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Abstract. Point Distribution Models (PDM) require a dataset in which
point-to-point correspondence between the individual shapes has been
established. However, in the medical domain, minimising radiation expo-
sure and pathological deformations are reasons why healthy anatomies
are often only available as partial observations. To exploit the partial
shapes for learning shape models, previous methods required at least a
few complete shapes and, either a robust registration method or a robust
learning algorithm. Our proposed method implements the idea of multi-
ple imputations from Bayesian statistics. We learn a PDM from a dataset
consisting of only incomplete shapes and a single full template. For this,
we first estimate the posterior distribution of point-to-point registrations
for each partial observation. Then we construct the PDM from the set
of registration distributions. We quantitatively evaluate our method on
a 2D dataset of hands and a 3D dataset of femurs with known ground-
truth. Furthermore, we showcase how to use our method on only partial
clinical data to build a 3D statistical model of the human skull. The code
is made open-source and the synthetic dataset publicly available.

Keywords: Statistical Shape Models · Point Distribution Models ·
Probabilistic registration · Multiple imputation

1 Introduction

Statistical Shape Models (SSMs) are a well-established tool for medical image
analysis. They can be used to automatically quantify whether a given shape is
anatomically normal, or how abnormal the shape is. This can e.g.. be used in
image segmentation tasks as regularisation. Also, SSMs can be used to recon-
struct the complete shape from a partial observation, which is useful for forensic
investigation, reconstructive surgeries or patient-specific implant design.

Recently SSMs have been incorporated into deep learning pipelines as defor-
mation regularisers. In [25], an SSM of the right ventricle (RV) chamber is used

Code available at https://github.com/unibas-gravis/shape-priors-from-pieces.

c© Springer Nature Switzerland AG 2020
M. Reuter et al. (Eds.): ShapeMI 2020, LNCS 12474, pp. 30–43, 2020.
https://doi.org/10.1007/978-3-030-61056-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61056-2_3&domain=pdf
https://github.com/unibas-gravis/shape-priors-from-pieces
https://doi.org/10.1007/978-3-030-61056-2_3


Learning Shape Priors from Pieces 31

in the loss function when training a U-NET. In [27], a fully connected neural
network is trained to regress the parameters of an SSM from two cardiovascular
magnetic resonance (CMR) image views and patient metadata. In [28], an SSM
is used to learn a 2D to 3D mapping of liver images. A direct usage of an SSM
is shown in [24], where SSMs are used to reconstruct the facial surface from 2D
RGB images and the skull structure from CT images. The classical SSM can
also be extended to incorporate patient-specific information [2]. As an alterna-
tive to performing a Principal Component Analysis (PCA) decomposition, SSMs
can also be build to incorporate the non-linear relationship between shapes [1],
while still maintaining performance capabilities as a linear model.

In this work, we make use of Point Distribution Models (PDM) which is a
type of SSM. PDMs provide inherent correspondence, which we consider to be an
important property for a lot of automatic analysis beyond segmentation. Other
models without a point correspondence assumption, are e.g.. SSM based on level
sets [23] or non-parametric shape priors [11].

In all of the above-mentioned papers, the PDMs are built from complete
and healthy shapes in point-to-point correspondence. However, in the medical
domain, either the data is captured because there is a pathology, or it is scanned
only partially to capture the essential part of the structure while minimising
the radiation danger. Hence, usually, only a part of the healthy anatomy is
observed. Our paper is motivated by a practical example where we need to build
a skull PDM from children Computed Tomography (CT) images. To minimise
the radiation exposure during the image acquisition, only partial scans are taken
depending on the area of interest. Several methods address the construction of
PDMs where some of the training shapes are partial. In [10], each landmark
is assigned a probability of being an outlier. This is used to compute a mean
of the dataset where landmarks with lower probability of being an outlier have
more influence on the mean shape. In [13], the training surfaces are divided into
patches and each patch is assigned a probability of being an outlier. The outlier
detection is performed with PCOut [3] which identifies samples that do not fit
well into the distribution. Probabilistic PCA [22] is then used to iteratively build
the PDM and replace the outlier parts with healthy parts. In [7], the shape model
is computed using robust PCA (RPCA) to be able to marginally improve the
model through partial data. In [15], they extend this idea to have a probability
of being an outlier assigned for each landmark in a shape. The authors then
extend their method to a robust kernel SSM, to have a non-linear model for
better compactness [16]. All of the aforementioned methods use off-the-shelf
registration methods and focus on building the models robustly from the noisy
registration results. Often the registrations shrink substantially where parts are
missing, to which the learning algorithm then has to be robust. The majority
of the methods decompose the data matrix into a low-rank matrix containing
correct data and a sparse matrix with the corrupted data. These matrices are
mainly found via convex optimisation and usually require non-corrupted data to
be present in the dataset.
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In contrast, we introduce a principled way to go from only partial data obser-
vations to a PDM, without the need for multiple intermediate steps. We do not
need to detect if parts are outliers or to assign weights for each landmark in a
shape. Our method has its foundation in how missing data is handled in Bayesian
statistics. There are three ways to handle missing data [8]:

– Discard observations with any missing values.
– Rely on the learning algorithm to handle missing values in the training phase.
– Impute all missing values (complete the data-matrix before using any learning

algorithm).

From [4] we know that if we choose a reasonable missing-data model, the imputed
dataset is likely to provide a more accurate estimate than a strategy which
discards the data with missing values. In our setting where we are only working
with partial data, it is not even a possibility to discard the data. For data
imputation, a range of different strategies exist. The simplest strategy is to
impute the missing values with the mean or the median of the non-missing
values for that feature. This approach assumes that the missing values were
known in the complete-data and will bias the variance of the dataset towards
zero. One would, in the worst case, end up only learning the mean shape of the
dataset and nothing about the shape variance. A better option for imputation is
to perform regression based on the remaining dataset. This usually overestimates
correlations which are then reflected by the model, as no uncertainty is given
to the missing part. Instead of single imputation, we can make use of multiple
imputations. Multiple imputation was initially introduced in [20] to fill out non-
responses in surveys. If the data is arbitrary missing, the Markov chain Monte
Carlo (MCMC) method can be used to create multiple imputations by simulating
draws from a Bayesian predictive distribution given the partial data [26].

In this paper, we propose to combine probabilistic registration and the idea of
multiple imputations to build PDMs purely from partial data. For each partially
observed shape, we estimate the posterior distribution of registrations using
an MCMC framework. The posterior distribution, which we obtain as a set of
samples, reflects not only the uncertainty in the registration of the partial data,
but at the same time also contains multiple completions. These completions can
be seen as multiple imputations. The PDM can then be computed using standard
PCA on the complete data-matrix which contains the imputed samples for each
partial data item. Quantitative experiments are performed on a 2D dataset of
hands and a 3D dataset of femurs with known ground-truth. Finally, we show
how a 3D skull model can be build from partial data. The main contributions of
this paper are:

– To the best of our knowledge, we present the first method that learns PDMs
from only partial data.

– We show how to extend the classical Bayesian statistical method on missing
data to point-to-point registration of partial data.

– We show that multiple data imputation creates PDMs with better specificity
and generalisation than if single imputation is used.
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Fig. 1. Overview of our method. Given the partial data (red), the missing-data model
(GPMM) is used to draw samples from the posterior distribution over registrations to
impute the data. Finally, multiple imputations from each partial data item are used to
compute the PDM. (Color figure online)

2 Method

A PDM is computed by performing PCA on the data matrix. As our dataset con-
sists of partial observations, some of the entries are missing in the data matrix.
Furthermore, we do not assume correspondence of the observed parts, so we do
not even know the position in the matrix for the partial data. Our method imple-
ments the idea of multiple imputation from Bayesian statistics to complete the
data matrix, while at the same time establishing correspondence in the dataset.
For this, we independently process the M data items, each representing a par-
tially observed shape. In contrast to previous methods, we are not only looking
for the most likely imputation given a missing-data model but instead, we infer
the full posterior distribution of completions

P (α|sp) =
P (sp|α)P (α)

∫
P (sp|α)P (α)dα

, (1)

where sp denotes the partially observed shape and α is the parameter vector
controlling the imputation model. Using the full posterior, we account for the
uncertainty of the registration and the reconstruction of missing areas when
computing the PDM.

From the posterior distribution P (α|sp), we randomly sample L imputations,
such that the inferred data-matrix will be X ∈ R

DN×ML. Here N is the num-
ber of points which is multiplied with the dimensionality D of the embedding
Euclidean space, D = 2 for the hand dataset and D = 3 for the femur and the
skull datasets. By including multiple imputations into the PDM, we are able
to take the uncertainty of the imputation under our missing-data model into
account. An overview of our method is visualised in Fig. 1.

Alternatively, PCA can be performed directly on a set of distributions [6].
Instead of sampling L items from each distribution, they directly use the poste-
rior distribution. This would help to scale the method if we are working in an
even higher-dimensional space, where several thousands of imputations would
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be needed for each data observation. The downside of this approach is that a
Gaussian assumption is made on the noise distribution.

We use a Gaussian Process Morphable Model (GPMM) [14] as the missing-
data model P (α). A GPMM is defined on the domain of a template mesh st

of the object class. We define a distribution of deformation fields u ∼ GP (μ, k)
following a Gaussian Process GP . The distribution over deformations induces
a distribution over shapes when used to warp the template mesh. The mean
function μ is set to a 0 deformation, and the kernel function k : st ×st → R

D×D

can be analytically defined, where D is the dimension of the data. As the kernel
function can be analytically defined, we do not even need a large dataset to
estimate our missing-data model from. A simple covariance function to use (for
3D) is:

k(x, x′) =

⎡

⎣
g(x, x′) 0 0

0 g(x, x′) 0
0 0 g(x, x′)

⎤

⎦ (2)

with g(x, x′) being a Gaussian kernel

g(x, x′) = s · exp(
− ‖x − x′‖2

σ2
). (3)

In the GP framework, multiple simple kernels can be combined to provide richer
priors. A statistical covariance kernel estimated from data can be used or they
can be based on expert knowledge about the shape deformations of a targeted
class, such as smoothness or symmetry.

Furthermore, the template mesh can either be a single full data-item from
the dataset, as in our hand and femur example, or it can be handcrafted, as in
our skull model example. By choosing a handcrafted template and an expert-
designed kernel, we can remove the need for even a single complete example in
our skull experiments.

We use a low-rank approximation of the GP, based on the truncated
Karhunen-Love expansion as in [14], in order to reduce the computational com-
plexity of the model. This gives us a linear, parametric model ruled only by a
coefficient vector α ∼ N (0, 1). The deformation model is then defined as

u[α](x) = μ(x) +
r∑

i=1

αi

√
λiφi(x), αi ∼ N (0, 1), (4)

where r is the number of retained basis functions used in the approximation
and λi, φi are the i-th eigenvalue and eigenfunction of the covariance operator
associated with the kernel function k.

The posterior distribution as described in Eq. (1) cannot be obtained ana-
lytically. But, we can evaluate the unnormalized posterior value for any shape
described by the model coefficients α:

P (α|sp) ∝ P (sp|α)P (α). (5)
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Fig. 2. The dataset of hands with marked fingertips.

Using the Metropolis-Hastings (MH) algorithm [9], we can draw samples from
the posterior, based only on the point-wise evaluation of the posterior.

For the MH algorithm, we only need to specify a likelihood function and a
proposal generator. The prior P (α) is a standard multivariate normal distribu-
tion induced by the low-rank approximation. As likelihood model P (sp|α), we
use an independent point evaluator, as also used in [19]:

P (sp|α) =
n∏

i=1

N (dl2(si
p,α

i); 0, σ2
l2). (6)

Here, dl2 is the L2 distance between the i-th point from the target si
p and its

closest point on the model instance denoted by αi. We expect the observed
deviations to follow a normal distribution with 0 mean and σ2

l2 variance.
The most common proposal distribution is the standard random-walk sam-

pler. However, this is known to have slow convergence and long lag times (time
between independent samples) in high dimensional spaces, as is our model space.
To overcome this, we take advantage of the recent development in geometry-
aware proposal strategies [17,18], which integrates correspondence estimation
into the proposal step. For the exact details of the proposal distribution we refer
to the provided implementation. Furthermore, we also make use of manually
defined correspondences (clicked landmarks) to stabilise convergence.

For the partial data in this work, we assume that the data is a subset of the
model, i.e. no overgrown regions from e.g.. metal implants or cancerous growth.
Those artefacts would need to be manually removed and instead be completed
by our methods.

3 Experiments

In the following experiments, we first demonstrate our method on a synthetic
dataset of 2D hands and a 3D clinical dataset of femurs with artificially removed
parts. As we have complete hands and femurs, we will compare our method
with the ground-truth PDMs. PDMs (M) are usually evaluated based on three
measurements: specificity S(M) (evaluate if the model only generates instances
that are similar to those in the training set), generalisation G(M) (the ability to
describe instances outside of the training set) and compactness C(M) (a model’s
ability to use a minimal set of parameters to represent the data variability) as
described in [21]. From these measures, specificity and generalisation are the
most important measures when using the model as prior information in other
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(a) Mean, +/-3 (red/blue) standard devi-
ation of the 4 first GPMM components.

(b) Random samples from the GPMM.

Fig. 3. Visualisation of the analytically defined 2D hand-GPMM. (Color figure online)

learning algorithms. We want the model to stay within the shape space, but
also to be able to explain new data from the same shape space. For most of the
experiments we do not plot the compactness as this is of less importance and
very similar for all of the models. Finally, we apply our method to build a skull
PDM from purely partial data.

The target meshes in all the experiments have been initially landmark aligned
to a template mesh. For the synthetic experiments where parts are cut from
the target meshes, we still keep the global alignment to avoid factoring pose
difference into the model comparison.

All experiments are implemented in the open-source library Scalismo1 and
made publicly available. The only exception to the publicly available data and
code is the partial skull dataset.

3.1 2D Synthetic Hand Experiment

For the 2D hand experiment, we make use of 12 synthetic 2D hand meshes as
the targets, visualised in Fig. 2. An additional hand mesh is used as the reference
mesh to construct a hand-GPMM as shown in Fig. 3. The computation of the
generalisation measure for the hand models are computed by a “leave-one-out”
approach. For the specificity measure, we use 1000 random samples.

The kernel used for creating the hand-GPMM is a mixture of smooth Gaus-
sian kernels and an expert-designed kernel which is used to separately move the
fingers from side to side. With the finger kernel we showcase how the incorpo-
ration of domain information can outperform standard kernels.

A Gaussian kernel favours smooth deformations with strong correlations
between nearby points. However, this introduces a strong correlation between
nearly touching sides of two neighbouring fingers, while at the same time both
sides of one finger move more independently. The finger kernel aims at allowing
side movements of a whole finger while preserving the overall finger shapes. An
illustration of the finger kernel is visualised in Fig. 4.

We define the finger kernel for each finger individually. For this, we mark the
start of each finger on both sides as A and B as well as the fingertip as C. We
then define the kernel as:

k(x, x′) = s(x, x′)Σe− 1
2σ2 dABC(x,x′)2 . (7)

1 https://scalismo.org.

https://scalismo.org
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Fig. 4. Illustration of the expert-designed finger kernel. The left image shows the helper
points to construct this kernel for the index finger: helper lines (red), lines connecting
x and x′ where dABC(x, x′) = 0 (orange) and illustrations of the scaled covariance
matrices s(x, x′)Σi (blue) as overlays. The three visualisations on the right show how
the first three principal components of a finger kernel only model encode side-ways
moving fingers. (Color figure online)

(a) 5 (b) 10 (c) 15 (d) 20 (e) 30 (f) 40 (g) 50 (h) 60 (i) 70 (j) 80

Fig. 5. Hand example of partial data. The caption lists how much of each shape has
been removed (5–80%) starting from the fingertip of the thumb.

Given the closest points of x and x′ on the set of lines AC and BC, dABC(x, x′)
denotes the difference of the first entry in their barycentric coordinates. The
covariance Σ is constructed by first defining a 2 × 2 diagonal matrix, in our
example using the values 0.1γ and γ respectively. We then rotate the diagonal
matrix by the angle of the x-axis and the direction MC, with M as the mid-point
of AB. The scaling function s(x, x′) is the barycentric interpolated value between
0 and 1 using the product of the barycentric coordinates of the closest points,
or 0 if x and x′ do not map to the same finger. The complete expert-designed
kernel is then the sum over all five finger kernels specified on the template.

Our choices of γ and σ can be seen in the published code.

Missing Finger Experiments. We clip the hands’ dataset starting from a
landmark on the top of each finger and cut away increasing amount (5–90%),
as visualised in Fig. 5. We perform 2 different experiments with this setup. In
the first experiment, a random finger is increasingly cut away from each of the
hands. In the second experiment, all 12 hands are increasingly missing the thumb.
In Fig. 6 we show the model measures of the missing thumb experiment. Due
to space constraints, we only show the measures from this experiment, as the
results for both of these experiments are very similar. We see that the models
computed from multiple imputations are able to generalise much better than
when using the Maximum a posteriori estimations (MAP) or mean solutions.
Note, that the curve flattens for the MAP and the mean experiments as only 12
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Fig. 6. Hand model measures. The left column shows the results for models computed
with the Maximum a posteriori estimation (MAP) from each posterior distribution.
The middle column is computed using the mean mesh from each posterior distribution.
The right column shows the results using 100 imputations from each of the 12 posterior
distribution. The last-mentioned model is clearly superior.

meshes are used to compute these models, whereas we use 100 imputations for
each of the 12 target meshes in the multiple imputation experiment. If less than
30% of the meshes are missing, then we also obtain a better specificity measure
compared to the MAP and mean solutions. Finally, we see that the multiple
imputations are able to maintain much more of the total variance within the
model when large parts of the targets are missing.
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(a) Models including finger kernels. (b) Models only from Gaussian kernels.

Fig. 7. Finger kernel ablation study. Red: Partial shape, Orange: Ground-truth shape,
Green: MAP, Blue: Mean, Black: Random samples. The model using the finger kernel
performs better than the purely Gaussian kernel model. (Color figure online)

Finger Kernel Ablation Study. In the ablation study, we demonstrate that
the inclusion of expert knowledge into the kernel design improves performance
slightly. We use a dataset of 5 identical meshes where only a small scaling differ-
ence is applied. When computing the generalisation measure from a leave-one-
out approach, we therefore, know that the ground-truth model will be able to
perfectly describe the mesh which is not in the model. From Fig. 7 we see that
even though the posterior samples from the models look similar, the model with
the finger kernels overall generalises better. Especially when a large part of the
target is missing (>15%). The specificity measures are also marginally better by
using finger kernels. The main takeaway from the ablation study is (not surpris-
ingly), that the more expert knowledge we put into the design of a missing-data
model, the better imputations we get.

3.2 3D Femur Experiment with Ground-Truth

For the initial femur-GPMM, we use a smooth Gaussian kernel as in [17]. In this
experiment, we assume no additional domain knowledge. The template mesh
and random samples from the femur-GPMM are shown in Fig. 8a. We use the
publicly available dataset of 50 complete femur meshes that were extracted from
computed tomography images2. We choose ten complete femur meshes as our
training data, from where we clip a varying amount (5–25%) at different land-
mark locations. For eight of the bones, this clipping was done in a single location.
For the remaining two, we spread the removal over four locations. The partial
dataset is visualised in Fig. 8b. Similar to before we build PDMs from multiple
imputations, the MAP solution and the mean and compare them additionally to
the ground-truth PDM. For the specificity computation, the ground-truth regis-
trations are used (these are also used to build the ground-truth PDM). For the
generalisation, we use 40 registered meshes which are not included the dataset
of the PDMs.

In Fig. 10 we see an example of a target shape (red) with multiple different
imputations. We see how both the mean and the MAP solutions fail to perfectly
predict the true shape. From the random samples we see that there is a broad

2 Available at the SICAS Medical Image Repository [12].
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(a) Template (left) and random samples. (b) Examples of the partial femurs.

Fig. 8. Illustration of random femur-GPMM samples and the used partial data.

Fig. 9. Femur model measures. Multiple imputations lead to a better generalisation,
while also keeping a better specificity than models built from the MAP or mean impu-
tations.

(a) Target femur 1. (b) Target femur 2.

Fig. 10. Posterior distribution visualisations of the two first partial femurs from Fig. 8b.
Red: Partial shape, Orange: Ground-truth shape, Green: MAP, Blue: Mean, Black:
Posterior samples. It can be seen that the posterior samples better cover the ground-
truth than both, the MAP and mean shape. (Color figure online)

distribution of possible imputations for the missing part. In Fig. 9 we compare
PDMs created from the MAP, mean and multiple imputations. In the case of
multiple imputations, we compare models created with a different number of
samples. From the given example, we see that by using 5 or more imputations,
we are able to create PDMs that generalise better, than by using the MAP or
the mean solutions, while also maintaining better specificity.
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3.3 3D Skull Model from Real Partial Data

In this experiment, we build a skull model from 16 partial skull pieces. For the
skull-GPMM, we use a mixture of smooth Gaussian kernels and a symmetrical
kernel around the sagittal plane [5]. As we have no ground-truth data, we can
only qualitatively evaluate the model. In Fig. 11, examples of the partial data is
shown as well as the hand-crafted skull template from which we create a skull-
GPMM. We check the model deformations by varying the individual principal
components. We see that the first principal component captures the size of the
skull, which would also be expected.

Posterior of (b) Skull SSMTemplatePartial data

Green: Mean
Black: 1st Component

(a)

(b)

(c)
Red: Target
Black: Imputations

Fig. 11. Skull model experiment. The colour mesh is the point-wise sum of variances.
As expected, a larger uncertainty (red) is inferred for the missing part. The visualisation
of samples from the posterior in the 2D slice, show the remaining variability (black). To
the right, the variation of the 1st principal component from −3 to 3 standard deviation
of the resulting PDM is shown. (Color figure online)

4 Conclusion

In this paper, we introduced a principled method to create PDMs from only
partial data observations. Our method implements the idea of multiple imputa-
tion from Bayesian statistics for point-to-point registration of partial data. With
this, we can create multiple imputations of a single partial data observation to
span the data-matrix. To the best of our knowledge, we are the first to create
PDMs from multiple imputations of partial data. We show how this improves
model specificity and generalisation. We can influence the imputations by choos-
ing the missing-data model in the MCMC framework. Using Gaussian Process
Morphable Models, we can not only design the model in an analytical way to
encode smoothness or symmetry but also gradually include more and more data
if complete shapes become available. Finally, we showed that our method is not
only theoretically nice but that it can also be used in practice to create a PDM
from only skull pieces.

Acknowledgements. This research is sponsored by the Gebert Rüf Foundation under
the project GRS-029/17.
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