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Abstract. We frequently encounter the need to reconstruct the full 3D
surface from a given part of a bone in areas such as orthopaedics and
surgical planning. Once we establish correspondence between the partial
surface and a Statistical Shape Model (SSM), the problem has an appeal-
ing solution. The most likely reconstruction, as well as the full posterior
distribution of all possible surface completions, can be obtained in closed
form with an SSM. In this paper, we argue that assuming known corre-
spondence is unjustified for long bones. We show that this can lead to re-
constructions, which greatly underestimate the uncertainty. Even worse,
the ground truth solution is often deemed very unlikely under the poste-
rior. Our main contribution is a method which allows us to estimate the
posterior distribution of surfaces given partial surface information with-
out making any assumptions about the correspondence. To this end, we
use the Metropolis-Hastings algorithm to sample reconstructions with
unknown pose and correspondence from the posterior distribution. We
introduce a projection-proposal to propose shape and pose updates to
the Markov-Chain, which lets us explore the posterior distribution much
more efficiently than a standard random-walk proposal. We use less than
1 % of the samples needed by a random-walk to explore the posterior.
We compare our method with the analytically computed posterior dis-
tribution, which assumes fixed correspondence. The comparison shows
that our method leads to much more realistic posterior estimates when
only small fragments of the bones are available.

Keywords: Statistical Shape Model · Posterior estimation · Surface pre-
diction · Surface uncertainty · Metropolis-Hastings

1 Introduction

Surface reconstruction is encountered in many different areas. The reconstructed
surface can be used to guide the design of patient-specific implants in the medi-
cal area, or estimate the sex and ethnicity of an individual in forensic investiga-
tions [10,11]. When only incomplete data is available, SSMs can be used to deter-
mine the most likely complete surface [2,12,13]. Nevertheless, the reconstruction
becomes wrong and overconfident if correspondence cannot be obtained. In cases
where the surfaces are free of distinctive features, such as e.g. the shaft of a femur
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Fig. 1. A femur SSM is first registered to the partial surface to establish point-to-
point correspondence. If we assume fixed correspondence, the posterior is computed
analytically. With our method, we assume unknown correspondence and compute the
posterior as a Markov-Chain. Note the correspondence difference to the available data
visualised with the yellow markers on the long and short bone reconstructions. The
coloured bones show the uncertainty, computed as the sum of the variances at each
landmark with the different methods. Our method clearly shows more variability (red)
far away from the partial surface, but at the same time has low variability (blue) at
the known area.

bone, there might even be multiple equally likely reconstructions with different
lengths. In medical applications, a certainty estimate for a reconstruction is often
required. This estimate can be computed as the likelihood of the chosen recon-
struction in the distribution of all other possible reconstructions. Such a full
distribution of surfaces given partial knowledge about the solution is known in
the Bayesian setting as the posterior distribution. Since an SSM is formulated as
a distribution over shapes, it is possible to derive a posterior model if only part
of a surface is given [1] or if knowledge such as weight, sex, or age of a patient
is known [3]. Current methods compute the posterior distribution analytically
by assuming both fixed pose and fixed point-to-point correspondence [1,3]. Fur-
thermore, the analytical-posterior requires an initial dataset alignment before
it can be computed. In absence of exact point-to-point correspondence, those
conditions are impossible to fulfil.

We present a method to estimate the posterior distribution from partial sur-
face knowledge. A similar method has previously been used for fitting an active
shape model to a target image [9] to compute the most likely solution. In con-
trast, we compute the full distribution of possible reconstructions.
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In fig. 1, we show how our method compares to the analytical method. We use
the Metropolis-Hastings (MH) algorithm to compute the Markov-Chain poste-
rior distribution . We will be referring to our method as the sampling-posterior.

The default random-walk in MH takes a long time to converge. As the SSM
should stay fixed around the given part of the surface, we have to use very
small shape and pose updates. Informed sampling approaches overcome this
problem by including knowledge from the current state into its proposal [4,7]. We
introduce a new projection-proposal, which keeps the known part of the model
fixed and only varies the pose and shape in the unknown part. In [8], an Iterative
Closest Point (ICP)-like proposal is introduced for surface registration, whereas
our projection-proposal explores the space of possible surface reconstructions of
partial surfaces and includes the variability in pose difference.

We apply the sampling-posterior to estimate the posterior distribution of
partial femurs. The femur bone is used as an example as the full shape of the
femur (as well as other long bones) is inherently difficult to estimate. Thus, there
is almost no correlation between the shape of the upper and lower part and
the length. We show the limitations of the current method by comparing our
sampling-posterior to the analytical-posterior distributions of different partial
femur bones. This paper makes the following contributions:

– We show how to compute the estimated posterior distribution of a par-
tial surface without assuming a fixed point-to-point correspondence in sec-
tion 3.1.

– We introduce a new MH proposal to create independent samples and thereby
speed up the posterior estimation process in section 3.2.

– We show the limitations of the current analytical-posterior [1] in section 2.1
and based on experimental results in section 4.

2 Statistical Shape Models

SSMs learn the shape variability from examples shapes. When working
with a shape Mi, we usually work with the vector representation si =
(pi1x , p

i
1y , p

i
1z , . . . , p

i
nx
, piny

, pinz
) where p ∈ R3 is a landmark and n is the number

of landmarks in the shape. A compact representation can be found by perform-
ing a Principal Component Analysis (PCA). The covariance matrix can then be
represented by using N − 1 basis functions. In matrix format, the shapes are
represented as s = µ+UDα = µ+Qα, with µ being the mean shape, U being
the matrix containing all the eigenvectors and D containing the square-root of
the eigenvalues of the covariance matrix Σ. Each shape Mi can then be deter-
mined by an α vector. The pose of the model can also be changed with both a
translation vector t = (tx, ty, tz)T ∈ R3 and a rotation matrix parameterised by
the Euler angles R(φ, ψ, ρ) ∈ SO(3). All parameters are concatenated into one
vector θ = (α0, . . . , αN−1, φ, ψ, ρ, tx, ty, tz)T and we use the notation M [θ] to
refer to the triangulated surface M defined by the parameter vector θ. The scale
is directly incorporated in our construction of the SSM, as it would otherwise be
difficult to obtain a correct statistical size measures if the size of the SSM can
be scaled arbitrarily.
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2.1 Analytical Posterior Models

We compare the sampling-posterior method to the analytical-posterior described
in [1]. The given part of a shape is described as sg ∈ R3q with q being the
number of landmarks. In our model, this becomes sg = µg + Qgα + I3qε with
ε ∼ N (0, σ2) being the noise term of each landmark observation. The difficulty
with the analytical-posterior is that point-to-point correspondence needs to be
obtained before the sg vector can be defined. Furthermore, the rigid alignment
needs to be fixed, resulting in the posterior distribution only containing shape
variance.

In [1], the authors mention that all training shapes have to be aligned with
respect to the subset of points available in sg in order to have a meaningful re-
sult. In the following, we will refer to the analytical-posterior computed without
aligning according to the sg dataset as the naive-posterior and the analytical-
posterior with the dataset alignment as the aligned-posterior.

3 Method

Now we explain how to compute the posterior distribution without assuming a
fixed correspondence between the given data and the SSM. We define a prob-
abilistic model over possible surface reconstructions (determined by θ) given
partial surface information sg,

P (θ|sg) =
P (θ)P (sg|θ)∫
P (θ)P (sg|θ)dθ

. (1)

The shape prior P (θ) penalises unlikely shapes. The combined likelihood over
all the points in the given surface sg is

P (sg|θ) =

q∏
i=1

N (di(θ, sg); 0, σ2), (2)

where di is the Euclidean distance between the point pi in the partial surface
sg to the closest point on the surface of M [θ]. A similar likelihood function was
used in [9] to measure the distance between an SSM and expert annotation in
images. We define σ2 = 1.0 mm2 and the same for ε in the analytical-posterior
in order for the posterior distributions to be comparable. Note that the distance
likelihood assumes that no pathologies exist in the partial surface.

3.1 Approximating the Probabilistic Model

Unfortunately, the full distribution of surfaces given the partial surface, as in
eq. (2), cannot be obtained analytically. Instead, it is possible to compute the
unnormalised density for any surface described with θ. This allows us to use the
MH algorithm to estimate the full posterior distribution. We use a random-walk
to explore the shape space and have independent proposals for the translation
Q(t′|t), rotation Q(R′|R), and shape Q(α′|α) parameters. As scaling is directly
incorporated in our SSM, a scaling proposal is not used.
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Fig. 2. Visualisation of the projection-proposal steps as described in section 3.2.

3.2 Projection-Proposal

Ideally, we would like to keep the known part of the shape model fixed around
sg, as we are interested in the posterior distribution given partial surface in-
formation. With the random-walk proposals, we have to use very small shape
and pose update steps. As a consequence many samples need to be taken before
independent samples are found. Therefore, we suggest a projection-proposal to
keep the shape at the known part of the model fixed and only vary the unknown
part. The projection-proposal makes use of the analytical-posterior as described
in section 2.1. Before computing the analytical-posterior, we make a random
rotation or translation proposal and compute the posterior distribution based
on the initial position of the model. When computing the analytical-posterior,
an anisotropic noise term ε is used. To simulate correspondence shift along the
surface, we model it as a multivariate normal distribution with a low variance
along the normal and a higher variance along the surface. The variance at each
point pk in M [θ] is computed by

Σpk
= [n,v1,v2]

σ2
n 0 0
0 σ2

v 0
0 0 σ2

v

 [n,v1,v2]T (3)

where n is the normal vector at the vertex pk in the surface and v1 and v2 are
perpendicular vectors to the normal. The variance along each vectors is set as
σ2
n = 0.1 mm2 and σ2

v = 5.0 mm2. The projection-proposal can be described in
5 steps with fig. 2 as visualisation for each step:

1. Compute corresponding points by taking the closest points from the partial
surface (red) sg to the current surface M [θ] (black). We compute sg∗ as the
points in the SSM corresponding to the partial surface.

2. Propose a random pose update from Q(t′|t) + Q(R′|R), while keeping the
current shape parameters α fixed, such that a new θ′ is computed (M [θ′]
shown in blue).

3. Compute the analytical-posterior p(α|θ′, sg∗) based on section 2.1.
4. Draw a sample from the distribution p(α|θ′, sg∗) by randomly setting the α

vector in the SSM (green shows the posterior mean).
5. Compute the θ′′ update based on the full SSM p(α) (the proposed sample
M [θ′′] is shown in green).
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Fig. 3. Violin and box plots of bone length prediction in mm using the analytical-
posterior and our sampling-posterior. All plots (a,b,c,d) concern the same ground-truth
bone (length visualised with the red-dashed line), but differ in how much of the bone is
given. The average Euclidean (E) and Hausdorff (H) distances from the ground-truth
surface to the mean surface from the distributions are in mm.

Unlike the random-walk proposal, this proposal is not symmetric. Therefore, to
ensure convergence of the MH algorithm, we need to be able to compute the
transition probabilities of going from θ to θ′ as well as from θ′ to θ [6]. The
transition probability can be computed using the posterior distribution from
step 3 as also shown in [8].

Projection-Proposal Importance We need i.i.d. samples to compute the vari-
ance, which means that we need to find the number of samples to be discarded
from the Markov-Chain before an independent sample is found. We compute the
autocorrelation of the individual shape parameters and look for the number of
samples needed to reach 0 correlation. We report 50 samples for the projection-
proposal and 30 × 103 samples for the random-walk. While the random-walk
requires 600 times more samples, the projection-proposal is only 6 times slower,
making it overall 100 times faster.

We compute the bone length variance based on the distance between two
landmarks. The length variation converges at 103 samples with the projection-
proposal. For the random-walk, we need 500× 103 samples to achieve the same
length variance. With the projection-proposal, we can, therefore, explore similar
variance numbers with less than 1 % of the samples needed by the random-walk.

4 Evaluation

For the experiments, we use 61 femur meshes extracted from Computed Tomog-
raphy (CT) images. We use 50 femurs for the femur SSM (femur lengths, mean:
372 mm, min: 322 mm, max: 437 mm) and 11 for the test-set (femur lengths,
mean: 372 mm, min: 322 mm, max: 441 mm). The SSM contains a total of 1622
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landmarks. Each test femur is divided into several partial meshes from where
the posteriors are estimated. In fig. 3, a subset of the cuts are shown1.

Experimental Setup We compare the sampling-posterior with the naive-
posterior and the aligned-posterior. For the aligned-posterior, we need to es-
timate the observed points in the SSM. This is the same procedure that was
done in step 1 of the projection-proposal. We perform a registration with the
SSM and take the closest points to it from sg. For the registration, we use the
method from [9]. Alternatively, the non-rigid ICP algorithm can be used [5].

In the overview image of our method (fig. 1), the posterior variability of the
different methods is visualised with colours on the full femur bone. Very little
variance is maintained in the naive-posterior, which highlights the importance
of dataset alignment when computing the analytical-posterior. The sampling-
posterior contains 2 to 3 times more variability than the aligned-posterior, sug-
gesting that the full variability cannot be obtained using a fixed correspondence.

Length Estimation of Partial Bones We compare the mean and the variance
of bone lengths from the different posterior estimation methods. A landmark is
placed at each end of the femur bones and the variability of the distance be-
tween the two landmarks is reported. For the analytical-posteriors, we randomly
sample 103 shapes from the posterior models to be used for the estimate. For
the projection-proposal we take 103 samples with 50 sample spacing in between.
The bone length results for test femur 1 are shown in fig. 3. Notice the difference
between the results for partial bone a and c. More data is available in c, which
results in a more narrow distribution, whereas the correspondence used in c is
worse, making the ground-truth surface very unlikely under its distribution. The
sampling-posterior results of the remaining test femurs are shown in fig. 5.

We observe that both of the analytical-posterior methods sometimes fail to
estimate the ground-truth length within their variability for most of the cuts. In
contrast, the sampling-posterior can explain the shape length accurately.

Importance of Correct Correspondence The quality of a surface recon-
struction can be measured with the average Euclidean or Hausdorff distance
to the ground-truth. These measures are, however, not a good indicator for
the registration quality when large uncertainty exists in the correspondence. In
fig. 4 we show the same bone length experiment as in fig. 3, but only for the
aligned-posterior computed using different correspondences. The different cor-
respondences have been found by initialising the SSM either as a very short,
medium or long bone. We see that a close to perfect reconstruction can be found
if the ground-truth correspondence is known, but at the same time can extremely
over or underestimate the bone length if wrong correspondences is used. The av-
erage Euclidean distance from the partial surface to the reconstruction is, in

1 All experiments are performed with the open source-library https://scalismo.org
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Fig. 4. Violin and box plots of bone length prediction in mm. All plots concern the
same ground-truth bone (length visualised with the red-dashed line). The posteriors
are computed with the aligned-analytical-posterior method and differ only in the corre-
spondence which has been used. The average Euclidean (E) and Hausdorff (H) distances
from the ground-truth surface to the mean surface from the distributions are in mm.
(a) and (b) refers to the same partial shapes as in fig. 3.

all the cases, less than 0.25 mm, which suggests that the model represents the
surface well in the available part.

5 Conclusion

It is difficult to infer the full shape from a bone fragment. This is due to missing
exact point-to-point correspondence. Previous methods deterministically find a
set of correspondences to estimate the posterior. This can results in overconfident
posterior estimates if incorrect correspondences are used. We have shown how
previous methods even fail to explain the ground truth solution in an experi-
mental setup with synthetic data. Our main contribution is a sampling approach
that estimates the posterior distribution without relying on a fixed set of corre-
spondences. We use the MH algorithm to obtain the variability in shape and pose
reconstruction of partial surfaces. We have shown that the sampling-posterior, in
contrast to the analytical methods, robustly is able to explain ground-truth data
under its posterior. We also presented a technical contribution to the sampling-
posterior in the form of a projection-proposal. This proposal is able to explore the
posterior distribution more efficiently. With our sampling-posterior approach,
both correspondence and reconstruction estimates are more accurate than with
the traditional analytical approach. We are also able to more reliably estimate
the uncertainty of the reconstruction results.

1

a

Fig. 5. Violin and box plots of bone length prediction in mm. All plots of different
ground-truth bones. The posteriors are computed with our sampling method.
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