject to noise in detecting the
feature points, or wrong assumptions on the rotation involved
in L. Moreover, the linear span of the examples will, in
general, only approximate the novel shapes x encountered in
the application of the system.

Minimizing E(x) = ‖Lx − y‖2 may therefore lead to so-
lutions that are too far from the average and heavily distorted,
as demonstrated experimentally in Section IX-A. To avoid this
overfitting, we propose a tradeoff between matching quality
and prior probability of the solution. This tradeoff will be
derived from a Bayesian approach in the following section.

A. Maximum Posterior Probability

Given the observed vector y, we are looking for the co-
efficients c with maximum posterior probability P (c|y). As
an intermediate step, consider the likelihood of measuring y,
given c: In the noiseless case, c would define the vector

ymodel = L
∑

i

ciσisi =
∑

i

ciqi = Qc (18)

We assume that each dimension j of the measured vector y

is subject to uncorrelated Gaussian noise with a variance σ2
N .

Then, the likelihood of measuring y ∈ IRl is given by

P (y|ymodel) =

l
∏

j=1

P (yj |ymodel,j) (19)

=

l
∏

j=1

νN · e
− 1

2σ2

N

(ymodel,j−yj)
2

= νl
N · e

− 1

2σ2

N

‖ymodel−y‖2

(20)
with a normalization factor νN . In terms of the model

parameters c, the likelihood is

P (y|c) = νl
N · e

− 1

2σ2

N

‖Qc−y‖2

. (21)

According to Bayes Rule [32], the posterior probability is

P (c|y) = ν · P (y|c) · p(c). (22)

with a constant factor ν = (
∫

P (y|c′) · p(c′)dc′)−1.

Substituting (8) and (21) yields

P (c|y) = ν · νl
N · νc · e

− 1

2σ2

N

‖Qc−y‖2

· e−
1

2
‖c‖2

, (23)

which is maximized by minimizing the cost function

E = −2 · logP (c|y) =
1

σ2
N

‖Qc − y‖
2
+‖c‖2 +const. (24)
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B. Combined Cost Function

In this section, we show that the cost function (24) can be
minimized in a single step. To simplify the calculation, we
introduce a weight factor η = σ2

N ≥ 0 and minimize

E = ‖Qc − y‖2 + η · ‖c‖2. (25)
In the optimum,

0 = ∇E = 2QT Qc − 2QT y + 2ηc, (26)
so

QT Qc + ηc = QT y. (27)

Singular Value Decomposition Q = UWVT yields

QT Q = VWUT UWVT = VW2VT . (28)

since U is orthogonal in all columns i with wi 6= 0. From
(27), VW2VT c + ηc = VWUT y. (29)

Multiplying by VT , this can be solved for c:

diag(w2
i + η) · VT c = WUT y (30)

c = Vdiag(
wi

w2
i + η

)UT y (31)

The overall result is obtained from (3) and (7):

v = v + Sdiag(σi)Vdiag(
wi

w2
i + η

)UT y. (32)

C. Special case L = idn

To find the closest element of the span of examples from
a vector x that is entirely known, or to approximate a given
element of the span by a more plausible solution, we can set
L = idn. The Singular Value Decomposition of Q is then
trivial, and Equation (32) reduces to

v = v +
∑

i

1

1 + η
σ2

i

〈si,y〉 si. (33)

The most relevant dimensions si with large standard devia-
tion σi are affected less by η than those with small σi.

VI. TRANSLATION, SCALE AND ROTATION

Since real-world data are, in general, not aligned with
the model, it is essential to compensate for unknown rigid
transformations. 3D feature points could be pre-aligned with
the corresponding points of the average surface using 3D3D
Absolute Orientation [12], [13], [14]. The result would be
sub-optimal, however, since the optimal alignment depends
on the shape after reconstruction. In this section, we present
a method to compensate for transformations and deformations
simultaneously. In the case of 2D image coordinates, pose
estimation of an unknown shape is even more difficult than in
the 3D setting. Our solution makes the algorithm applicable
to pictures of faces at arbitrary, unknown orientations.

The method includes additional coefficients ci and vectors
si in the linear combination (7). Shifting is achieved simply
by including vectors

stx = (1, 0, 0, 1, 0, 0, . . . , 1, 0, 0)T (34)
and sty , stz in the set of si. Scaling is allowed for by a

vector ss = v: Let

v =

m′

∑

i=1

ciσisi + v, then (35)

λv =

m′

∑

i=1

(λci)σisi + (1 − λ)ss + v, (36)

so the scaled shape is represented in the model by adding
(1 − λ)ss, and scaled coefficients λci. For λ far from 1,
this may affect the regularization tradeoff in the cost function

(25), leading to more conservative estimates at a large scale
than at a small scale because the same shape becomes more
“expensive”. For λ ≈ 1, this effect is not noticeable.

Rotation is compensated in a two-pass approach: Based
on approximations for small angles γ, θ, φ � 1, the method
estimates rotation and 3D shape. This estimate, which may
be unprecise in case of larger rotations, is included in L in
the second pass, and the residual small rotation along with a
refined 3D shape are computed.

For γ, θ, φ � 1, we can set the cosines to 1, and ignore
products of sinus terms. For a product of 3 rotations around
the z, x and y-axis, we obtain

R = RγRθRφ ≈





1 − sin γ sin φ
sin γ 1 − sin θ
− sin φ sin θ 1



 (37)

R





x
y
z



 ≈ sin γ





−y
x
0



+ sin θ





0
−z

y



+ sin φ





z
0

−x



+





x
y
z



 .

We combine the 3 × 3 matrices R to a mapping Rv of
the full vectors v ∈ IRn and perform a first-order Taylor
expansion of Rvv, ignoring effects of rotation on the principal
components, to obtain a linear combination

Rvv ≈

m′

∑

i=1

ciσisi + cγsγ + cθsθ + cφsφ + v (38)

sγ = (−y1, x1, 0,−y2, x2, 0, . . .)
T (39)

sθ = (0,−z1, y1, 0,−z2, y2, . . .)
T (40)

sφ = (z1, 0,−x1, z2, 0,−x2, . . .)
T . (41)

The vectors sγ , sθ, sφ, stx, sty , stz , ss are normalized
to ‖s‖ = 1 and treated just as the principal components si

in the optimization (Section V). To control their weights in
regularization, their standard deviations should be set equal to
the most dominant principal component σ1.

After the optimization, the angles are recovered from γ =
arcsin cγ , θ = arcsin cθ, φ = arcsin cφ, and included in L for
a second pass. Due to the approximations, the estimate from
the first pass may be wrong by several degrees if the initial
orientation was far from the true orientation (Figure 4). The
second pass, however, yields the final, stable estimate already,
which justifies this simple and efficient method.

VII. DIRECTIONAL CONSTRAINTS AND WEIGHTS

Many facial features, such as the eyebrows and lips, are in
fact lines or curves rather than points. The constraint in the
fitting process should let these features move freely along the
tangent line, and restrict them only in the orthogonal direction.
With the method described so far, the user would face the ill-
defined problem of selecting corresponding points along the
curve, and the reconstruction would be restricted by the user’s
arbitrary selection (Figure 3). In 3D fitting (e.g. reconstructing
teeth from 3D features), we may want to restrict points to
planes, for example the approximal contacts to adjacent teeth,
but leave them unconstrained otherwise.

Consider the individual feature points in y and ymodel:
Let q be the observed 2D or 3D coordinates of one point,
and qmodel the coordinates predicted by the model. Then the
distance d = ‖q − qmodel‖

2 which has contributed to (25) is
replaced by
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Fig. 3. Directional constraints leave lines such as eyebrows or lips unre-
stricted along the tangent. Clicking on feature points, the user cannot define
correspondence along the lines properly (top row). Point-based constraints
would distort the face (bottom, left), while directional constraints yield
realistic results (center) by allowing for mismatches along the tangent (bottom
right: blended images).

dn = 〈n, (q − qmodel)〉
2 (42)

= ‖nT (q − qmodel)‖
2 = ‖Aq − Aqmodel)‖

2 (43)

with a normal vector n of the contour line or boundary
plane, ‖n‖ = 1, and a matrix A = (nx, ny) or A =
(nx, ny, nz). The constraints used in previous sections, which
restricted points in all directions, can be written in (43) with
A = id2 or id3. Combining the matrices A of all feature
points to a block-diagonal matrix Ay on vectors y, (25)
becomes

E = ‖AyQc − Ayy‖
2 + η · ‖c‖2. (44)

The optimization problem can be solved in the same way
as in Section V-B if we compute the Singular Value Decom-
position of the product AyQ = UWVT . The result is

v = Sdiag(σi)Vdiag(
wi

w2
i + η

)UT Ayy + v. (45)

Individual weights for the dimensions of y can be im-
plemented in the same framework with a diagonal matrix
Ay formed by the weight factors. Weights can reflect the
importance assigned to different feature points, the precision
of fitting these points, or the noise σN of each measurement.

VIII. RECONSTRUCTION OF 3D FACES FROM IMAGES

From a small number of 2D positions of feature points,
the algorithm can recover 3D shape of human faces at high
resolution, inferring both depth and the missing vertex coor-
dinates. The system is based on a Morphable Model [6] that
has been built from laser scans of 200 faces, using a mod-
ified optical flow algorithm to compute dense point-to-point
correspondence. Each face is represented by the coordinates
of p = 75972 vertices at a spacing of less than 1mm. We use
only the 140 most relevant principal components.

For shape reconstruction, the user clicks on feature points
in the image and the corresponding points on the 3D reference
model. Good results are achieved with 15 to 20 points. Due to
the automated 3D alignment (Section VI), no estimate of pose,
position and size is required. Computation time is 250ms on
a 1.7GHz Intel Xeon processor for forming Q from the large
matrix S, SVD of Q in two passes for pose estimation, and
computation of the full face (Equation 32).

Fig. 4. From an original image at unknown pose (top, left) and a frontal
starting position (top, right), the algorithm estimates 3D shape and pose from
17 feature coordinates, including 7 directional constraints (second row). We
used 140 principal components and 7 vectors for transformations (Section VI).
The third row shows the texture-mapped result. Computation time is 250ms.

Fig. 5. Reconstruction and model-based deformation.

Figure 4 shows an example of 3D shape reconstruction from
17 feature points. 7 of the points are directional constraints, as
indicated by tangent lines in the figure. The system success-
fully compensated for rotation, scaling and translation. The
color values of the image are mapped as a texture on the
surface (bottom row), and missing color values are reflected
from visible parts or filled in with the average texture of the
morphable model. Better texture values for filling in could be
computed with the same method that we used for shape. Figure
5 shows another example of a reconstruction, and illustrates
model-based image manipulation: After texture-mapping, the
marker points can be moved, producing a novel shape from
within the object class, which is rendered back into the image.
Note that changes on one side, e.g. the width of the nose or
the eyes, are transferred symmetrically.

IX. EXPERIMENTAL EVALUATION

To evaluate the predicted properties of regularization on the
reconstruction setting of Section VIII, we split the database
randomly into a training set and a test set of m = 100 faces
each. The training set provides the examples vi available to
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Fig. 6. The effect of η on average reconstruction results for 100 novel faces,
given 50 feature points, and using 99 principal components. As η increases,
the feature points are matched less precisely, so Ey grows. In contrast, ‖c‖
decreases, as the results become more plausible. The overall 3D shape error
Efull is lowest for a tradeoff between both criteria.

the system for PCA (m′ = 99). The test set is used to assess
performance on novel faces.

From the vertices of the full model, we selected sets of
f = 17, 50, or 1000 vertices as feature points. The vertices
in the two smaller sets are salient points such as the corners
of the mouth, those in the large set are selected randomly.
Their image plane coordinates, computed by orthographic
projection in frontal orientation, form synthetic test vectors
r = Lv ∈ IRl , l = 2 · f (Equation 9). The mapping
L is assumed to be known. Focussed on the properties of
our regularization method, this evaluation does not include
compensation for transformations (Section VI).

The evaluation is based on the following quantities, which
are averaged across all 100 training or test faces:

• Ey = ‖Qc − y‖, the image plane matching error for all
feature points (in units of pixels in a 300x300 image).

• ‖c‖, the Mahalanobis distance from the average.
• The per-vertex average of distances in 3D space between

original η = 0 η = 0.00001

η = 0.001 η = 0.1 η = 1

η = 10 η = 100 average
Fig. 7. Given the image coordinates of 50 feature points of a novel face (top
left), 3D shape was reconstructed with 99 principal components. The result
depends on a tradeoff between the precision of feature point matching, and
prior probability. This tradeoff is controlled by the parameter η.

1001010.10.010.0010.0001 avg.0

σN = 1.0Efull

1.9mm

η

5.4mm

1000

σN = 0.1

σN = 0.0

0.8mm

Fig. 8. The average shape reconstruction errors for 100 training faces depend
on the level of noise σN added to each feature point coordinate. While noise-
free training data are best analyzed with η = 0 (solid line), reconstruction
quality for noisy data is best at η = σ2

N
.

reconstruction and original, computed over the entire set
of vertices (except for neck and top of forehead):

Efull =
1

p

p
∑

i=1

‖





xi,reconst.

yi,reconst.

zi,reconst.



 −





xi,orig.

yi,orig.

zi,orig.



 ‖

(46)

A. Reconstruction of Novel Faces

The effect of overfitting is clearly demonstrated in Figures 6
and 7: For small values of η, the face is heavily distorted, and
Efull is large. Still, the feature point coordinates are precisely
recovered, as indicated by the low error Ey .

As η increases, Ey grows, while ‖c‖ decreases since the
prior probability of the solution gains more weight in the
optimization. As the shape becomes more smooth and more
plausible, the overall reconstruction error Efull decreases, and
reaches its minimum at η = 2. If η is too large, the output is
too close to the average to fit the data, so both Ey and Efull

are high. The values on the right in Figure 6 are the baseline
obtained with the average head v. Figure 6 is a typical curve
observed in many fields of statistical learning [31].

In Figure 6, the optimal reconstruction achieves an average
error Efull = 2.72mm on the test set. Reducing the number
of principal components m’ from 99 to 40 increases the error
to Efull = 2.81mm. The error increases also if the number
of feature points is reduced: For f = 17, Efull = 3.16mm,
while for f = 1000, Efull = 2.24mm, using m′ = 99.

B. Noisy Feature Point Coordinates

To investigate the effect of noise on the feature point
coordinates, we evaluate the system on the 100 training faces
with their m′ = 99 principal components. Without noise, the
problem Qc = y has a unique solution if l = 2 · f ≥ m′.
For f = 50 and f = 1000 feature points, the system
correctly recovers the training faces: Ey < 0.004 pixels and
Efull < 0.002mm. The solid line in Figure 8 shows that this
perfect solution at f = 50 would be impaired by η > 0. If
only f = 17 points are available, the face is no longer uniquely
defined, and we found that our system produces a solution with
smaller ‖c‖ that still solves the problem (Ey < 0.0001), but
is different from the original (Efull = 2.1mm), as expected
from theory (Section IV and V-A).

If Gaussian noise with a standard deviation of σN = 0.1 or
σN = 1 pixels is added to the horizontal and vertical image



7

Fig. 9. A sample of the set of 166 teeth (occlusal surfaces of first upper
molars).

average v v ± 3σ1s1, v ± 3σ2s2, v ± 3σ3s3

Fig. 10. The average and the first principal components of the Biogeneric
Morphable Model of Teeth.

coordinates of each feature point, y becomes more and more
difficult to recover, and overfitting occurs, as demonstrated by
the large errors Efull. The error in Figure 8 takes its minimum
at η = σ2

N , so reconstruction is best for the vectors with
maximum posterior probability, as expected from Section V-A.

X. A BIOGENERIC MORPHABLE MODEL OF TEETH

Given the remaining dental material after parts have been
lost, for example due to caries, the goal of reconstruction is
to find a 3D surface that fits the remaining material, taking
into account the large individual variations in teeth, but is at
the same time morphologically plausible: The technique has
to insert typical structures, such as cusps and grooves, even if
they were entirely missing in the remaining material. Clearly,
this would not be possible with geometrical methods such as
Splines, NURBS and GDM [33], [34]. Other methods require
manual selection of an intact prototype tooth that is adjusted
in shape using image warping [35]. In contrast, our method
automatically deforms and adjusts the Morphable Model based
on the shape of the remaining material and the morphological
variations found within the set of examples.

From impressions of 166 carious-free, intact first upper
molar teeth of children within the age of 6 to 9 years, we
formed stone replicas and measured the occlusal surface (i.e.
the surface predominantly used in chewing) with a 3D scanner
at a resolution of about 30µm × 30µm points [36], [37].
The pattern of cusps and grooves varies considerably across
individuals, even though some morphological properties, such
as the overall layout of the main cusps and fissures, are shared
by all samples (Figure 9). These common features allow us
to establish correspondence between the scans z(x, y) with a
modified optical flow algorithm in an automated procedure [6].
Based on this correspondence, the x, y, z - coordinates form
a Morphable Model of teeth vi (Equation 1), with an average
and principal components shown in Figure 10. Note that the
morphable model is flexible not only along the z direction, but
also along x and y, which is essential to represent the varying
locations of cusps in these directions.

A. Deformable Iterative Closest Point Algorithm
The only manual interaction, after scanning the residual

dental material, is to select some feature points on that scan,
such as the peaks of cusps or centers of grooves, and identify
the corresponding points on the average tooth. Our method
does not require a standard set of features, so if entire
structures are missing, the user selects whatever is available.

The subsequent steps are performed automatically by our
system: The 3D coordinates of the selected feature points are
used to estimate the entire shape according to the method
from Section V-B and with a full compensation for rigid
transformations (Section VI). Figure 11 shows results of this
algorithm (second and third column). To illustrate the quality
of the fit, we substitute the remaining points of the original
tooth into the recovered shape v: For each vertex xk, yk, zk in
v, we replace zk by zoriginal(xk, yk) if that value is non-void.

Clearly, the reconstruction from a sparse set of points will
not consider details of the original shape, such as round versus
pointed cusps. We therefore propose a multi-pass method that
refines the shape, adapting it to whatever surface information
is available from the remaining surface: After the first itera-
tion, corresponding points on the model and the original are
already close together. The algorithm selects a large number
of pairs of nearest neighbors: it samples the original scan
(x, y, zoriginal(x, y)) at a fixed grid resolution, and finds the
nearest neighbor in IR3 among the vertices xk, yk, zk of the
reconstructed shape v. With this extended set of corresponding
feature point, a refined reconstruction is computed (Figures
1 and 11). Since the correspondence mapping between scan
and model may drift slightly along the surface with each
refinement pass, additional passes may further improve the
result slightly. Residual discontinuities at the boundary may
be removed by smoothing.

To evaluate the precision of the reconstruction with ground
truth, we randomly selected 66 test scans, removed 43%
of the surface according to the pattern in Figure 1, and
identified 10 feature points. The other 100 scans were used
for PCA. After 2 passes of the algorithm, the average error
|zreconst.(x, y) − zoriginal(x, y)| per point x, y and per scan
from the true surface was 143µm on missing regions and
85µm on remaining material. Measuring distance not along
the z-direction, but to the closest neighbour of each point, the
average is 104µm on missing regions and 62µm on remaining
material. The root-mean-square errors between 3D positions of
closest neighbours are 137µm and 95µm, respectively.

XI. CONCLUSION

We have presented an algorithm that uses a 3D Morphable
Model to infer vector components, such as the coordinates
of mesh vertices, from incomplete measurements in a robust
and efficient way. Regularization provides an optimal tradeoff
between fitting quality and plausibility. Additional compensa-
tion for rigid transformations is an essential component for
processing real-world data.

The algorithm was tested in two applications: The first is an
estimation of 3D shape of a high resolution face model from
2D feature coordinates. Unlike non-linear, iterative systems
[6], our algorithm does not rely on color values of images, and
therefore reconstructs characteristic details of individual faces
only if they are sufficiently defined by feature points. However,
the fast and non-iterative computation makes the algorithm
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original surface first estimate original and reconst. refined reconstruction original and reconst.
Fig. 11. From the remaining surface of two teeth (left, top and bottom) and a set of selected points (blue), the system produces a first estimate of the tooth.
In the third column, we inserted the original surface into the reconstruction wherever available to demonstrate the quality of the fit. After a second pass, the
reconstruction is refined (fourth and fifth columns).

an interesting low-cost alternative for interactive tools. The
second application is a complete system for restoring 3D
surfaces of teeth in medical contexts such as inlay design.

Our statistical approach and empirical evaluation reveal
some of the general properties of surface estimation and
restoration, and we provide an efficient algorithm for a wide
range of practical applications.
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