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Abstract—Patient–specific three–dimensional (3D) bone mod-
els are useful for a number of clinical applications such as
surgery planning, postoperative evaluation as well as implant
and prosthesis design. Two–dimensional–to–three–dimensional
(2D/3D) reconstruction, also known as model–to–modality or
atlas–based 2D/3D registration, provides a means of obtaining a
3D model of a patient’s bone(s) from their 2D radiographs, when
3D imaging modalities are not available. The preferred approach
to estimating both shape and density information (that would be
present in a patient’s CT data) for 2D/3D reconstruction makes
use of digitally reconstructed radiographs and deformable models
in an iterative, non–rigid, intensity–based approach. Based on
a large number of state–of–the–art 2D/3D bone reconstruction
methods, a unified mathematical formulation of the problem is
proposed in a common conceptual framework, using unambigu-
ous terminology. In addition, shortcomings, recent adaptations
and persisting challenges are discussed along with insights for
future research.

Index Terms—2D/3D reconstruction, atlas, bone density, de-
formable 2D/3D registration, digitally reconstructed radiograph,
intensity–based 2D/3D registration, non–rigid 2D/3D registration,
model–to–modality, patient–specific model, statistical appearance
model, statistical shape and intensity model, statistical shape
model.

I. INTRODUCTION

Three–dimensional (3D) reconstructions of patient–specific
anatomical structures help medical professionals to better
visualize and interact with the volumetric data from 3D
imaging modalities such as computed tomography (CT) or
magnetic resonance images (MRI) [1]. They have become an
especially valuable tool for orthopaedic applications which in-
clude the detection of bone–related pathological deformations
as well as the quantitative measurement of bone geometry
and bone density for surgical planning, implant design, and
postoperative evaluations [1], [2]. However, CT and MRI
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M. Lüthi and T. Vetter are with the Graphics and Computer Vision
Group (GRAVIS), Basel University (UNIBAS), Switzerland (e–mail: mar-
cel.luethi@unibas.ch & thomas.vetter@unibas.ch).

technologies are expensive and have long image acquisition
times [3]–[6]. Furthermore, hospitals in resource–limited and
remote settings often do not have access to these technologies.
Those that do, have to consider the artefacts and distortions
caused by the presence of metallic implants, as well as the
prohibitive costs per scan, for either modality [1]. In order to
overcome these challenges, researchers have investigated ways
to obtain 3D models of patient–specific anatomical structures
from two–dimensional (2D) imaging modalities such as X–
ray, dual–energy X–ray (DXA), fluoroscopic and ultrasound
images. This approach is known as two–dimensional–to–
three–dimensional (2D/3D) reconstruction [7]. Patient–specific
models obtained in this way are less accurate with regard to
shape and appearance than those obtained from CT or MRI
[8]. However, imaging costs and the dose of ionizing radiation
to a patient (in the case of CT) is significantly reduced [1],
[9], [10]. For example, in the case of preoperative imaging for
total hip arthroplasty, the dose is 30% less for conventional
2D X–ray images than for a CT scan [3]. Low–dose imaging
systems can further reduce a patient’s exposure to ionizing
radiation and, in some cases, allow patients to be scanned
while they are standing up, enabling the assessment of both
their load–bearing posture and musculoskeletal interactions
[11]. These advantages make repetitive follow-up imaging and
paediatric imaging applications possible [12]. Furthermore,
when obtaining 3D patient–specific models from fluoroscopic
sequences, in vivo motion tracking is made possible for
applications such as 3D knee kinematics studies [9], [13]–
[15].

Two–dimensional–to–three–dimensional reconstruction is
accomplished using a deformable model, which encodes prior
knowledge and assumptions about the typical 3D appearance
of an anatomical structure [7]. These models can then be ma-
nipulated, using a set of parameters, to match the information
gathered from a patient’s 2D image(s) in a 2D/3D registration
[2]–[4], [6], [9], [15]–[59]. An exemplary specimen (some-
times referred to as a template or atlas) is used to identify a set
of characteristic features such as landmarks or contours. The
mathematical relationships between these features and their
variations are then defined either analytically [16], [17], [19],
[22], [23], [25], [26], [28], [30], [31], [40], [41], [48], [54], or
statistically [2]–[4], [6], [9], [15], [18], [20], [21], [24], [27],
[29], [32]–[39], [42]–[47], [49]–[53], [55]–[59]. Analytical
models (sometimes referred to as free–form models) rely on
intuitions regarding the mathematical relationships, such as
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those of medical experts. Statistical models, on the other hand,
are learnt from a set of labelled examples. They are particularly
well–suited to the rigid variability present in bony structures
and are popular for their ability to represent objects robustly;
while such a model is deformed its validity as a representation
of the bone–of–interest is preserved (Figure 1 illustrates this
concept) [1], [42], [60]. A more detailed explanation of
statistical models such as these is provided in Section II-A.
For a detailed discussion about deformable models, and their
use in medical image registration, the reader is referred to
[61]. In order to obtain a patient–specific reconstruction, the
parameters of the deformable model are tuned according to
information inferred from a patient’s X–ray images, the target
values of which are determined using one of two registration
strategies [1].

Fig. 1. A statistical shape model (SSM), illustrating the first (left), second
(middle) and third (right) principal components (PCs) of variation. The femur
shape with the darkest shade corresponds to the mean configuration of the
SSM, and is identical in each of the three depictions. The femur shapes
represented in lighter shades correspond to SSM configurations at −3σ and
+3σ. The reader should note that the principal components of an SSM are
ordered according to the amount of variation that each accounts for.

The first strategy seeks to establish correspondence, and
minimize the geometric distance, between features detected
on both the deformable model and the patient’s X–ray im-
age(s). This is accomplished using a Kriging optimization
(also known as a Gaussian process regression) [4], [9], [16],
[17], [19], [20], [22], [23], [25], [26], [28], [30]–[32], [35]–
[37], [40]–[44], [46], [48]–[51], [54], [62]. It is however first
necessary to identify these corresponding features. Methods
to do so vary from fully manual to fully automatic, but both
are time–consuming and prone to error [4], [42], [45]. The
corresponding features can either be projected onto the 2D
space of the X–ray images or back–projected into the 3D space
of the model. Methods of the former category search for the
parameters in an iterative scheme which is terminated once the
distance value is less than a pre-defined threshold [18], [20],
[24], [32], [36], [44], [63]. Methods belonging to the latter
category compute the parameters directly, but often do not

provide sufficiently accurate reconstructions [54] (Accuracy
requirements are discussed in more detail in Section II-A).

The second strategy makes use of simulated X–ray images
obtained from the deformable model, and seeks to maximize
the score of a similarity measure which performs a comparison
of pixel intensity values in the 2D space of the X–ray images
[2], [3], [6], [18], [21], [24], [27], [29], [33], [34], [39],
[45], [47], [52], [53], [55], [56], [59]. Once again an iterative
optimization scheme is adopted, and is concluded once the
similarity measure value exceeds a pre–defined threshold (A
basic diagram of the algorithm is shown in Figure 2). In this
case no feature–detection is necessary as the entire 3D object is
projected into 2D space. This projection, known as a digitally
reconstructed radiograph (DRR), can be as simple a silhouette,
thickness–projection or maximum–intensity–projection (MIP)
[24], [27], [46], or can model the complexity of the full
intensity distribution. Intensity–based approaches are known
to be more accurate than feature–based methods, but have
a longer computation time [7], [64]. The algorithm suffers
from a computational bottleneck resulting from its iterative
nature, because an accurate volumetric reconstruction often
requires a few thousand DRRs to be rendered (this issue is
discussed in more detail in Section II-B) [6]. In addition,
methods such as these have a small range of similarity measure
values that can be optimized reliably without getting caught
in local maxima [7], [64]. Consequently the first instance (or
configuration) of the deformable model must be initialized so
that its corresponding DRR projection(s) are already some-
what similar to the target X–ray image(s) [7], [65]. This is
often accomplished by employing pose–initialization methods
before the registration (optimization and pose–initialization are
discussed in greater detail in II-D) [64], [66], [67].

Fig. 2. Overview of the DRR–based 2D/3D bone reconstruction algorithm.
The process is iterative and is concluded once the similarity measure value
exceeds a pre–defined threshold.

Two–dimensional–to–three–dimensional bone reconstruc-
tion algorithms originally only accounted for shape and there-
fore only produced surface models [4], [9], [16]–[20], [22]–
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[28], [30]–[33], [35]–[38], [40]–[44], [46], [48], [49], [51],
[54], [56]. Authors have since sought to include bone density
information in their models, which enable volumetric models
as well as a number of additional clinical applications [2],
[3], [6], [21], [29], [34], [39], [45], [47], [50], [52], [53], [55],
[59]. A few clinical application examples include; distinction
between cortical and trabecular bone for total hip arthroplasty
(cortical regions on the outer hull of a bone absorb X–
rays more readily than the trabecular regions which comprise
the inner–bone) [3], [53]; estimation of the “local anchorage
quality” of osteoporotic bone (sufficient anchorage quality
enables prosthesis and implant stability), thereby contributing
toward efficient surgical planning for femoral fracture fixations
[34]; early identification of individuals at risk of developing
osteoarthritis; measuring the progression of osteoarthritis and
providing radiographic markers for individuals who require
surgery [1], [68]–[70]; estimation of the potential risk factors
for individuals with osteoporosis (prediction of potential bone
fractures and detection of existing vertebral fractures) [71],
[72]; aiding in the often problematic task of distinguishing
bone deformities from bone fractures [71].

The scope of our review is limited to DRR–based 2D/3D
bone reconstruction methods that make use of statistical
models and biplanar X–ray images [2], [6], [21], [29], [34],
[45], [53], [59]. More specifically, we focus on statistical
models of both bone shape and density, which we will refer
to as statistical shape and intensity models (SSIMs), and on
those trained using CT data since DRR projections of MRI
data are unreliable [7]. Statistical shape and intensity models
are sometimes referred to as statistical appearance models
(SAMs), and are distinguished from statistical shape models
(SSMs) which account for shape information alone [1], [45].

Our survey of existing literature found that the terminology
used by researchers is ambiguous and inconsistent, and that a
unified mathematical formulation of the 2D/3D reconstruction
problem has not yet been presented. We remedy this using a
common conceptual framework and set of terminology, as well
as a unified mathematical formulation of DRR–based 2D/3D
reconstruction using SSIMs.

A number of adaptations to this approach have been
proposed in an attempt to overcome the limitations of the
algorithm. These are discussed according to which of the four
main modules of the algorithm they are most relevant to;
the SSIM (Section II-A), the DRR rendering method (Section
II-B), the similarity measure (Section II-C), the optimization
strategy (Section II-D), or the algorithm as a whole (Section
II-E).

Finally, we provide a detailed discussion of key issues,
persisting challenges and insights for future research (Section
III).

II. 2D/3D BONE RECONSTRUCTION USING DRRS

A. Statistical models: construction, validation, requirements
and variations

In order to better understand SSIMs which have been
applied to DRR–based 2D/3D reconstruction we first describe
the mathematical formulation of SSMs, specifically those that

utilize principal component analysis (PCA). The methods used
in their construction and validation, as well as the level of
accuracy and maximum computation time that is typically
required by current clinical applications, are then described.

1) Construction of SSMs: We closely follow the procedure
described by [60] and [1]. The first step in constructing an
SSM is to decide how the bone shape is described mathe-
matically. A number of shape features have been proposed
including landmark points, dense surface meshes such as
Fourier surfaces and spherical harmonics, medial models
such as m–reps and s–reps [73], [74], deformation fields
and distance maps; the most commonly used descriptor for
bone is landmark points [1]. The simplest means of labelling
landmarks is to manually select bone shape features that can be
easily identified by an anatomist or radiographer (these usually
number in the order of tens) [1]. However, most modern
approaches use a dense set of landmarks (which number in
the order of thousands). A shape, Γn, is first defined as a set
of points:

Γn = {anp ∈ R3, p = 1, ..., P} (1)

for the nth shape, Γn, anp = (xnp , y
n
p , z

n
p ) where xp, yp and zp

denote the Euclidean coordinates of the pth point. The shape,
Γn, can then be represented as a vector:

sn = (xn1 , y
n
1 , z

n
1 , ..., x

n
P , y

n
P , z

n
P ) sn ∈ R3P (2)

Once the same number of points have been used to define
all the shapes that comprise the dataset, n = 1, ..., N , it
is necessary to ensure that the points of each shape are in
correspondence with one another. This means any particu-
lar point (a1p, ..., a

N
p ) should describe the same anatomical

feature across the dataset. A non-exhaustive list of methods
for establishing correspondence among point-sets includes
the Iterative Closest Point algorithm or variations thereof,
Coherent Point Drift, and Robust Point Matching [75]–[77].
Additional information regarding such methods is provided in
[78]. Furthermore, since SSMs are good regularizers them-
selves, they can also be used for landmark–based surface
registration, as described by [79].

Next, it is necessary to align the bones so that variations
resulting from anything other than shape (such as rotational
and translational effects) are eliminated; the most common
method for doing this is generalized Procrustes analysis (GPA)
[80].

Once aligned, it is possible to model the shape variations
using a normal distribution:

s ∼ N (s̄, S) (3)

where the mean, s̄, and covariance matrix, S, can be estimated
as follows:

s̄ =
1

N

N∑
n=1

sn (4)

S =
1

N − 1

N∑
n=1

(sn − s̄)(sn − s̄)T (5)

Finally, principal component analysis (PCA) can be performed
to determine common configurations of bone features, repre-
sented as an average point distribution and its principal modes
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of variation (also referred to as eigenmodes or eigenvectors)
[1]. The concept of principal components is illustrated in
Figure 1. This leads to a probabilistic representation for s:

s = s̄ +
M∑

m=1

wm
√
umem wm ∼ N(0, 1) (6)

where M is the number of principal components, um and
em represent the mth eigenvalue and eigenvector respectively,
and wm represents the mth model parameter of s. A more
detailed mathematical description of this process is provided
by [1], [60], [81]. The eigenvectors are intrinsically sorted in
descending order so that um > um+1 and the variance of s is
equal to the sum of the individual component variances, since
the parameters, w1, ..., wm, are uncorrelated [60]. Then if um
decays rapidly, s can be accurately approximated using only
the first G components:

s ∼ s̄ +
G∑

m=1

wm
√
umem (7)

The number of components to use are typically selected by
increasing G until the ratio of accumulated variance to total
variance, γ, reaches a threshold value:

γ =

∑G
m=1 um∑M
m=1 um

(8)

Commonly accepted values for γ are provided in [82].
2) Validation of SSMs: In order to assess the quality

of an SSM, a number of statistics are typically computed:
compactness, specificity and generality [83], [84].

Compactness is a model’s ability to faithfully capture
shape variance while using a minimum number of principal
components [85]. This characteristic measures the cumulative
variance that the model can account for, as a function of the
number of principal components, M , that are utilized [83].

Specificity measures the ability of the model to gener-
ate instances similar to those available within the training
set [84]. It is computed as the average distance (such as
root–mean–square error (RMSE) or mean–absolute–distance
(MAD)) between randomly generated, uniformly distributed,
shapes and their nearest match in the training set [83]. The
measure is plotted as a function of the number of principal
components that are employed to generate the random shapes.
The number of randomly generated shapes are typically large
when compared with the number of training examples (often
having multiple orders of magnitude), and are proportional
to the number of points that comprise the model. An in–
depth discussion of distance metrics for evaluating 3D image
segmentations is provided in [86].

Generality is the ability of the model to generate instances
not explicitly provided by the training set. A leave–one–out
strategy is used when a limited number of training examples
are available; all but one example is used to train a shape
model, which is then fitted to the left–out training example
[83]. This process is repeated so that each instance has a
turn to be excluded and measured. Ultimately, the average
reconstruction error for unseen examples is provided, as a
function of the number of principal components used to

approximate the left–out training example. Generality is an
important characteristic of the model to measure because if the
model is over–fitted to the training set, it may have excellent
specificity but will hinder its ability to generalize to unseen
examples [83].

3) Variations on SSMs: Recently, PCA–based SSMs have
been reformulated as Gaussian process morphable models
(GPMMs) by [60]. The advantage of this reformulation is that
it does not restrict the covariance function to be the sample
covariance matrix (obtained from the training examples), but
any valid positive definite covariance function. The covariance
function can thus be analytically defined to include prior
knowledge and intuitions about a shape, even when training
data are not available. Another advantage of this approach is
that it is formulated in the continuous domain. This means that
dense correspondence can be established for any required res-
olution, and can therefore be tailored to a specific application.
The reader is directed to [60] for an in–depth explanation of
GPMMs.

4) Construction of SSIMs: Digitally reconstructed
radiograph–based 2D/3D reconstruction technically requires
bone intensity information to be included in the deformable
model and, since this is absent from 3D surface models
(SSMs), such information is often estimated in a simple
manner using projection techniques such as MIP. Efforts have
since been made to extend SSMs and accurately encode the
intensity information present in example CT datasets. By
training the model in a similar fashion to SSMs, they can
also account for the average bone intensity and bone intensity
variation [17], [19], [22], [23], [25], [28], [30], [31], [35],
[38], [87]. The construction of SSIMs involves a few extra
steps compared with SSMs, the most important of which
involves establishing correspondence not only on the surface
of the shape, but also within the volume [1], [88]. Statistical
shape and intensity models can be broadly categorized into
two types of representation [88]. One representation models
a segmented CT volume (of the bone–of–interest) as a mesh
in which mesh–morphing techniques such as those proposed
in [89] and [90] are used to establish correspondence.
The second representation models the volume as an image
using the original CT voxels. In this case correspondence
is established using image registration algorithms such
as free–form deformation, or the diffeomorphic Demons
algorithm [88]. In a comparison of the two types of model
representation (mesh and image–based SSIMs), the former
was better at reproducing shape information, while the latter
was better at reproducing intensity information [88].

Once correspondence has been established, each training
instance is fitted to a target reference shape; the mean shape
of the SSM is typically used. Then the intensity information
is sampled from the mean, and concatenated into an intensity
(texture) vector [1]:

in = (in1 , ..., i
n
P ) in ∈ RP (9)

The intensities are usually normalized to reduce the effects of
global intensity variations [81]. Finally, the SSIM can either
model the two types of information separately, known as an
independent SSIM, or together as a combined SSIM [1], [91].
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Independent SSIMs have the advantage of enabling more
accurate patient–specific reconstructions, but are more time–
consuming to implement [1]. The intensity variation is mod-
elled separately, using PCA, in a similar process to that used
to obtain a shape model:

i = ī +

Q∑
q=1

wq
√
uqeq wq ∼ N(0, 1) (10)

where Q is the number of principal components of the
intensity model, i, uq and eq represent the qth eigenvalue
and eigenvector respectively, and wq represents the qth model
parameter of i. An independent SSIM was implemented by
[45]; they constructed a separate shape model and intensity
model, in a similar fashion to the method provided by [92],
using a dataset containing 20 dry, cadaveric femurs. They used
the diffeomorphic Demons algorithm [93] to establish dense
correspondence between the femur volumes in an automated
fashion before completing two distinct PCAs for shape and
intensity.

Combined SSIMs are easier to implement, have fewer
parameters to optimize, and require less memory than inde-
pendent SSIMs, ultimately reducing the time taken to search
for patient–specific model parameters [1]. They model the
correlations between bone intensity and shape information
which will affect the quality of the reconstructed model,
however, the relationship between these subspaces is not well–
studied and requires further investigation [2]. The set of shape
and intensity model parameters are combined into a vector as
follows [1]:

wcombined =

(
Wmwm

wq

)
=

(
WmET

m(s− s̄)
ET
q (i− ī)

)
(11)

where ET
m and ET

q are the transposed eigenvector matrices of
shape and intensity, respectively. A diagonal matrix of shape
parameters, Wm, is used to reconcile the shape and intensity
model parameters, since they have different magnitudes [1]:

Wm = βI (12)

where I is a unit matrix and β is the ratio of total intensity
variation to the total shape variation [1]:

β =

∑M
m=1 um∑Q
q=1 uq

(13)

A more compact model is then obtained by discarding the
correlation between the shape and intensity model parameters,
by applying a third PCA on wcombined [1].

An alternative approach to constructing a combined SSIM
is to perform a single PCA on a volume vector:

vn = (xn1 , y
n
1 , z

n
1 , i

n
1 , ..., x

n
P , y

n
P , z

n
P , i

n
P ) vn ∈ R4P (14)

similarly to the process described in Section II-A1, where the
nth volume, vn, is represented by a discrete set of P landmark
points, xnp , ynp and znp denote a point’s Euclidean coordinates,
and inp denotes its corresponding intensity value.

5) Validation of SSIMs: The method and means with which
the quality of the newly included intensity information is
validated is not discussed in great detail in the literature. This
is most likely due to the fact that the level of fidelity that is
required is application–specific. The authors of [88] and [94]
made use of dice coefficients to measure the segmentation
accuracy of different bone regions, such as cortical and tra-
becular bone. These provided a percentage of volume overlap
between manually segmented ground–truth volumes and their
model reconstructions. An in–depth review of metrics that
have been used for evaluating 3D medical image segmenta-
tions, such as volume overlap, is provided by [86]. These,
however, only evaluate shape information. In order to gauge
the accuracy of the reconstructed intensity information, voxel–
wise comparisons have been proposed [47], [51], [62]. In fact
any intensity–based similarity metrics, such as those discussed
in Section II-C, can be extended to 3D and used. Futhermore,
SSIM analogs for model quality metrics (such as generality,
specificity and compactness) have not been encountered in the
literature.

6) Variations on SSIMs: A combined SSIM known as the
“InShape” model was proposed by [95], which was trained
with a dataset of 15 femur specimens. They made use of
Euclidean distance maps to represent the surface of the model
and an intensity model similar to the one proposed by [87] to
represent the intensity information. These were then combined
into a spatial–intensity distribution using a level–set segmenta-
tion. The resulting SSIM, therefore, essentially stores texture–
based features [95].

The authors of [21] followed the original method provided
by [87] for constructing an SSIM, but opted for a novel
combined representation of shape and intensity information.
A hierarchical tetrahedral mesh was used to describe bone
shape. While this type of data structure is more involved, it
provides a high degree of flexibility and is superior when
adapting to local shape structures [96]. Once established,
each tetrahedron in the tetrahedral mesh was assigned an
analytical function in the form of a Bernstein polynomial
using a barycentric coordinate system. Bernstein polynomi-
als provide a more efficient means of representing intensity
information compared with storing an intensity value for each
voxel. The intensity functions are continuous, and in explicit
form, which make them easier to deform or integrate and
thus ideal for non–rigid registration as well as efficient DRR
rendering [96]. The greater the number of voxels encapsulated
by each tetrahedron the more memory-efficient the storage of
the density model, the shorter the rendering time of a DRR
[96]. However, when the number of tetrahedra used approaches
the number of voxels in a CT image there is an improvement
in the average intensity difference and standard deviation of
intensity difference when compared to a ground-truth DRR.
The advantages of representing the model in this way are
therefore most apparent when a coarser sampling is used. In
addition, the barycentric coordinate system is symmetric, and
normalized, which causes the intensity functions to be shape
invariant despite the combined nature of the SSIM [96]. This
characteristic is advantageous when performing computations
on, and deforming, the SSIM. This SSIM paradigm has since
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become a popular method of incorporating CT intensity values
into SSMs; it is used by [29], [53], and [6].

The authors of [29] extended the method proposed by
[21] by altering the way in which the tetrahedral mesh is
constructed so that it is more conducive to their novel DRR
rendering approach. This is discussed in more detail in Section
2.2. They also only made use of the voxel intensity values of
a single patient while the method in [96] performed statistical
analysis on the intensity information of all the patients.

A summary and comparison of the SSIMs which have been
applied to 2D/3D bone reconstruction is provided in Table I.

7) Clinical performance requirements for statistical models
of bone: There is little information in the literature regarding
the clinical performance requirements of 2D/3D registration
using SSIMs. One example does provide some guidance with
regard to shape information; after an analysis of common
orthopaedic procedures the following specifications for the
accuracy and robustness of a bone shape model were proposed
by [97], in order to be useful for surgical guidance:

• Root–mean–squared registration error ranges of 1 mm –
1.5 mm (2 mm – 3 mm in the worst case).

• The registration is successful in its first attempt at least
95% of the time.

• The registration takes no more than 1 minute.
• Simple and minimal preoperative and intraoperative user

interaction.

To the best of our knowledge, specifications for the accuracy
and robustness of the estimation of intensity information using
2D/3D registration are not available in the literature and appear
to be application–specific. For example, [52] note that the
trabecular region is predominantly affected by osteoporosis,
which is the primary cause of compression fractures. The
accuracy of this region would therefore be prioritized when
developing SSIMs for clinical applications aimed at osteoporo-
sis.

B. Rendering of DRRs

Digitally reconstructed radiograph projection is a rendering
technique that simulates the X–ray imaging process in order
to produce a synthetic X–ray image from a CT volume or
volumetric model (An example is shown in Figure 3). The
most commonly used method to do so is “ray–casting” [98].
It is derived from the Beer–Lambert Law (Equation 15),
which describes the attenuation of X–rays through matter.
In this approach the value of each pixel of the DRR image
is computed by evaluating each voxel of a CT volume (or
instance from a SSIM) which is encountered along the path
of a single ray between the current pixel and a center–of–
projection (COP) (see Figure 4). When a voxel is evaluated,
its corresponding linear attenuation coefficient (LAC), as well
as the distance the ray has “travelled”, is considered. A line
integral along the path of a single ray is evaluated where I
is the X–ray signal intensity, L is the path from the X–ray
source (COP) to a detector pixel, µ(E, r) is the energy and
position–dependent LAC of the material that the X–ray passes

Fig. 3. Example of a DRR (left) obtained using ray–casting through a CT
volume of a patient, contrasted against an actual X–ray image of the same
patient (for the Lateral view).

Fig. 4. An illustration of the ray–casting method. Each DRR pixel intensity
valueRDRR(x, y), is computed by evaluating the CT voxels encountered along
a ray m, between a COP and the current pixel.

through and I0(E) is the incident X–ray intensity and energy
spectrum [99]:

I =

∫
I0(E)× exp(−

∫
L

µ(E, r)dl) dE (15)

This formulation is further simplified by modelling the X–ray
source as monoenergetic; where more complex physical phe-
nomena such as “scatter contamination”, “beam hardening”,
and “veiling glare” are disregarded; and then discretized along
the ray path to produce a voxelized representation [99]–[101]:

I = I0 exp(−
∑
n

µnln,m) (16)

where n and m designate a specific voxel and ray, respectively;
l is the intersection length and µ is the LAC. The corre-
sponding LAC for a voxel’s Hounsfield unit is obtained using
Equation 17. This value is contingent on the relative LAC of
water, for the particular energy spectrum of the incident rays
[101].

hn =
(µn − µw)× 103

µw
(17)

where hn is a CT Hounsfield unit, µw is the LAC of water
for a specific CT energy, and µn is the LAC for the current
voxel. The COP is either modelled as being close in a
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TABLE I
A COMPARISON OF SSIMS THAT HAVE BEEN APPLIED TO 2D/3D BONE RECONSTRUCTION

Author(s) Nature of SSIM Model representation Type of bone Novelty

[45] Independent Voxel–based Femur None

[95] Combined Voxel–based Femur Spatial–intensity (texture) distribution

[96] Combined Mesh–based Femur and pelvis Model intensities using Bernstein polynomials

perspective projection scheme, or infinitely far away in an
orthographic projection scheme where the rays are parallel to
one another (See Figure 5). The most commonly used scheme
is perspective projection, which is more challenging since it
involves more complex projection geometry and because it is
possible for adjacent voxels to be traversed simultaneously. A
number of sampling methods (also known as voxel traversal,
ray traversal, or compositing methods) have been proposed
to address this issue, often implementing some type of voxel
interpolation. These are however beyond the scope of this
paper, but are discussed in detail in [102] and [103]. The DRR

Fig. 5. An illustration of two DRR ray projection schemes. Orthographic (or
orthogonal) projection models the COP as being infinitely far away (above)
as opposed to perspective projection which models the COP as a point–source
(below). Interpolation is typically used in order to overcome the simultaneous
traversal of adjacent voxels when sampling along perspective–projected rays.
The increasing greyscale values of the voxels indicate the order in which the
voxels have been traversed.

rendering method can be viewed as a transform, P : R3 → R2.
A general formulation of the ray-casting projection through an
SSIM, regardless of the sampling or projection strategy that
is used, can then be described as follows [104]:

P(v(w)) = RDRR (18)

RDRR(x, y) = I0 exp(−
∫
Lx,y

µl dl) (19)

where v(w) is an SSIM instance obtained with a specific set of
model parameters w, and RDRR(x, y) is a function that returns
an accumulated intensity value along ray-path Lx,y from the
X–ray source (COP) to a detector pixel at the 2D coordinates,
(x, y). For projection geometry-specific formulations of this
equation the reader is directed to [104].

1) Variations on DRR rendering: DRR–based approaches
are the most frequently reported type of 2D/3D registration
methods in literature [7]. They are known to be more accurate

than feature–based methods at the cost of having a longer
computation time [7], [65]. The iterative nature of the algo-
rithm causes a computational bottleneck to emerge as accurate
volumetric reconstruction often requires a few thousand DRRs
to be rendered [6], [64]. Efforts have since been made to
reduce the time taken to obtain a DRR projection. These can be
roughly categorized as hardware and software–based methods,
but are not mutually exclusive distinctions [7].

Hardware–based approaches exploit parallel processing
through the use of commercial graphics processing units
(GPUs) to speed up the ray–casting algorithm, and conse-
quently the registration process, in some cases by up to 25
times [7], [105]–[107].

Software–based approaches apply concepts from the com-
puter graphics community to provide more efficient rendering
algorithms. These take the form of image–order and object–
order techniques. Image–order techniques involve backward
projection and are typically performed pixel–by–pixel. These
typically include adaptations to the ray–casting method (which
itself is an image–order technique) either by reducing the
number of rays, or number of samples that are considered
as is the case with Monte Carlo volume rendering [108].
Object–order techniques involve forward projection and are
typically performed voxel–by–voxel. These include alterna-
tives to the standard ray–casting approach such as shear–warp
factorization, wobbled splatting, Fourier volume rendering
and cylindrical harmonics, among others [109]–[113]. Most
object–order methods are geared towards rigid registration for
purposes such as preinterventional patient alignment (image–
guided registration therapy) [100]. Here it is assumed that the
volume is static, while the camera pose/COP is searched for.
It therefore makes sense that a popular strategy for object–
order methods is to spend computational resources encoding
the volume in such a way that, once initialized, can obtain a
DRR from different COPs with ease. Non–rigid reconstruction,
on the other hand, seeks to find a patient’s specific volume
by iteratively deforming an appearance model while the COP
remains stationary. Image–order techniques are more amenable
to this strategy.

Some methods, such as those proposed by [29], [53],
and [6], have been specifically applied to the reconstruc-
tion paradigm, and utilize a combination of hardware and
software–based approaches. The SSIM proposed by [21] (see
Section II-A) was accompanied by a complimentary DRR
rendering algorithm that adheres to the non–linear intensity
distribution of its tetrahedra [53]. The algorithm proposed by
[29] improved upon the DRR rendering method [96]. They
noted that a X–ray attenuation value does not need to be
accumulated according to the order of visibility of tetrahedra



1937-3333 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/RBME.2018.2876450, IEEE Reviews
in Biomedical Engineering

8

along a line integral. Thus each tetrahedron can be processed
independently using a projected tetrahedra approach (replacing
the numerical evaluation rays intersecting the SSIM), making
the algorithm both a closed–form solution and ideal for
GPU implementation. This characteristic also compliments the
method in [96] which uses barycentric coordinates, allowing
for the simultaneous classification of the projected outline
of the tetrahedra. The approach provided by [53] further
improved that of [29], by focusing effort on the DRR rendering
step of the reconstruction algorithm. The authors of [53]
provided a way to combine the deformation and tetrahedral
mesh projection steps thus enabling a full GPU implementa-
tion. They employed cell–based ray–casting which reuses the
closed–form method for ray integral computation, but imple-
mented a novel tetrahedron thickness calculation instead of the
projected tetrahedra approach. This permits the advantages of
a barycentric coordinate system while circumventing the need
to classify the projected outline of the tetrahedra [6], [53]. A
summary of notable DRR rendering methods is provided in
Table II (note that O(n2) represents quadratic time, O(n3)
represents cubic time and O(n2log[n]) represents quadratic–
logarithmic time).

Finally, the accuracy of the registration can be further
improved through the generation of more realistic DRRs,
which will inherently be more similar to a patient’s X–ray
image(s) [34], [95]. The ray–casting method only models the
attenuation of primary photons while disregarding secondary
effects such as beam hardening. Techniques to account for
these effects were proposed by [101], which produce more
realistic DRR renderings but also increases the already taxing
computational complexity of the DRR rendering module.

C. Similarity measures
One of the primary factors influencing the accuracy of

intensity–based 2D/3D reconstruction algorithms is the sim-
ilarity measure, the choice of which can produce drastically
different registration results [42], [118]. The DRR(s) and
X–ray image(s), RDRR and RXRAY, are compared to one
another with regard to some statistic or set of features and
a numerical value is produced which quantifies the similarity
of information between them. In some cases researchers refer
to a cost, loss, error, merit, criterion, energy, or objective
function, which the optimization strategy seeks to minimize
(or maximize).

In the context of deformable image–based 2D/3D recon-
struction the similarity measure can be framed as a Q–
dimensional function where Q represents the number of pa-
rameters of the SSIM. The value of each location of a Q–
dimensional parametric search space then corresponds to the
similarity measure value for a specific set of model parameters,
w = {w1, ..., wQ} (an instance of the SSIM) [7], [119].

The similarity measure values for each X–ray image
view/COP can be consolidated as follows:

simtot(w) =
C∑

c=1

sim(Pc(v(w)), RXRAY,c) (20)

where Pc represents the DRR rendering method for a COP c,
and C is the total number of patient X–ray images.

1) Variations on similarity measures: The mutual informa-
tion (MI) similarity measure is commonly used by 2D/3D
reconstruction algorithms [118]. It compares the probability
distribution of the pixel intensity values (histograms) in a DRR
and X–ray image. While it is robust to noisy and occluded
X–ray images, it only considers intensities, thus disregarding
any spatial information [29]. A number of MI variations have
since been proposed which incorporate spatial information.
The asymmetric multi–feature MI similarity measure uses
additional spatial features in the form of intensity gradients
and is especially effective when reconstructing from a small
number of patient X–ray images [7]. The performance of
two novel variations of the MI similarity measure, distance
coefficient MI and distance weighted MI, were compared by
[120]. They found that these measures outperformed conven-
tional MI without having a significant impact on computation
time. The MI similarity measure was also adapted to include
spatial information by [121], by incorporating the Kullback–
Leibler bound into a Markov random field model. Their
experiments show that their measure, which they have named
the Maximization of Mutual Information, not only outperforms
the MI similarity measure, but is also robust to occlusions
present in X–ray images.

The researchers in [29] discuss the similarity measure-
related complications that arise when the statistical model is
trained using a dry-bone dataset. Images of live subjects often
contain other organs, as well as soft tissue, which adds noise
and reduces the contrast of the images. Despite the merits of
MI they found that it did not perform well and therefore in-
cluded a soft-tissue model in their SSIM in order to ameliorate
these effects. Alternatively, the researchers in [122] proposed
the use of normalized cross correlation (NCC) as an initial
similarity measure and then automatically switched to using
the variance weighted sum of localized normalized correlation
(VLNC). The NCC similarity measure is not very accurate, but
reduces the influence of regions containing foreign objects.
The VLNC focuses on high-variance regions, assuming that
these contain relevant information. In doing so they improve
the accuracy of the final registration.

An extensive study of six similarity measures was com-
pleted in the context of intensity–based 3D–2D registration
by [123]. These included cross correlation, entropy, mutual
information, gradient correlation, pattern intensity and gradi-
ent difference. By comparing these against a gold standard
(landmark–based registration), the measures were ranked with
regard to how accurate and robust they were. The study
concluded that the pattern intensity and gradient difference
similarity measures were accurate and robust, even when
interventional instruments, thin–line structures and soft tissue
were present [42].

The authors of [7] have suggested that the similarity
measure utilized by the optimization strategy be specifically
adapted to the understanding of the image formation process
as well as the relationship between the intensities of the
DRR and X–ray images. One such similarity measure was
proposed by [124], which was tailor-made to the statistics of
CT and X–ray image acquisition. In this approach Poisson
and Gaussian probability distributions were used to model the
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TABLE II
NOTABLE DRR RENDERING METHODS WHICH INCLUDE SOFTWARE, HARDWARE, AND SUBSPACE/SEGMENTATION–BASED APPROACHES

Author(s) Name of technique Voxel/tetrahedra–
based

Time complexity
(if available)

GPU–based
acceleration

Comments

[114], [115] Ray–casting Voxel O(n3) None - Used as a benchmark.
- Computationally inefficient.

[29] Projected tetrahedra Tetrahedra Not available Partial - Suitable for mesh–based 2D/3D reconstruction.

[116] Light fields Voxel O(n2) No - Reduced time complexity.
- The 4D space must be densely sampled to provide
satisfactory images.

[112], [117] Fourier volume render-
ing

Voxel O(n2log[n]) Full - Large memory demands.
- Independence of image quality on the sampling step
size.
- Perspective projection not supported.

[110] Shear–warp
factorization

Voxel O(n3) None - Well suited rigid 2D/3D registration.
- Reduced computations when recomputing projec-
tions.

[111] Splatting Voxel O(n3) None - Very accurate, but difficult to implement.
- Aliasing artefacts.

[113] Cylindrical harmonics Voxel Not available None - Fast.
- Reduced computations when recomputing projec-
tions.

[6], [53] Cell–based ray–casting
with novel tetrahedral
thickness calculation

Tetrahedra Not available Full - Suitable for mesh–based 2D/3D reconstruction.

intensity values of the two modalities (since the photon noise
which is present in authentic X–ray images is Poisson-like in
nature). Ultimately, new similarity measures were calculated
from the assumed distributions, using maximum likelihood
estimation, which were especially robust to image noise [7],
[124]. Another such similarity measure was presented by
[125], who established the feasibility of constructing a sim-
ilarity measure using coefficients from an orthogonal set of
base functions, and by decomposing X–ray and DRR images
into orthogonal Zernike moments [7], [125]. The advantages
of doing so include better robustness to histogram differences,
invariance to in-plane rotation, and control over the level of
detail that is considered. These bespoke similarity measures,
however, have yet to be applied specifically to the 2D/3D
reconstruction paradigm; their performance in this regard, as
well as in comparison to other similarity measures, is therefore
unclear.

D. Optimization strategies
The optimization strategy for a deformable image-based

2D/3D registration algorithm is iterative, and describes how
a patient-specific bone reconstruction is searched for. This is
accomplished by providing a procedure for how the model
parameters for the next iteration are chosen based on the
differences between the patient’s X–ray image(s) and the
DRR projection(s) for the current iteration. As previously
mentioned, these differences are measured using one or more
similarity measures, which the optimization strategy seeks to
maximize:

wpatient = argmax
w

simtot(w) +R(w) (21)

where wpatient is the final set of optimal model parameters
selected to represent the patient’s bone volume. The regular-
ization term, R(w), accounts for the nature and constraints

of the transform, Pc [61]. These include prior knowledge
regarding the bone’s shape and intensity, ensuring smooth
deformations and dampening the effects of outliers (for an
interesting discussion regarding how the regularization term
is related to the covariance matrix, S, the reader is referred
to [126]). Figure 6 provides a useful overview of the DRR-
based 2D/3D reconstruction algorithm, including important
mathematical formulae.

Fig. 6. A detailed overview of the DRR–based 2D/3D bone reconstruction
algorithm (including a mathematical formulation). The modules which com-
prise it include the deformable model, of which an SSIM v(wi) is one type,
DRR rendering RDRR, similarity measure simtot, and optimization strategy.
The process is iterative, where wi is the set of model parameters for iteration
i, and which is concluded once the value of simtot exceeds a pre–defined
threshold.
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The similarity measure, when represented as a function of
registration error, should ideally be a convex, monotonic func-
tion, having a sharp minimum (indicating the true registered
position or best possible similarity value) and successively
decreasing values the further away from the minimum they
are [7], [119]. This ensures good registration results when
implementing iterative, local optimization strategies such as
Powell’s method, the downhill–simplex method, gradient–
descent, [7], [29], [34], [53].

However, as is the case with intensity–based 2D/3D regis-
tration, the registration error function is highly non–convex,
making the optimization strategy susceptible to getting caught
in local minima [61], [64]. The similarity measure therefore
has a small capture–range, which is the subset of values around
the global minimum which do form a convex, monotonic
function (see Figure 7) [119].

Fig. 7. A plot of intensity–based 2D/3D registration error as a function of
the model parameter values. The range of values around the global minimum
which form a convex, monotonic function is known as the capture–range.

1) Variations on the optimization strategy: In order to
widen the capture range, and increase chances of convergence,
researchers have implemented global optimization methods
and heuristic search strategies such as simulated annealing and
Monte Carlo random sampling [7], [127], [128]. While these
increase the probability of finding the global maximum, the
authors of [7] note that they are problem–specific. We are not
aware of any DRR–based 2D/3D reconstruction methods that
make use of these.

A simpler and more well established approach is to use a
hierarchical multi–resolution and/or multi–scale optimization
strategy, adopting a coarse–to–fine approach to the parameter
search [7], [21], [129]. They first downsample the images to
reduce their complexity (and avoid local maxima) and then
successively introduce finer detail in stages. The complexity
which is gradually increased refers either to that of the data,
warp or model [129]. An extensive survey of multi–resolution
approaches is provided by [130]. The authors of [21], [2]
and [53] implemented similar multi–resolution optimization
strategies. They downsampled the resolution of the X–ray
images and reduced the number of model parameters which,
during later iterations, were both increased to ensure an
accurate reconstruction of the pelvis bone. These optimization
strategies not only increase the capture range of the algorithm
(by avoiding local maxima), but also improve its computation

time. The authors of [7] noted that downsampling the image
may suppress some image features while making other non–
corresponding features more similar. However, they also noted
that these approaches are especially suitable for 2D/3D recon-
struction.

Linear optimization strategies such as the downhill simplex
method, which was implemented and applied to the femur
and pelvis bones by [29], are sometimes preferred to non–
linear strategies as they are often computationally cheaper
[46], [53]. However, from what is evident in intensity–based
2D/3D bone reconstruction literature, a number of non–linear
alternative optimization strategies have been proposed which
provide more accurate model reconstructions [131]. Further-
more, linear strategies are limited in that they have an inability
to cope with large deformations [61]. Levenberg–Marquardt
optimization is a non–linear strategy that is reported by [6],
[45]; both applied it to the femur bone because it provided
accurate reconstructions while still outperforming gradient–
descent–based approaches with regard to computation time [6].
Levenberg–Marquardt optimization was also implemented by
[59], who applied it to the pelvis.

Another way to avoid local maxima is to implement a pose
initialization method before proceeding with the optimization
strategy [64], [132]. Such methods aim to initialize the first
SSIM instance in such a way that its initial DRR projection(s)
are relatively close to that of the target X–ray images. This
is typically accomplished with a manual landmarking process,
which is time–consuming. An accurate initialization method
requiring only three manually labeled landmarks has been
developed by [133], which uses epipolar geometry to assist in
localizing points between two X–ray perspectives. However,
methods such as these are still prone to human error [4],
[134]. Fully automatic methods have since been explored,
but face many challenges; noise, poor image contrast and the
superposition of bone structures at different depths make it
difficult to distinguish the bone–of–interest [134]. Random
forest regression was implemented by [3] for fully automated
contour extraction and pose initialization. This method pro-
vided accurate results, but was only tested using simulated
patient X–ray images. They also did not comment on the
method’s influence on the computation time of the overall
algorithm.

Finally, supervised learning–based similarity measures have
been demonstrated by researchers to widen the capture–range
of intensity–based 2D/3D registration algorithms, but are far
more computationally expensive [64]. We are also not aware
of any DRR–based 2D/3D reconstruction methods that make
use of these.

A summary of the optimization strategies discussed in this
section, which have been specifically applied to DRR–based
2D/3D bone reconstruction, is provided in Table III.

E. Investigations on the algorithm as a whole

The use of two X–ray images enables a significant im-
provement in the accuracy of the reconstructed model than
if only a single X–ray image is used. However, according
to [21], the use of additional X–ray images has diminished
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TABLE III
A SUMMARY AND COMPARISON OF OPTIMIZATION STRATEGIES WHICH HAVE BEEN USED FOR DRR–BASED 2D/3D BONE RECONSTRUCTION

Author(s) Nature of
SSIM

DRR rendering
method

Optimization
strategy

Similarity measure Type of
bone

Number
of X–ray
images

Average
reconstruction
error (mm)

Type of op-
timization

[21] Combined Not clear (probably
ray–casting)

Novel multi–
resolution
non–linear
optimization

(Normalized) Mu-
tual information

Pelvis 2 or more 2.0 Non–linear

[29] Combined Projected tetrahedra Downhill
simplex
algorithm

(Normalized) Mu-
tual information

Femur
and pelvis

2 or more 2.0 Non–linear

[45] Independent Ray–casting Levenberg–
Marquardt

Maximization of
mutual information

Femur 2 or more 1.5 Non–linear

[53] Combined Cell–based ray–
casting with novel
tetrahedral thickness
calculation

Gradient
descent with
X–ray sub–
sampling

(Normalized) Mu-
tual information

Pelvis 1 2.0 Linear

[6] Combined Cell–based ray–
casting with novel
tetrahedral thickness
calculation

Levenberg–
Marquardt

(Normalized) Mu-
tual information

Femur 2 1.18 Nonlinear

[34] Combined Ray–casting Evolutionary Mean reciprocal
square difference
normalized mutual
information

Femur 2 or more 4.24 Unclear

[59] Combined Ray–casting Levenberg–
Marquardt

Maximization of
mutual information

Femur 2 or more 1.2 Non–linear

returns in terms of accuracy. This is arguably not worth
the extra computation time or additional radiation exposure
to the patient. It was demonstrated in [21] that the best
registration accuracy was obtained when the angle between
the two perspectives is orthogonal. This makes sense since
the information provided by the two images in this case is
the least correlated. However, it does not necessarily follow
that this is always the case. A good example is the pelvis
bone, which has a symmetric structure; an AP and LAT X–ray
image combination will have a large superposition of structure
- especially in regions containing joints. While orthogonality
is important, the selection of the best imaging direction is
dependent on the anatomical structure-of-interest.

The 2D/3D reconstruction of joint structures using an ar-
ticulated statistical shape and intensity model (ASSIM) has
been investigated by [135]. They reconstructed pelvic and
femoral bones simultaneously in order to infer two patient-
specific surgically relevant parameters from a single X–ray
image. They extended their previous SSIM, presented in [53],
to include both the pelvic and femoral bones, but constrained
the 3D rotation of the proximal femur such that its center
of rotation corresponds to the center of a sphere made to fit
the acetabulum. Their method produced results close to the
CT gold standard, but became less accurate when faced with
outliers where some regions pertinent to the inference were
not visible in the AP X–ray image. They proposed increasing
the number of training examples in order to overcome this
limitation [135].

The authors of [34] investigated the performance of a num-
ber of similarity measure–optimization strategy combinations
for appearance–model–based 2D/3D registration of the human
femur [1], [34], [95]. These included Powell optimization,

1+1 evolutionary optimization, mean reciprocal square dif-
ference metric, Matte’s mutual information metric and the
normalized mutual information metric [136]–[139]. Using the
InShape SSIM, the following parameters were optimized: the
six degrees of freedom of the rigid 3D transformation (three
rotational and three translational) as well as the modes of shape
and intensity variation. They found that the mean reciprocal
square difference metric in combination with 1+1 evolutionary
optimization, as well as normalized mutual information mea-
sure combined with the 1+1 evolutionary optimization strategy,
resulted in the best performance.

III. DISCUSSION

During our literature review we noted a number of chal-
lenges and insights regarding DRR–based 2D/3D bone re-
construction, which may serve as future avenues of research.
These are discussed according to the algorithm module to
which they are most relevant.

A. Statistical shape and intensity models
While SSIMs are robust to artefacts and noise, they require

a large amount of training data in order to obtain a model capa-
ble of expressing all possible target shapes. The generalization
of the classical SSM approach, known as GPMMs, and intro-
duced by [60], makes it possible to intuitively and analytically
define covariance functions, which enable the construction of
expressive shape priors even when only a few example shapes
are available (essentially providing a framework for combining
template and statistically based models, and allowing for dense
point correspondence at any resolution). Their approach could
be extended to include SSIMs, ultimately providing more
accurate bone shape and intensity estimations.
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Furthermore, it is unclear whether independent or combined
SSIMs are superior for the purposes of non–rigid 2D/3D
bone reconstruction; the relationship between the shape and
intensity subspaces is not well studied and requires further
investigation.

B. Digitally reconstructed radiographs

The original patient X–ray image can be regarded as the
gold–standard, equivalent to a maximum similarity measure
value. However, this is not realistically possible because of the
presence of noise. Also, a DRR rendering algorithm’s failure
to account for secondary imaging effects such as veiling glare
and beam–hardening further prevents the DRR from attaining
a gold standard value [101]. We therefore define the “ideal”
threshold, which takes this compromise into account. A further
concession in accuracy is made when we consider that DRRs
will actually be obtained from an SSIM instance and not the
patient CT volume, since it is not available. Thus another
value, the “best–case” threshold, is defined, which accounts
for the consequent loss of information resulting from the PCA
approximation. Finally, the “sufficient” threshold observes the
fact that the best–case threshold may be unattainable since the
model parameter search is limited to the 2D domain, as well
as the performance of the chosen optimization strategy. It may
also be the case that the reconstruction accuracy necessary for
a particular application is attained prior to achieving the best–
case threshold. An illustration of these concepts is provided
in Figure 8.

Fig. 8. Iterative 2D/3D reconstruction optimizations, depicted as decreas-
ing registration error (increasing similarity). The best possible registration
accuracy, varies under different circumstances: the ideal threshold corre-
sponds to a DRR obtained directly from the patient CT volume (eCT =
1 − sim(RDRR,CT, RXRAY)); the best–case threshold corresponds to a DRR
obtained from an SSIM instance, the model parameters of which were
searched for using the CT volume (eSSIM = 1 − sim(RDRR,SSIM, RXRAY));
the sufficient threshold also corresponds to a DRR obtained from an SSIM
instance, but accounts for the fact that the best–case threshold may not be
reachable when the model parameters are searched for using only the patient’s
X–ray image(s).

Some researchers have established the feasibility of using
partial DRRs to guide the model parameter search. However,
the decision regarding which regions to select is made on
intuition. Should there be access to a corresponding CT and
X–ray image dataset for a number of patients, a potentially
insightful study can be completed. Firstly, an SSIM can be
built using the (hand–segmented) patient CT volumes. The
ideal similarity threshold value (for a patient) can be computed
using a DRR obtained from their CT volume, and their X–ray
image. The best–case similarity value can be obtained in a
similar fashion, using a near–perfect model fit (searched for
in the 3D domain using the patient’s CT volume). Then, by
comparing the original X–ray image to the DRR obtained from
the CT volume as well as the DRR obtained from the SSIM,
the regions and/or features which should be focused on can
be determined empirically.

While a number of DRR rendering methods have been
specifically proposed for application to 2D/3D registration,
only the ray–casting and tetrahedra–based projection methods
have been applied to 2D/3D bone reconstruction. The perfor-
mance of different DRR volume rendering methods in this
context have not yet been compared. Object–order methods
such as cylindrical harmonics, shear–warp factorization and
frequency domain–based rendering spend computational re-
sources encoding the volume in such a way that obtaining a
DRR from a large number of COPs is made much simpler.
This allows DRR projections to be iteratively re–rendered at a
reduced computational cost until an optimal COP is found.
While this is beneficial for 2D/3D registration (where the
assumption is that the object does not change), this is not
the case for 2D/3D reconstruction where the COP(s) are fixed
and the object is iteratively deformed. However, these methods
are of use for the initial pose estimation; it may serve a
2D/3D reconstruction algorithm well to include a two–part
DRR rendering module where an image–order technique takes
over from an object–order technique once the pose has been
established. If additional accuracy is required, the methods
provided by [101], which account for secondary physics
effects, can be employed to further improve the registration.
However, it is important to note that the DRR itself is not
the goal of the 2D/3D reconstruction algorithm; it is only a
means to determine a model reconstruction (optimizing a set of
model parameters). Any additional DRR rendering accuracy,
other than what would enable an accurate reconstruction, is
unnecessary, and it would be beneficial to rather trade this
accuracy for a faster computation time (See Figure 8).

As is shown in Table II, many rendering methods have a
O(n3) time complexity. These methods should be avoided
(at least once the pose of the volume/X–ray source has been
established).

C. Similarity measure

In the majority of cases, the mutual information similarity
measure, or some variation thereof, has been used for image–
based 2D/3D reconstruction (and is also popular for rigid
2D/3D registration). Newer similarity measures, such as those
proposed by [42], [124] and [125] have been specifically
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adapted to the context of X–ray images, but have not yet been
applied to the context of reconstruction. These may prove to
be superior to conventional similarity measures.

D. The algorithm as a whole

The 2D/3D reconstruction of an anatomical structure from a
single X–ray image is a valuable area of research because clin-
ical routines that require only one are far more common and
cost less. However, since depth and scale are correlated, the
precise estimation of either the size of the anatomical structure,
or its depth, becomes more challenging when constrained to
a single view [94]. The researchers in [37] first demonstrated
such an algorithm using a feature-based approach to recon-
struct a shape model. Their model was comprised of average
templates of both 2D thickness images and height maps that
were projected from 3D CT training images. The single X–ray
image informed how the templates were aligned and warped
using carefully selected landmarks, and then combined to
obtain an estimated 3D shape. The researchers in [50] were
the first to reconstruct both shape and intensity information
from a single X–ray image. They extended [37]’s method
by also warping the volumetric BMD, and normalized it, to
match that of the input X–ray image. Furthermore, having
used a calibration phantom, they were able to estimate actual
BMD values. In [53] the researchers reconstructed both shape
and intensity information, but made use of an SSIM and no
calibration phantom. However, the focus of their research was
on the computation time and accuracy of their proposed DRR
renderer. In [135] they reported the estimation accuracy of
surgically relevant pelvic measurements, but did not explicitly
report on the intensity reconstruction accuracy - it was only
used as a proxy to improve the pelvic shape estimation.

The aforementioned methods, however, all utilized an arti-
ficial X–ray image (DRR) to represent the patient data. The
researchers in [42] were the first to demonstrate such an
algorithm using a real X–ray image, but only reconstructed
a shape model. They first proposed a surface–based iterative
scaled rigid registration using a standard AP X–ray image,
and then a surface–based iterative affine registration using 2D
lateral fluoroscopy [42], [43]. They exploited two parameters,
namely the image scale (in mm/pixel) and the distance from
the COP to the detector (the imaging plane), which can be
retrieved from a DICOM image (provided that the anatomical
structure was imaged using a standard clinical procedure). The
researchers in [47], [62], [140] and [55] have reported success
when using a single image of actual patients, and also reported
on the accuracy of the reconstructed shape and intensity
information, but only when using DXA. Dual–energy X–
ray images provides two advantages over conventional X–ray
images. Firstly, DXA uses orthographic projection geometry
which eliminates the need for camera calibration [94]. Spa-
tial distortions, such as depth–dependent object magnification
effects, which complicate shape estimation are thus avoided
[140]. Secondly, DXA is the standard for BMD estimation
and the use of a DXA image over a conventional X–ray
image, along with a calibration phantom, allows for accurate
BMD estimation [141]. However, DXA requires a specialized

machine, to which access may be limited. It is not part of
a typical clinical routine and has a limited field–of–view.
Therefore, we believe that the 2D/3D reconstruction of both
shape and intensity information of an anatomical structure
from a single conventional X–ray image is still an unsolved
problem, and worthy of future research efforts.

There is currently not enough data to objectively compare
the performance of different DRR–based 2D/3D bone recon-
struction algorithms (in order to determine how suitable they
are) [1]. Researchers employ different datasets and are often
unclear about the evaluation methodology that they use, nor
does a standard methodology exist, to validate and benchmark
these algorithms [7]. Furthermore, researchers either focus on
different bones or use different types of modules (SSIMs, DRR
rendering techniques, similarity measures and optimization
strategies) within their algorithm. It is clear that the interac-
tions between these modules are complex and greatly affect the
overall accuracy of the model reconstructions, as well as the
time spent computing them. It would therefore be worthwhile
to formulate a standardized means of comparing and bench-
marking 2D/3D bone reconstruction algorithms in order to aid
future research efforts. To the best of our knowledge, only [34]
have made an effort to compare different 2D/3D reconstruction
algorithms; they implemented and compared the performance
of different similarity measure–optimization strategy com-
binations. An ideal evaluation methodology should include
a complete open–source algorithm, which would allow the
different modules to be interchanged, and measured (this may
not always be possible since algorithm modules such as those
proposed by [21], [29] and [53] are interwoven), and would
include a standard dataset (for at least one type of bone).

Of the reconstruction algorithms that we have investigated,
only [29] and [135] have shown that their algorithm can be
applied to more than one type of bone (femur and pelvis), and
still yield a sufficiently accurate reconstruction. This is worth
considering since unique complexities and challenges exist for
different types of bone, such as bone structure superposition
when dealing with scapulae, or intricate bone substructures
as is the case with the skull. Therefore, the success of an
algorithm when applied to one particular type of bone does
not necessarily guarantee its success when applied to another.

IV. CONCLUSION

We have presented a review of the literature pertaining
to DRR–based 2D/3D bone reconstruction from X–ray im-
ages using statistical shape and intensity models. This was
completed using unambiguous terminology, and a unified
mathematical formulation of the problem, in a common con-
ceptual framework. We have also provided a discussion of the
shortcomings, recent adaptations and persisting challenges of
this approach along with insights for future research.

Ultimately, 2D/3D bone reconstruction methods have the
potential to enable clinical procedures that normally require
access to CT and MRI machines and would otherwise be
impossible to perform given only a patient’s X–ray images.
This is especially pertinent to resource–limited settings where
access to these 3D imaging technologies may not be possible.
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The option of a relatively cheap and more easily accessible
compromise will have a beneficial impact. In addition, by min-
imizing a patient’s exposure to ionizing radiation (compared
with CT) their implicit risk of cancer can be reduced. Imaging
artefacts that are caused by the presence of metal implants
can also be avoided. The reconstruction of 3D patient–specific
bone models from X–ray images is therefore an important and
powerful technique in medical imaging, and is worthy of future
research efforts.
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