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Abstract. We present a method to automatically label pathologies in
volumetric medical data. Our solution makes use of a healthy statistical
shape model to label pathologies in novel targets during model fitting.
We achieve this using an EM algorithm: the E-step classifies surface
points into pathological or healthy classes based on outliers in predicted
correspondences, while the M-step performs probabilistic fitting of the
statistical shape model to the healthy region. Our method is indepen-
dent of pathology type or target anatomy, and can therefore be used for
labeling different types of data. The method is able to detect pathologies
with higher accuracy than standard robust detection algorithms, which
we show using true positive rate and F1 scores. Furthermore, the method
provides an estimate of the uncertainty of the synthesized label. The
detection also directly improves surface reconstruction results, as shown
by a decrease in the average and Hausdorff distances to ground truth.
The method can be used for automated diagnosis or as a pre-processing
step to accurately label large amounts of images.
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1 Introduction

Automatic labeling of biomedical data remains a necessity, whether for diagnosis
in health-care or image annotation in datasets. This is especially the case for
pathology labeling in volumetric data such as CT or MR images, where there are
time, cost, and error constraints on getting expert labels. One main challenge for
automatic labeling is the extreme variation which can be seen across pathologies.
This limits the ability to generalize labeling algorithms across imaging domains
or even within the same pathology type.

Algorithms that rely on generative methods assume there is an underly-
ing model which can be used to analyze an image. One example is a statisti-
cal shape model (SSM), which is a linear parametric model of shape variation.
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SSMs can generalize well to represent novel instances within the same shape fam-
ily. For example, an SSM built from healthy mandibles can be used to extract
information about a novel mandible extracted from CT, such as location of
teeth. However, the extreme variation problem also prevents the direct applica-
tion of SSMs to pathological data, mainly because of unavailable correspondences
needed for model building and fitting. Solutions usually involve disease-specific
models [19] or handcrafted pathology features [12], but this is not always possible
given limited data and intra-disease pathology variations.

We show how SSMs built from healthy anatomies can be exploited to perform
pathology labeling in novel images. We treat pathology labeling as an outlier
detection step in our proposed robust non-rigid registration algorithm. Outliers
are all SSM points without a corresponding point in the target and vice versa.
Our work extends combined fitting and segmentation with the EM-algorithm
[2,5] to outlier detection on surfaces. We avoid pathology-specific modeling of
features by introducing a probabilistic metric which does not depend on imaging
modality or pathology type. The metric evaluates the target reconstruction and
learns to perform unsupervised classification of individual data points into shape
or pathology. The metric we implement is a probabilistic extension of a double-
projection distance used in the iterative closest points (ICP) algorithm [1,16],
explained in detail in Sect. 3.1. Our main contributions are:

1. an unsupervised-learning and probabilistic approach to label surfaces
extracted from biomedical images as healthy or pathological

2. a robust registration algorithm for fitting SSMs to pathological data

Fig. 1. Proposed pipeline for label synthesis and reconstruction. The input is an unla-
beled pathological target surface. The outputs are the reconstruction, the label map
and the estimated distributions. They are obtained by iterating between outlier detec-
tion (E-step) and outlier-aware fitting (M-step). The label map splits the reference
topology into: healthy-region to be used in SSM fitting (blue) and outlier-region to be
ignored by the SSM (red). (Color figure online)
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2 Related Work

Given a dataset, the goal of outlier detection is to distinguish extreme values that
are statistically relevant from those due to measurement errors [7]. A method
can do so robustly if it has a high “breakdown point”, a value which describes
the number of outliers that can be present in a dataset before an algorithm fails
[13]. For SSMs, outliers are model points which do not match their counterparts
in a novel target. Approaches have been implemented to handle outliers:

Registration. In the trimmed ICP method (TrICP) [1], the robust Least
Trimmed Squares algorithm is used in surface alignment. Other approaches for
rigid registration of 3D surfaces with outliers make use of surface feature descrip-
tors to match regions in correspondence [6]. However, we aim at non-rigid reg-
istration with missing or added data, which remains a difficult challenge. Non-
rigid registration of point sets with outliers has been addressed in an extension
to robust point matching [3] and in coherent point drift [15]. Instead of enforcing
regularization on the allowed deformation fields as they do, we obtain deforma-
tion likelihoods directly from the SSM shape prior. In addition, outliers in our
case include highly unlikely points under the shape prior instead of only missing
or additional points in the set.

SSM-Based Approaches. Outlier detection for SSMs is a pre-processing step
for building or fitting. Semantic patches are often introduced to narrow down the
PCA space or reference topology [9,21]. SSMs have also been used for pathology
segmentation from fitting errors [4]. Our method does not rely on a manual
segmentation of the reference topology. We use fitting failures as in the second
approach but go further by accounting for uncertainty in correspondences before
pathology detection and improving reconstruction results.

Other Generative Approaches. Part-based models (PBMs) split SSMs into
parts with a binary occurrence parameter [20], while Gaussian process morphable
models (GPMMs) of shape and intensity [11,17] account for pathologies with
local deformation kernels [10]. Recently, reconstruction errors from generative
adversarial networks (GANs) have been used for pathology detection [18]. Our
approach does not require local definitions of pathologies as PBMs or GPMMs
do, nor does it depend on classification thresholds as GANs do.

3 Method

We extend the standard SSM fitting formulation with an additional segmentation
of outliers. The segmentation takes the form of binary labels: one label for every
point on the reference SSM topology. The labels separate two regions: an outlier-
region and a healthy-region. SSM fitting is then restricted to the healthy-region.
We formulate the detection and reconstruction steps together as a maximum a
posteriori (MAP) estimation problem. The goal is to find the SSM shape and
pose parameters θ and the point-level label map z that maximize the posterior
distribution function given a target surface Γ :
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P (θ,z | Γ ) ∝ L(Γ | θ,z)P (θ,z) (1)

The likelihood evaluates the similarity of the SSM reconstruction M(θ) to
the target Γ given a specific combination of θ and z, formulated as follows:

L(Γ | θ,z) =
∏

iεn

lh(M(θ)i, Γi)zi lo(M(θ)i, Γi)1−zi (2)

The likelihood factors over the n reference topology points, since they are
assumed to be independent. Every point i is evaluated by either the healthy-
region distribution lh or the outlier-region distribution lo. The point label zi

indicates which of the two distributions should be used for the point i: if zi = 1,
then lh is used, else zi = 0 and lo is used. The Euclidean distance is used to
compare point i on the model surface M(θ)i and its corresponding point on the
target Γi.

Starting with a surface, the shape parameters θ, label map z, and distribu-
tions lh and lo are unknown, making optimization intractable. We use an EM
algorithm to solve this problem. In the E-step, we fix θ, learn the distributions lh
and lo, then infer z. In the M-step, we fix z and infer θ. The novel segmentation
algorithm and the reconstruction strategy are presented in this section. Details
on how to build SSMs can be found in Sect. 3 of [8] and Sect. 2 of [14].

3.1 Outlier Detection: Inferring the Label Map z

We want to infer the binary label map z defined on the domain of the SSM ref-
erence topology. Each of the n points has a label for one of two classes: healthy-
region or outlier-region. In our examples, we consider the mandible with teeth
as the healthy shape. Outliers could be holes from missing teeth, shape defor-
mations from injuries or surgery, or artifacts.

Starting from Eq. 1, we fix the values of θ. We can then infer the labels
which give the MAP solution. The unknown variables in the likelihood function
are the distributions and the label map, both of which depend on the accu-
racy of the corresponding pairs. We propose a probabilistic interpretation of the
distances between corresponding points to account for correspondence uncer-
tainties, accomplished in the three steps below.

Determine Correspondences. A simple double-projection method proposed
in an ICP-based alignment [16] is used. For every point of the SSM reference
topology, we first find its closest point on the target, then project from this point
back to the SSM. The output is a set of bidirectional correspondence pairs.
Incorrect pairs are expected, not only because of this rough correspondence
estimation approach, but also because in the beginning the fixed parameters θ
are far from the MAP solution.

Estimate Distributions. If the ground truth θ and perfect correspondences
were used, then we could expect lh to be a univariate Gaussian with zero mean
and standard deviation from reconstruction noise. However, since neither are
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available for pathological targets, lh is a Gaussian distribution learned from the
current double-projection distances. We assume a uniform distribution for lo
since the method is independent of pathology type. The likelihood is fixed at the
value three standard deviations away from the mean of a healthy distribution,
which we learn by fitting to 100 healthy shapes sampled from the SSM.

Infer Label Map. A point is considered an outlier if its double-projection
distance has a higher likelihood of belonging to the outlier-region distribution
than to the healthy-region distribution. We infer every zi by choosing the label
corresponding to the larger likelihood value. This is equivalent to maximizing
the likelihood function in Eq. 2 with respect to z.

3.2 Outlier-Aware SSM Fitting: Inferring the SSM Parameters θ

To fit the SSM to the target, we need to maximize Eq. 1 with respect to the SSM
parameters θ. To do so, we first fix the values of z obtained from the E-step. This
leaves θ as the only remaining unknown in the likelihood Eq. 2. The prior on the
shape parameters P (θ) is provided by the SSM. With this information, we can
find θ by maximizing Eq. 1 using the approach in [14], which approximates the
posterior distribution then takes the MAP solution as the best reconstruction.

4 Evaluation

We evaluate our method on a mandible SSM built from eight surfaces extracted
from healthy CT scans. The meshes are registered with Gaussian process mor-
phable models [11]. The healthy mandible SSM is built from the registered
meshes using PCA. We generate pathological targets with known ground truth
label maps and SSM parameters. For this, we sample shapes from the healthy
model and deform or clip away parts of their surfaces. This ensures that the
model is able to represent the target shape without pathologies and allows us to
evaluate the effect of the labeling algorithm, instead of the SSM generalization
ability, on the registration. This results in 25 test cases, two of which are shown
in Fig. 2. We then apply the method on real data, with target surfaces extracted
from CT images. Visualization is performed using Scalismo1.

Fig. 2. Mandible shape with example pathologies circled in red. (Color figure online)

1 https://scalismo.org.

https://scalismo.org
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Model fitting is performed for shape and pose parameters after rigid landmark
alignment. Three approaches are compared: (1) standard SSM, which only per-
forms reconstruction without segmentation, (2) robust SSM, which diminishes
the effect of outliers based on the Huber Loss function with a 5 mm thresh-
old, and (3) outlier-aware SSM. The threshold for the robust SSM is manually
assigned because the learned threshold proved to be too large. For every outlier
detection step, 1,000 iterations are taken in the fitting step. The entire pro-
cess is repeated ten times as this empirically showed convergence by a constant
healthy-region distribution. For comparison, 10,000 iterations are performed for
the standard and robust SSMs.

Labeling Evaluation. Label maps are evaluated by the true positive rate
(TPR) and the F1 scores compared to the ground truth labels. The TPR is
the ratio of the number of true detected outlier points to the number of ground
truth outlier points. It is used to give an idea of how much of the outlier region
is detected. The F1 score is the harmonic mean of TPR and precision, where
precision is the ratio of true detected outlier points to all detected outlier points.
The F1 score is used to evaluate binary classification tasks with class imbalance.
Figure 3 shows examples of the label maps for a missing data case. TPR and
F1 scores in Table 1 reveal that the outlier-aware SSM outperforms the robust
SSM.

Fig. 3. Visual comparison of label maps projected onto the reference SSM topology:
healthy-region (blue) and outlier-region (red). Pathology detection is not a feature of
the standard SSM, which is why the entire topology is labeled as healthy. (Color figure
online)

Reconstruction Evaluation. Reconstructions are evaluated by their Hausdorff
and average distances to the ground truth healthy surface, seen in Table 1. There
is a strong decrease in both distances when the outlier-aware SSM is used instead
of the standard and robust SSMs. This is accredited to a closer reconstruction
of the ground truth healthy surface in both the healthy and outlier regions.

Breakdown Point Evaluation. The breakdown point is defined as the fraction
of points that can be outliers before the algorithm fails. We generate pathologies
that cover an increasing fraction of the reference surface. The fitting degrades
strongly if more than a third of the observed surface is pathological. Just before
the breakdown point, we still reach an F1 score of 0.74 and an average distance
of 1.08 mm.
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Table 1. Labeling and fitting evaluations: mean values followed by standard deviations
in parentheses. The mean values of the true positive rates (TPR) and F1 scores are
best at 1, while those of the Hausdorff and Average distances (HD and AD) at 0 mm.

Standard SSM
(no labeling)

Robust SSM
(thresholded labeling)

Outlier-aware SSM
(probabilistic labeling)

TPR – 0.39 (0.22) 0.56 (0.22)

F1 – 0.51 (0.27) 0.68 (0.22)

HD 4.48 (5.46) 6.07 (5.37) 1.98 (0.89)

AD 1.14 (0.51) 1.52 (0.49) 0.88 (0.23)

Label Uncertainty. We apply the algorithm to radius and mandible surfaces
extracted from pathological CT images. Pathologies are regions of overgrowth
for the radius and regions of missing teeth for the mandible, as seen in the targets
in Fig. 4. We use a radius SSM built from 37 surfaces and mandible SSM from
8 surfaces as the models, all built from healthy CT images.

We use our proposed outlier-aware SSM to register and label the target sur-
faces and their reconstructions. Unlike the synthetic data case, surfaces extracted
from real CT images by simple thresholding are not as clean. This can be seen
for the mandible example in Fig. 4, where the cranium and the spine are parts
of the input target surface. The proposed method can be applied on the surface
with irrelevant data, without requiring user input other than the initial rigid
alignment. We accomplish this by including both the model and target surfaces
into the likelihood function, in Eq. 2. Using the distributions learned from step
2 of the E-step (Fig. 1) and the distances between the target and reconstruction,
we can compute the uncertainty for the synthesized labels. The target and fitting

Fig. 4. Uncertainty in generated labels for target radius and skull surfaces, both
extracted from pathological CT images. Pathology labels with high certainty are in
red. Note that for the mandible example, we crop the target for computational pur-
poses with a box from six landmarks. Given the remaining surface, the method is able
to correctly locate irrelevant regions, as indicated by red labels on the cranium and
spine. (Color figure online)
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labels in Fig. 4 show the certainty levels for the generated pathology labels. Red
indicates high certainty for the pathological label and blue for the healthy label.

5 Conclusion

Supervised pathology detection algorithms depend on expert labels or pathology
thresholds. However, our proposed outlier-aware SSM is able to perform the
detection given only a target surface without any further assumptions or user
annotations. Pathology detection with our approach accomplishes higher true
positive rates and F1 scores than classical robust statistics methods do. This
results in a closer approximation of the ground truth healthy target, seen with
reduction in the average distances, and also an uncertainty estimate on the
synthesized labels. Our pipeline is non-specific to pathology type or imaging
domain. This implies it can be used to point out regions of interest to clinicians
or as a pre-processing step for training end-to-end classifiers. Future work will
investigate other probabilistic metrics that can work alongside the distance-
based one, as well as further testing of the method on current biomedical image
segmentation challenges.
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