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Abstract—We propose a novel stochastic generative para-
metric freckle model for the analysis and synthesis of human
faces. Morphable Models are the state-of-the-art generative
parametric face models. However, they are unable to synthesize
freckles which are part of natural face variation. The deficiency
lies in requiring point-to-point correspondence on the texture
pixels. We propose to assume a correspondence between freckle
density and not the freckles themselves. We propose a model
that is stochastic, generative, and parametric and generates
freckles with a point process according to a density and size
distribution. The resulting model can synthesize photo-realistic
freckles according to observations as well as add freckles
to existing faces. We create more realistic faces than with
Morphable Models alone and allow for detailed face pigment
analysis.

I. INTRODUCTION

Whole industries are concerned with increasing the re-
alism of animated characters in movies, and video games.
Artists create face rigs by tediously designing the details
necessary to create the impression of realism. We rely
on the face to infer different properties about a person
for example age, gender, origin, social information, etc.
Many of these properties are environmental and reflected
in high-frequency details of the texture. Computer graphics
models of faces should, therefore, be able to represent and
express these details. In this work, we address the para-
metric and generative modeling of facial freckles. Potential
applications of modeling freckles are artificial aging, skin
damage quantification [1] and face recognition [2]. The
formation of freckles is caused by UV radiation and is
influenced by genetic predisposition, and tends to increase
with age. Freckle density varies on the face depending
on sun exposure, face geometry, and habits. Freckles are
not corresponding between individuals. However, there are
regions where they are more likely to occur.

Morphable Models[3] are only capable of modeling shape
and texture features that correspond between subjects. Such
as smooth texture gradients, nasolabial folds, and lips. A
freckle on one face is lacking its corresponding counterpart
on another face and is therefore not captured in a Morphable
Model. The underlying cause of this deficit lies in the
assumed point-to-point correspondence.

We propose a generative and parametric freckle model
which is independent of the Morphable Model but can be
combined with it. To reflect the distribution of freckles on
the face, we propose to model freckles with a point process

parameterized by a density. Building a PCA freckle density
model allows us to model freckle position without leaving
the notion of point-to-point correspondence.

We evaluate the density model by comparing the proposed
model to the mean density. We use specificity and general-
ization as model metrics. To compute them, we introduce a
new perception-based metric for point process distributions.
We show that the model is capable of synthesizing realistic
freckle patterns according to data. This is the first facial
freckle model.

II. PRIOR WORK

Faces are not made out of low-frequency shape and texture
only. High-frequency details can be acquired such as in the
approach of Beeler et al. [4]. With Visio-lization [5] novel
detailed faces can be synthesized in 2d by conditioning
a texture synthesis algorithm on a global model trained
on pixel values of input images. Xu et al. [6] created a
parametric model of different facial features in 2d including
wrinkles and spots to draw face sketches from photographs
with a hierarchical compositional model. Morphable Models
[7] are state of the art in parametric 3D face modeling.
They can be used to generate new faces according to an
underlying independent shape and texture distribution. By
using Morphable Models Schumacher et al. [8] and Dessein
et al. [9] restore details from blurred or occluded images.
The former adds high-frequency details of Morphable Model
texture and the latter fits a patch-based texture model to
deficient images. None of the methods mentioned above
explicitly model freckles and they do not give control over
their synthesis.

III. MODEL

We propose a parametric and generative model for freck-
les on the face according to an empirical distribution esti-
mated on face scan textures. The core of the model consists
of a density defined on the uv map of a 3D reference mesh.
We model density, size, and freckle color independently of
each other. First, we will introduce the components of the
model and then show how to build it. Figure 1 gives an
overview over the process. Images in the figures are viewed
best on a screen.

A. Components

Position and Density. We model freckle position accord-
ing to a spatial Poisson point process. We model its density
parameter according to a multivariate normal distribution on
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Figure 1. Overview over the proposed freckle synthesis framework. The corresponding chapters are indicate in brackets.

the surface of the shape. The spatially-varying density pa-
rameter characterizes the spatial distribution of the freckles.
Given a density function we can sample an infinite amount
of freckle configurations, all adhering to the given density.
Figure 2 shows the first principal component of the density
model.

Size. In contrast to the density, the freckle size distribu-
tion is not spatially-varying. The size of all freckles of a
face are determined independent of position, by the same
distribution. We represent the distribution with a histogram
and create a multivariate Gaussian model over histograms.

Color. To obtain consistency between freckle color and
skin tone we model freckle color depending on skin tone.
The skin tone of a given Morphable Model texture is the
average texture color of the skin region. Freckle color
is the average color of all freckles on a given face. We
model the dependency as a multivariate conditional Gaussian
distribution of the freckle color given the skin tone.

Appearance. Because freckle appearance is diverse and
a large amount of freckles are easily available, we model
appearance according to a dictionary of exemplary freckles.
We determine concrete freckle appearance by selecting a
freckle from a dictionary according to the parameters size,
color, and position on the original texture. The freckles are
seamlessly cloned into the texture with Poisson image edit-
ing [10]. The target texture should be ambient for example
a Morphable Model texture.

B. Synthesis

We generate freckles according to a given density, size
distribution, and color parameter. These parameters can, for

example, be estimated from a given face or by drawing them
from the respective models.

First, we draw the positions of the individual freckles from
the spatially varying density. It contains at every pixel in the
texture the likelihood that there will be a freckle. For each
pixel we determine if we should place a freckle there.

Given size and color parameters of a face we select the
matching freckles from the dictionary. Per freckle position
we draw a size from the size distribution. Additionally, we
restrict the selection process to a ball around the current
position to remove warping effects due to the texture em-
bedding. Target freckle color is conditioned on the skin tone
of the face we want to add the freckle to. We add a selected
freckle to the texture with seamless cloning.

IV. MODEL BUILDING

We estimate freckle position, size, and color as well as
skin tone from high-resolution face scans. Then, we build
the models for density, size, and color (see Figure 1).

Data. We train the model from 22 high-quality face
scans of individuals of Caucasian origin exhibiting vary-
ing amounts and configurations of freckles. The scans
are acquired in a controlled setting and illuminated with
an uniform light source, the same way the Basel Face
Model[11] data was acquired. Density. We estimate freckle
density of a given texture by detecting and segmenting
them. We manually annotate freckles in training textures
and classify the pixels into freckle and non-freckle. With
the interactive pixel classification tool Ilastik [12] we create
a probability map. We segment the freckles by thresholding.
Each segment is assumed to be a freckle. We determine the



position by computing the barycenter per segment. The next
step is to turn the positions into a density. Density d on the
surface x is a linear combination of Gauss kernels with a
specified fall off σ:

d(x) =
∑

c∈centers

N (c− x, σ) (1)

We choose the fall off σ such that there is an overlap
between densities of different faces (≈ 0.7cm). The result
is a spatially-varying density function per scan texture from
which we build a PCA model.

Size. The size of a freckle is the radius in pixels of a circle
that covers the same area as the freckle (r =

√
Afreckle/π).

We create a histogram over all the freckle sizes of the whole
face.

Color Freckle color is the average color over the area
covered by the freckle. The freckle color of a face is the
average color over all freckles. The skin tone is the average
color of the skin region of the face.

V. MODEL SELECTION

We compare different freckle models by computing model
specificity and generalization. Both measures build on a
distance measure between samples. In our case, a measure
between two freckle configurations is required.

A. Model Measure

We evaluate the models by computing generalization to
unseen data and specificity of generated samples to a test
set [13].

1) Generalization: Generalization measures how the
model can represent faithful samples from the original
distribution. We build a single model on the training set and
validate it on a separated test set. We compute the distance
between a sample from the test set and its closest neighbor
in model space.

2) Specificity: Specificity measures how close samples
from the model are to the real distribution. We compute
the distance between model samples and the sample closest
from the test set.

B. Point Process Distribution Measure

To judge whether two sets of points are similar, and
to be able to compute specificity and generalization, we
introduce a new metric on point process distributions. First,
we explain shortly the metric introduced by Schuhmacher
and Xia [14], which compares two point sets ξ and η by
assigning points between them. It consists of two terms,
one measures how well assigned points match and the
other, U , penalizes unassigned points. Their metric finds
the assignment between two sets of points such that the
sum of the distances between assigned points is minimal.
To measure the matching, we find the assignment from all
possible assignments, that minimizes the Euclidean distance
between the all pairs of assigned points. Points not assigned

impose the maximal distance. This measure, however, does
not consider where unassigned points lie. Having points in
a very sparse region should be penalized more than in a
high-density region.

To ameliorate this, we propose the following modifica-
tions to the measure such that we account for the difference
in density between the two sets. For an unassigned point xi
in a set ξ we impose the distance to the nearest neighbor
(nn) in the set η and weight it by the difference between
the number of points in the ε-Ball around xi in ξ and η:

U(ξ, η) =
∑

x∈unassigned

d0 (xi,nn(xi, η)) |ρε(xi, ξ)− ρε(xi, η)|

(2)
This measure is small if unassigned points are close to points
in the other set and distributed such that they do not change
the density much.

VI. EXPERIMENTS

A. Quantitative Evaluation
We measure generalization and specificity of different

variants of the proposed model. We compare it to a baseline
model. It generates points according to the mean density
of the training population. We compute Generalization on
a test set of 15 examples. We generate 1000 samples from
the freckle model to calculate specificity. Table I shows the
results for the two models. Also we found that reducing the
rank of the model does not lead to an improved model.

Model Specificity Generalization Total
baseline model 110 269 379

proposed 149 143 292

Table I
Specificity and generalization for the proposed model and the mean

density model. Units are density weighted distances (Equation 2). The
full density model leads to a better trade-off (total is sum of both)

between specificity and generalization than the mean.

B. Perceptual Evaluation of Point Distribution Measure
There are many different ways of measuring the distance

between two point clouds, but not all of them are similar to
perception. In the following we aim to find out whether the
measure is similar to human perception. We show different
point patterns to 5 people and ask them to compare how
similar they are to each other. We show them two images,
and they have to determine to which of the two a third
image is more similar to. We apply the measure to the
same task. The images contain randomly generated point
patterns with at least 10 and up to 30 spots. Then we count
the number cases where the measure agrees with the choice
of the participants. We observe an agreement of 74%. The
probability to obtain this result or a better one by chance is
p = 0.02. Therefore, the measure is better than chance to
predict how two point patterns will be perceived as similar.
Figure 4 shows an example question.



Figure 2. Visualization of the parametric components of our freckle model (along first principal component).

(a) (b) (c) (d) (e) (f) (g)

Figure 3. Face analysis: We estimate freckle model parameters from an input face and draw samples from it. From left to right: a) Input face b) estimated
density c) freckles drawn from the model at the estimated parameter on an average face d) Scan with freckles removed e) and f) novel freckles synthesized
on cleared skin from d) g) projection of input texture into Morphable Model space (PCA). (Details viewed best on screen or in supplementary material)

Figure 4. Example question of the perceptual experiment to measure the
quality of the point process. Participants had to determine if the pattern
in the middle is more similar to the one on the left or the right. Most
participants chose left which is consistent to our measure proposed in
Section V-B.

C. Model Samples

Figure 3 shows an example face scan projected into the
freckle model, the extracted density, freckles removed from
the scan, and samples drawn from the model at the projected
coefficients.

D. Freckle Removal

We use the freckle detections to determine freckled and
non-freckled regions. To remove them, we fill the detected
freckles with push-pull interpolation [15] (See Figure 3).

E. Image Manipulation

The freckle model lends itself for image manipulation. We
synthesize freckles according to the model and add them to
an image. We fit Morphable Model parameters to the input
image with the approach of Schönborn et al. [17] resulting in
an illumination free texture. We synthesize on the Morphable

Figure 5. Image manipulation result: Original image and freckles added
according to the identity in Figure 3. Image is from Multi-PIE [16].

Model texture and add the difference between the freckled
and unfreckled texture to the image (Figure 5).

VII. CONCLUSION

We presented a stochastic and parametric model for freck-
les. We model freckle density, size and color parametrically
and appearance empirically. The proposed model is capable
of generating photo-realistic freckles according to the data.
Freckles are synthesized according to a spatially-varying
density to respect different facial regions. We proposed
a metric to compare point clouds and found the metric
to be consistent with perception. We evaluate the model
qualitatively and quantitatively and apply it to an image
manipulation task.
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