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Abstract. The reconstruction of 3D bone shape from 2D X-ray con-
tours is an ill-posed problem. For medical applications, it is important to
estimate the uncertainty of the reconstructions. While traditional opti-
misation methods produce a single point-estimate, we frame the problem
as Bayesian inference. We apply a Monte Carlo sampling based non-rigid
3D to 2D registration recovering the posterior distribution of plausible
reconstructions. This provides insight into the uncertainty of the inferred
3D reconstruction. As an application, we demonstrate the use of the
method in selecting X-ray viewing conditions in order to maximise accu-
racy while minimising reconstruction uncertainty. We evaluated recon-
struction accuracy and variance for the femur bone from bi-planar views.

Keywords: 3D reconstruction · Statistical shape model · 3D/2D
registration · Bayesian inference · MCMC sampling · Optimal
viewing-angle selection

1 Introduction

Non-rigid three-dimensional-to-two-dimensional (3D/2D) registration may be
used to obtain a patient-specific 3D surface reconstruction of a bone from a lim-
ited number of 2D patient X-ray images. Such a reconstruction is performed by
iteratively adjusting the parameters of a 3D statistical shape model (SSM), based
on the information inferred from the X-ray views. These surface reconstructions
can then be used to aid in clinical tasks such as surgical planning and post-
operative evaluation while avoiding the higher costs or relatively greater patient
irradiation associated with some 3D modalities (computed tomography). The
main clinical application area of such reconstructions is within orthopaedics. In
order to reduce exposure to ionising radiation, and reduce computation time,
the number of X-ray views is often limited to one or two (Hurvitz and Joskowicz
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2008). The viewing angle(s) are selected, either by adjusting the patient or by
adjusting the C-arm of the X-ray machine (if one is available). In contour-based
reconstruction, the chosen viewing angle(s), together with the type of bone, have
an influence on the points that can reliably be identified, and thus also influence
the uncertainty of the estimated patient-specific 3D bone surface. A decision,
therefore, has to be made about which X-ray view(s) to use as many 3D shapes
can account for the same X-ray image projection. Additionally, since different
types of symmetry exist for different types of bone (femur vs. pelvis), the view-
ing angles that provide the least ambiguity - and maximise accuracy - are not
always obvious (Suter et al. 2020). While the femur bone is relatively simple, and
a 90◦ bi-planar viewing angle seems intuitive (since a maximum decorrelation of
information between the two views in ensured) (Fleute and Lavallée 1999; Baka
et al. 2011), bones such as the scapula or pelvis exhibit a profound increase
in structural superposition for certain viewing angles. In their work, Sadowsky
et al. (2007) opted to use a 90◦ and 45◦ separation for the pelvis (Sadowsky
et al. 2007). It is evident that these methods rely mostly on user intuition, or
heuristics, which lead to reconstruction error and/or inconsistent performance.
Furthermore, maximum-point-estimate methods are employed, where the effect
of different sources of uncertainty (such as 2D projection) are not investigated.
Markov Chain Monte Carlo (MCMC) methods for image analysis are used to
assess the uncertainty and have been reported to solve inference problems in
object recognition, including the parsing of natural scene images, face analysis
and segmentation (Zhu et al. 2000; Tu et al. 2005; Schönborn et al. 2017; and
Egger 2017). The probabilistic nature of MCMC approaches allows reason about
uncertainty of the image interpretation while simultaneously performing image
registration.

Here we propose a framework for contour-based 3D-from-2D reconstruction.
We frame the problem as model fitting based on Bayesian inference. We estimate
the full posterior distribution of model instances given the image, and not only
a single maximum-point-estimate as Sadowsky et al. (2007). The posterior has
no closed form solution, and thus we resort to MCMC based approaches. We
use the Metropolis-Hastings algorithm in combination with a given shape prior
model considering minor pose variation. The inference is driven by a propose-
and-verify architecture. A new sample is proposed from a proposal distribution
given the current state. Then the sample is either accepted or rejected based on
a acceptance criterion as originating from the posterior distribution over model
parameters.

Since the exploration of the space with random proposals is slow at high
dimensions and many samples are not independent, we propose the use of Hamil-
tonian Monte Carlo (HMC) as the second approach (Duane et al. 1987; Neal et
al. 2011) to explore the search space more efficiently, while retaining accurate
posteriors. We demonstrate how to use the inferred posterior distribution to
compute the uncertainty of the reconstructed surface. Furthermore, we propose
a method for automatic contour selection (on the 3D reference surface), capa-
ble of simulating the view-dependent contour, which can help determine how
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informative a given contour may be. By combining our algorithm with a contour
generation method, we provide a means of quantifying uncertainty reduction for
a particular X-ray view (or views). The efficacy of the framework is evaluated
through a series of experiments using simulated images. Our contributions are
as follows: 1) an MCMC-sampling method for 3D-from-2D bone reconstruction
using the random walk Metropolis-Hastings method; 2) an improved sampling
algorithm using the HMC method; 3) a method for estimating the uncertainty
of a 3D reconstruction; and 4) an application of the proposed framework to
determine optimal bi-planar X-ray viewing-angles.

2 Methods

2.1 Statistical Shape Models

We employ the method described by Lüthi et al. (2017) to train an SSM of the
bone-of-interest. Building the SSM basically includes the extraction of the mean
shape and a number of modes of variation across the individuals in the training
dataset of typical shapes {Γn, n = 1, ..., N} segmented from the CT scans of
the population. The first step in computing the mean shape is to extract shape
features from each training sample and align all the samples with respect to
the reference shape using these features. The second step is the reduction of
the training dataset into a small set of modes that best represent the observed
shape variations. This is accomplished using principal component analysis (PCA)
(Hotelling 1933). The PCA models only represent shapes that are in the linear
span of the given training examples. The drawback of this specificity is that
not all the target shapes can be fully represented in the model. To capture the
complete PCA model space, a lot of training samples are needed which in reality
is not a simple task. To overcome this, the work by Lüthi et al. (2017) extended
the PCA models to include modeling of deformations using Gaussian process
(GP). Hence the resulting model is the probability distribution defined on the
deformations. Including the GP means that the deformations are modelled with
Gaussian function GP(μ, k), where μ and k are mean and covariance functions,
respectively. In a Bayesian inferencing framework, the model is used as a prior
distribution P (θ), where θ denotes the model parameters that are optimised
during contour-fitting.

2.2 Synthetic Contour Generation, Projection and Detection

We demonstrate the validity of our approach in a simplified setting. To generate
synthetic 2D images of contours, we produce a 2D silhouette from the 3D mesh.
Our approach requires that we know the silhouette vertex points.

Our algorithm consists of two steps. First, we render a mesh as a binary
image. Second, we find all vertices which account for the silhouette.

Let M(θ) be the mesh described by the model parameters θ. Next we render
a binary occupancy image oθ with the value oθ(p) = 1 when the object is visible
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at the pixel location p otherwise 0. Let Np denote the set of adjacent pixels of
pixel p, e denotes the eye vector, pv the pixel location of vertex v in the binary
image, Sv the set of adjacent surfaces of v with ns denoting the normal of the
surface s ∈ Sv. Then the collection of silhouette points C is defined as:

C = { v | v ∈ M(θ), ∃s′, s′′ ∈ Sv, s′ �= s′′ with sgn(ns′ · e) �= sgn(ns′′ · e)
and ∃p′ ∈ Np with oθ(p′) = 0} .

(1)

The vertex set C in Eq. 1 contains all points which are on the silhouette and
have adjacent surfaces which face in a different direction when projected onto the
eye vector. Even though we generate a 2D silhouette image given a 3D shape,
we still calculate distances using only the 2D silhouette.

This synthetic contour generation process is also used during the optimisation
process in the model fitting.

2.3 Estimation of the Posterior Distribution

In order to estimate the posterior distribution P (θ|C) of the SSM, when pro-
vided with a set of pre-selected view-dependent 2D contours as observations, we
replace a straight-forward optimisation approach with a MCMC-based inference
algorithm. The inferred solution is a distribution, rather than a single maximum
estimate.

Random Proposals. We adopt the MCMC approach of Schönborn et al.
(2017), where the inference is driven by the proposed-verification architecture
of the Metropolis-Hasting (MH) algorithm, as our first sampling approach. This
algorithm draws random samples θ′ from a proposal distribution Q(θ′|θ) and
transforms them into samples stemming from a target distribution P (θ|C) by
accepting a proposed sample θt+1 → θ′ with the following probability:

a = min{P (θ′|C)
P (θ|C)

Q(θ|θ′)
Q(θ′|θ) , 1}. (2)

The algorithm may otherwise reject the sample and keep the current one
θt+1 → θ. The function Q generates proposals θ′ that are possible model param-
eter updates. Our implementation of the MCMC sampling-based registration
algorithm integrates prior knowledge and contour observations using accept-
reject filters. In this setting, we initialise the Markov chain as the model mean
which later is updated after each accepted sample. Each accepted sample corre-
sponds to a set of model parameters which provide an estimated bone surface.
The resultant surface meshes are then used to represent the estimated posterior
distribution for a specific set of contour points (corresponding to a specific X-ray
view).
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Guided Proposals. We use the HMC approach to efficiently explore the com-
plex target distribution and obtain a more accurate variance estimator. The
computational expense to create independent samples for a d-dimensional space
generally scales with d5/4, while it is d2 for a random walk MH method. To define
the Hamiltonian dynamics (Neal et al. 2011; Zoppo 2018), which create propos-
als which are nearly independent from the current state but still have a high
acceptance rate, we extend a d-dimensional current state q with d-dimensional
momentum variables p. The Hamiltonian function H(q, p) is the sum of the
potential energy U(q) and the kinetic energy K(p) formulated as:

H(q, p) =U(q) + K(p), (3)

U(q) = − log [P (q)l(q|C)] and K(p) = pT M−1p/2.

Here the quadratic form of the kinetic energy is used to model the Gaussian
targets. The mass matrix M is a free parameter for linear transformation. We
use our estimate of the covariance matrix for M . The posterior distribution takes
the role of the position variable, q which is expressed using the potential energy
with P (q) being the prior, and l(q|C) is the likelihood.

Algorithm 1 explains how Eq. 3 is approximated for a given set of initial
conditions, using a step-size ε, and number of leapfrog steps L. The dynam-
ics are randomly perturbed by the momentum values drawn from the normal
distribution to ensure that the space is explored at each sampling iteration.

Algorithm 1: Hamiltonean Monte Carlo.
HMC = f(U,gradU,ε,L,current q)
Initialise
q= current q
M ← diagonal scale matrix
p ← N(0,M)
current p=p
p = p - ε * gradU(q)/2; % ensure volume preservation and reversibility
for i=1,...,L do

q= q + ε * p
if i != L then

p = p - ε * gradU(q)
end

end
p = p - ε * gradU(q)/2
p = -p
if N(0,1) ≤ exp

[
U(current q) − U(q)| ||current p||2

2
− ||p||2

2

]
then

return q
end
else

return current q
end
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Contour Likelihoods. We compute the posterior of the shape reconstruction
P (θ|C) from a prior P (θ) and a contour likelihood l(θ;C)

P (θ|C) ∝ l(θ;C)P (θ). (4)

The likelihood functions are important in the acceptance step of both MC meth-
ods. They measure the quality of the image explanation by comparing the target
contours to the occluding contours of the current model instance θ, rendered onto
the image domain with projection function

fθ → C ′ = {p′
1, p

′
2, ..., p

′
i, ...}. (5)

Our contour likelihood relies on soft correspondence, meaning for each point of
the model proposed contour we search for the closest point in the jth target
contour line

Cj = {pj
1, p

j
2, ..., p

j
i , ...}. (6)

To that end, the contours of the target and the current model instance are made
invariant under 3D motion, so that only shape variation remains between the
two. For this we find the rigid transformation between C ′ and Cj as:

hj = arg min
h∈SE(3)

‖
−−−−−−−−−−−−−−→
h({pj

1, p
j
2, ..., p

j
i , ...}) − −−−−−−−−−−−−−−−−−−−−−→{fθ(p′

1), fθ(p′
2), ..., fθ(p′

i), ...}‖2. (7)

Our focus here is not on investigating the suitable likelihood function, thus we
use the common assumption that the observed contour points are independent and
are affected by additive Gaussian noise. Hence our likelihood rates the distances
between closest points of the generated and the target contour after rigidly aligning
them using a Gaussian noise model. We therefore define the likelihood as

lj(θ|Cj , σcj ) =
∏

i

N
(
fθ(p′

i) − hj(pj
i )|0, σcj

)
. (8)

For N view registration, the final likelihood is computed as the product from N
sets of contours:

l(θ|C1, . . . , CN , σc1 , . . . , σcN ) =
N∏

j

lj(θ|Cj , σcj ). (9)

2.4 Quantifying Uncertainty by Means of Sampling

In addition to measuring conventional mesh surface registration errors between
the most likely reconstruction and the ground truth using both the average
and the Hausdorff distance, the Bayesian sampling approach provides a means
of measuring the uncertainty of the fit. We perform these measurements by
considering all the samples that define our target distribution. We compute the
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variance of each vertex point across these samples using the Frobenius norm,
where we first compute the mean and the covariance for each direction in 3D
coordinate space. Instead of having one most probable reconstruction, we infer
the reduction in uncertainty in different regions of the bone and visualise it as a
colour map.

To visualise our sample distribution and to investigate how the contour lines
influences the reconstruction, we take slices of the samples across the length of
the bone, the z−plane.

3 Experimental Setup and Results

A SSM of the femur is trained as is described in Sect. 2.1 using 113 bone surfaces.
We use the process in Sect. 2.2 to develop synthetic contour data and there-
after show the applicability of the method on femur images. Our image data
set consists of ten images simulated with a point rendering method through the
perspective projection of ten 3D meshes. Half of the images are generated from
meshes that were part of the model’s training data, the other half is out of the
model span.

To perform our experiment we use the Scalismo framework (Basel 2015)
which is an open-source library for statistical shape modelling and model-based
image analysis in the programming language Scala. This software already covers
broad use cases for face image interpretation and 3D surface modelling. The
framework is still under extension to allow X-ray simulations.

The 3D vertices of the model mean surface are passed through the contour
projector described in Sect. 2.2 and projected to 2D for each X-ray viewing angle
(see Fig. 1).

Fig. 1. Generation and projection of contour points from the 3D meshes.

The view-dependent contours are then fed as observations into the sampling
algorithm described above. For a random proposal method, we consider 100
samples. From the resultant sample distribution (or surface meshes) we select
one best posterior sample for each provided imaging angle. For the guided pro-
posal method we use the best posterior of the random walk as the initial state
of the model. We sample the step-size ε of the leapfrog step uniformly from
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[0.000001, 0.0005). We also use a varying contour likelihood standard deviation
σ to better represent different regions of the image. As such, areas with greater
variance in the model have a higher σ. The number of steps denoted by L follows
the Poisson distribution with Poisson(50). We use n = 700 HMC samples. The
full experimental pipeline can be seen in the Fig. 2 below.

Fig. 2. Experimental setup.

We performed 2 experiments to evaluate different aspects of the proposed
method. The first one evaluated the efficiency and accuracy of the proposed sam-
pling algorithm with a single X-ray and the second one examined the feasibility
of applying the method to a medical problem, that is 2D/3D reconstruction of
bone surfaces with limited number of X-ray views [max n = 2].

3.1 2D/3D Reconstruction with Synthetic Data

Provided with an X-ray image contour projection, our task was to reconstruct
a personalised 3D bone surface. Since the aim is to reduce the uncertainty in
reconstruction using the limited number of X-ray images, it was important to
assess the impact of the choice of the imaging angle in a setup with a single X-
ray image and a pair of X-ray images (orthogonal to each other) on the quality
and accuracy of the reconstructed surfaces.

Single X-Ray Registration. The single image experiment was performed to
determine the optimal viewing direction for imaging a patient using a single X-
ray source. The experiment was done for 7 different viewing directions with an
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angle α ranging from 0 and 180◦ in an increment of 30. For each α there was one
corresponding X-ray image to which we then registered a model and obtained the
posterior distribution. The most probable shape from the distribution was used
to represent the inferred 3D bone surface. The error between the inferred 3D
shape and the ground truth was estimated with surface distance measures. The
localised uncertainty reduction was estimated from the variance of the posterior
sample distribution.

Reconstruction errors for all 7 angles are shown in Fig. 3 and in Fig. 4 -
with an average across the samples. Both error metrics from the single X-ray
image setting show that the worst angle for the 3D surface reconstruction was
90◦, which corresponds to a lateral view of the femur. This observation was
confirmed in the variance diagram shown in the bottom left of Fig. 3. For each
reconstructed surface, the low value was near 0 mm while the high value was
near 5 mm. Therefore, the best imaging angles for the single X-ray source were 0
or 180◦ which is the anterior-posterior position of the femur bone. Even though
these seemed to be the best angles, there were still regions of the bone with high
variance.

Bi-Planar X-Ray Image Registration. Since the single X-ray image exper-
iment did not significantly reduce the uncertainty in single image observations
for our reconstruction, we investigated whether adding a second image to the
reconstruction narrows the posterior distribution and/or reduces the variance.
As for the previous experiment, we examined the uncertainty reduction in 3D
reconstructions with an assumption that the second image captures information
about the depth of the bone.

For this setup, an angle ε of separation between the images of the same pair
was fixed to 90◦. The angle α between the pairs of images ranged from 0 to 180◦

in increments of 30 in order to find the combination that leads to the optimal
reconstruction, that is, a reconstruction closest to the ground truth and having
the least variance. The top right of Fig. 3 shows that the average distance error
decreased with the addition of a second image for all the imaging angles. This is
consistent with our expectation as the second image captures the depth of the
bone and reduces variance. This was also evident in the reconstructed femurs on
the bottom right of Fig. 3 where the shaft has less variance. However, the femoral
head and the condyles were still regions of high uncertainty, hence the Hausdorff
distance remained high. For these regions of the bone contour extraction becomes
more complex because of self occlusion at the ends of the femur. The greater
trochanter is superimposed with some part of the head and the intertrochanter
region. When the contour extraction is applied it is only the outer contours that
are detected rather than the contours from the regions of great interest. In the
3D view these contour lines are not connected or continuous.

4 Conclusion

We have presented a novel approach to 3D shape reconstruction from a pair of
X-ray image contour projections, with application to the femur bone. While tra-
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Fig. 3. Reconstruction results: the top row shows the surface distance between the
reconstructed bone and the ground truth for a single X-ray experiment (left) and a
bi-planar X-ray experiment (right), bottom row shows 3D reconstructed femurs for
each viewing direction from a single X-ray experiment (left) and a bi-planar X-ray
experiment (right). The colours represent the variance, red for high values and blue for
low values. (Color figure online)

Fig. 4. Reconstruction results for a dataset with 10 femur bones: the top row shows
the surface distance error between the reconstructed bone and the ground truth for the
target images that are within the reach of the model, bottom row shows the surface
distance error between the reconstructed bone and the ground truth for the target
images that are out of the model reach. The bold colours shows an average across the
samples while the light lines show each sample. (Color figure online)
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ditional methods provide a single point-estimate, our approach uses Monte Carlo
sampling techniques to recover the posterior distribution of plausible reconstruc-
tions. From the distribution, we were able to compute the amount of uncertainty
that remains in the inferred 3D shape. Synthetic contour images and their corre-
sponding ground-truth meshes were used to assess the feasibility of the method.

Our experiments indicate that using a single X-ray contour projection as an
observation is insufficient for an accurate 3D surface estimate but, rather, that the
0◦ angle (anterior-posterior view) is most likely to provide a favourable first ini-
tialisation step of the model. Surface reconstruction accuracy improved the most
when an angle-of-separation of 90◦ between the two X-ray views of 0 and 90◦ was
used; the average error improved from 1.07 mm to 0.84 mm. Regarding variance
reduction, our experiments show a reduced uncertainty only along the shaft of the
bone. This observation implies that adding a second view, with a 90◦ separation,
does not significantly reduce the variance of highly curved regions. More experi-
ments with different separation angles and different bones are necessary to reach
a stronger conclusion regarding the suitability of our proposed method to 3D-2D
reconstruction. Furthermore, since MC-based sampling allows different sources of
information to be accommodated in its processing chain, our method can readily
extend to intensity-based inferencing. We thus plan to investigate whether inner
contours may help further constrain the model.

Once better established, we believe our proposed approach may benefit clini-
cians in two novel ways. First, the clinician is able to know the level of uncertainty
with which the algorithm has estimated a bone surface. In addition, this type
of understanding is possible for any local bone region; especially useful for pre-
surgical planning which often focuses on a specific area. Finally, such insights
can inform which viewing angles provide the least ambiguity, and are likely to
improve the accuracy of bone surface reconstructions.
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