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Abstract. Active Shape Models (ASMs) are a classical and widely used
approach for fitting shape models to images. In this paper, we propose a
fully probabilistic interpretation of ASM fitting as Bayesian inference. To
infer the posterior, we use the Metropolis-Hastings algorithm. We then
use the maximum a posteriori sample as the segmentation result. Our
approach has several advantages compared to classical ASM fitting: (1)
We are left with fewer parameters that we need to choose. (2) It is less
prone to get trapped in local minima. (3) It becomes straightforward to
extend the approach to include additional information, such as expert
annotations. (4) It is even simpler to implement than the classical ASM
fitting method.

We apply our algorithm to the SLIVER dataset and show that it
achieves a higher segmentation accuracy than the standard ASM app-
roach. We further demonstrate the flexibility and expressivity of the
framework by integrating experts annotations along parts of the out-
line to further increase the accuracy. The code used for fitting is based
on open-source software and made available to the community.
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1 Introduction

To automate medical diagnosis, treatments or the planning of interventions,
a segmentation of an organ is a useful preprocessing step. However, analyzing
volumetric computed tomography (CT) images is a difficult task, because human
organs are highly variable in terms of shape and appearance. Possible shifts from
neighboring organs can change the visual appearance of the boundary. An often
used approach to organ segmentation is the Active Shape Model (ASM) [2]
algorithm.

An ASM consists of two main parts. A point distribution model (PDM) is
used to summarize prior knowledge about the shapes of the organs. An instance
of an organ’s shape is fully described using a set of parameters. In addition, the
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ASM has a built-in prior for the appearance of the volume around the organ
boundary. The appearance is modeled at a sparse set, of so-called profile points.
Visual features are extracted in the normal direction and approximated using a
Gaussian distribution. When adapting the shape, better locations for the profile
points are searched. To increase robustness while fitting, new points are removed
when the point or appearance distance is larger than a given threshold. The shape
is updated using the remaining points. To keep the segmented shapes plausible
the model parameters are restricted to a certain interval.

In this paper, we propose a probabilistic interpretation of this model. The
probabilistic formulation has several advantages: (1) It makes many of the
implicit assumptions taken in the ASM explicit. (2) It does not rely on seemingly
arbitrary parameters. (3) We can apply standard inference procedures developed
in the statistics community for fitting the model. (4) It provides a principled way
of extending the algorithm with additional information such as expert annota-
tions.

We propose to use a sampling-based strategy for model fitting based on the
Metropolis-Hastings (MH) algorithm. This leads to a simple, stochastic algo-
rithm, which is less prone to get stuck in local optima and provides an estimate
of the posterior distribution. In this approach, the only parameter to choose is
a proposal distribution for the MH algorithm. While in theory, the exact choice
of this distribution has no influence on the result, in practice, this can change
the efficiency of the algorithm. Our experiments on the SLIVER dataset [5]
show that our method is more robust and leads to better segmentation perfor-
mance compared to the standard, deterministic search-based approach. Finally,
we demonstrate how we can incorporate expert annotations, and that such addi-
tional information significantly improves on the segmentation performance.

Prior Work: The ASM approach, as introduced by Cootes and Taylor [1,2], is a
generic approach to model-based image segmentation. It has many components
and parameters, which affect its performance. An overview of different possibili-
ties to tune the algorithm is given by van Ginneken et al. [12]. Consequently, a lot
of work has been done. In the following, we concentrate on reviewing some work
addressing specific limitations of the standard ASM: Wimmer et al. [13] replaces
the Gaussian assumption with a probabilistic likelihood of the boundary profile
based on a k-nearest-neighbor estimate using positive and negative boundary
profiles. Norajitra et al. replaced the search for better boundary locations in [10]
with random forests, which, when compared to the line profiles, take information
of a larger volume into account. Kirschner et al. [7] use a non-linear shape prior
based on a kernel PCA. They showed the superior performance of the non-linear
model for vertebra, which we think holds also for livers. Note, that our proposed
method for model adaptation is orthogonal to all formerly mentioned changes
and can make use of improved shape or appearance models.

There is also work on advanced fitting strategies in the recent literature about
ASMs. In [3], Esfandiarkhani et al. propose a non-linear fitting scheme. Zhan et
al. present a method related to the inverse gradient descent optimization used
for active appearance models [14]. In contrast to those, our proposed method is
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simple to implement, fully probabilistic and provides a principled mechanism for
integrating additional information.

Van Ginneken et al. proposed an extension of ASM to allow for interac-
tive fitting [4]. In contrast to our method, their method requires the use of
corresponding landmarks, while we can incorporate information, which is given
as line to surface correspondence only. Furthermore, in our approach, the con-
straint is formulated probabilistically, which allows us to add the user annotation
as uncertain observation, in a principled way.

The most closely related work to ours is the one of Schénborn et al. [11].
They propose to use sampling to adapt a 3D face model to 2D photographs
using computer graphics.

2 Background : Active Shape Models

An Active Shape Model consists of two main components: (1) A Point Distribu-
tion Model (PDM), which represents the normal shape variation of the modeled
anatomical structure and (2) an intensity model, which models the intensities
in a neighborhood around dedicated points of the PDM. Before discussing the
main fitting algorithm, we discuss these two main components in more detail.*

Point Distribution Models: The main idea behind a PDM is that given a set of
i=1,..., N typical example surfaces {I;} of a certain shape, it becomes possible
to learn the mean shape and the normal variability of this shape. For this to be
possible, it is necessary that the example surfaces are in correspondence. This
means that each surface is defined using the same number of boundary points,
I = (x%,...,2%), and that the points {z% } on each of the surfaces {I}} are at the
same anatomical location. Assuming that all the surfaces {I’;} are rigidly aligned
to each other, we can define the mean of a boundary point as T = % Zfil x}c
The corresponding mean shape is given as I" := (T, ...,T,). Furthermore, we
can compute from the example surfaces {I;} a set of N —1 principal components,
which represent the directions of main variation in the data. In our model, the
possible locations of a point xy, is defined as a linear combination of the principal
components with coefficient vector oo = (avy, ..., an—_1) as follows:

N-1
xp(a) =T + Z Q;uy,
i=1

where u} € R? denotes a displacement direction for the k-th point given by the
i-th principal component. The corresponding shape I'(a)) with coefficients « is
in turn defined as I'(«) := (z1(a),...,zn(@)).

! Note that, while the mathematically concepts are equivalent to the classical ASM
papers [1,2], our exposition of PDMs is based on the notation and interpretation
of Point Distribution Models as Discrete Gaussian processes, as presented by Liithi
et al. [9].
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A probabilistic model of shape variation is obtained by assuming that the
coefficients «; are independent and normally distributed, «; ~ N(0,1). For this
to hold, the eigenvectors forming the basis are scaled by the square root of the
corresponding eigenvalue. The model can then be seen as a multivariate normal
distribution of shapes centered around I, the mean shape.

For explaining an organ’s shape in a new image, it is not sufficient to model
shape variation, but also the pose needs to be modeled. Thus we define a
translation parameter ¢ € R? and a rotation matrix R(¢,1, p), which itself is
parametrized by the three Euler angles (¢,,p). For notational convenience,
we summarize all parameters in a single vector 8 = (¢, R, ). Using this full
parametrization, the k—th model point becomes

N-1
() =R (xk + Z oz,»ui) +t

=1

and the notation I'(6) is used again to refer to the full surface induced by 6.

Intensity Models: On top of the PDM, an Active Shape Model describes an inten-
sity model. The intensity model summarizes the intensity distribution around
a subset of the N points that define the model. We refer to these points as
profile points. For every such profile point z, an ASM models the variation of
some intensity feature pp € R?. Usually, it is assumed that py follows a normal
distribution pr, ~ N(pg, X), with a mean pr and covariance matrix Xy. The
parameters are estimated during training time from a set of example images. For
a given point x and image I, we can extract the corresponding feature vector
p(z,I) and use the model to evaluate how likely this point is to correspond to
the boundary point xy:

plo(e, 1) = 7 exp (ol 1) — 1) 5 (oo, 1) — ) 1)

Hence we can use this intensity model to select the most likely boundary point
during model fitting.

Active Shape Model Fitting: With these concepts defined, we now formulate the
ASM algorithm in Algorithm 1. Note that once we have found the best matching
points, the optimal rotation and shape parameters on line 10, can be computed
in closed form (see e.g. [1] for details). The seemingly arbitrary constraint on
line 12 involving the threshold k. is usually motivated by assuming that «;
follow a standard normal distribution, which implies that values of «; which are
more than three standard deviations away from the mean are very unlikely. New
point locations are dropped if they are unlikely under the shape model using kg,
or if they are unlikely under the appearance model using x7.

3 Method

In this section, we introduce our fully probabilistic interpretation of the ASM
fitting. We use the ASM in a Bayesian setting, where our goal is to compute the
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Algorithm 1. Active Shape Model fitting

1: 6y < intialization

2: for i = 1 to max-iterations or converged do
3: for z € {z1,...,2x} do

4: generate candidate locations z.,c=1,...,C
5: find best new candidate x}, as arg n;axp(pk(xc, 1))
6: if||argm§ank(a)+t7:p;€||>/$s or
V(or (@ 1) = 1) 5 (pi(af,, ) — i) > i then
T drop the correspondence pair (zx, x},)
8: end if
9:  end for
10:  calculate rigid alignment R, t of remaining sets {z;} and {z}}
11:  find best a given R,t and remaining sets {z)} and {z}}
12: a; — max(min(oy, ka )y, —Ka)
13: end for

posterior distribution over the parameters 6 given the observed image I, which
we would like to segment. The posterior is defined as:

p(0)p(1]6)

0 _— 0)p(10). 2
PO = g ~ POP) 2)
As we will see later, our inference procedure makes it possible to work with
the unnormalized posterior, hence we only have to specify the prior p(#) and
likelihood function p(716).

Prior Distributions: The prior distribution defines our assumptions about the
value of the parameters, before we have seen any data. We assume independence
between components of the prior, i.e.

p(0) = p(t, R, a) = p(t)p(R)p(c). (3)
For the pose parameters t and R we assume that every possible value is equally

likely, so p(¢) = p(¥) = p(p) = p(t1) = p(ta) = p(t3) = U(—00,0). For the
shape prior, we use the PDM distribution, which states that the coefficients «;
are independent and follow a standard normal distribution a; ~ N(0, 1).

Likelihood Functions: Let xp € I'r denote the k-th point of the model, which
has an associated intensity distribution N (ug, X%) (Cf. Eq. 1). The likelihood for
a fixed point zj of the model is then given by

P16, 21) = — exp(~(plan(0), 1)) — )" Sk(plan(0), 1)) = pu)

where Z is a normalization constant. Assuming independence between the
observed values, we can define the shape likelihood as

p(I|6) = Hp 110, ) (4)
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We can integrate additional constraints in the posterior formulating them as
an additional likelihood. We demonstrate this in terms of a few strokes drawn
by an expert along the perceived boundary of the liver. We integrate the lines
as a discrete set of points {x;},l = 1,..., L using the likelihood

p({z:}10) = [[N (| CP (a1, 1(6)), 1) (5)

=1

Here, the function C'P returns the point from the surface I'(6) which is closest
to the point z;.

Approzimating the Posterior Distribution: The posterior distribution from
Eq. (2) cannot be expressed in closed form. However, it is possible to draw sam-
ples from it, which we can use to find shapes that are likely under the posterior
distribution. For this, our method uses the Metropolis-Hastings algorithm. The
main idea is, that instead of sampling from the posterior p(8|I) directly, we sam-
ple from a proposal distribution Q(6’|6), which proposes a new sample 6’ given
the current sample 6. This generated proposal is then accepted or rejected using
an acceptance criterion based on the unnormalized posterior probability p(6|I).
The MH algorithm we propose to use for ASM fitting is shown in Algorithm
2. The individual terms in the ratio a, are given by the shape prior and the
appearance model of the ASM. Note that we do not need to choose any param-
eter. The only part we have to provide is the proposal distribution Q. Also
note that the denominator in (2), the normalization constant which is usually
intractable, is equal for all § and hence cancels in the ratio on line 4.

Algorithm 2. Metropolis Hastings sampling

1: 6y < arbitrary initialization
2: fori=1to S do
3: 0" « sample from Q(6'|9)

4:  a« 2((99"%))1; (&/“f)) = 2((?/'9"9))1; (&,))5 ((Ill\g)). {acceptance threshold}
5: 7 « sample from N(0, 1

6: if a > r then

7: 0; — 0’

8: else

9: 0, — 0,1

10:  end if

11: end for

The most commonly used proposal distribution is a random walk proposal,
defined as Q(0'|0) ~ N(6,0%I). We change this to a block-wise proposal distri-
bution, meaning that we update only either, o, ¢, 1, p or t at a time. Further,
we use for each block a mixture of Gaussians with three different o to account
for the initial phase of convergence before we get the samples from the true pos-
terior. When we generate a proposal, a part of the mixture is selected with a
predefined probability w.
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4 Experimental Setup

In this section, we experimentally compare our proposed fitting method to the
standard ASM method. For both methods, we use the same basic ASM. The
methods are compared on the SLIVER dataset. In order to retain reproducibility,
we use only the 20 livers from the training set with the provided ground-truth.
We report the errors for the results of the model using all examples, also including
the test item, as well as for all the leave-one-out setups.

We rigidly align the provided data using eight manually-clicked landmarks.
The landmarks are shown in Fig. 1a on the surface of the handcrafted reference.
We register the livers using the model-based registration presented by Liithi
et al. [9].

(a) landmarks  (b) sampled points (c) profile points  (d) annotations

Fig.1. We show the reference liver with the annoated 8 landmarks in (a), the 1k
sampled profile anchor points in (b), the locations for the appearance feature extraction
(blue) and the sampled search points (green) for different profile anchor points (red)
in (c) and the expert annotations in (d). (Color figure online)

We model the appearance at 1000 evenly sampled points (see Fig. 1b). The
values of the image gradient are taken at seven points with a spacing of 8 mm to
from the appearance feature (see Fig. 1c). The full appearance model consists of
all 1000 individual local Gaussian appearance models?.

As we aligned the SLIVER dataset initially before we built the models, we
do not have to align the model to the data at test time. For the standard ASM
fitting, we sample 61 search points over a distance of 60 mm around the current
profile point location (see Fig. 1c). We choose K = 6, ks = 3 and k, = 3 to
prevent unlikely updates.

For the sampling-based approach, we use the PDM prior from Eq.3 and
the appearance likelihood from Eq.4. In the experiment including the expert
annotated lines, we additionally include the line likelihood from Eq.5 in the
posterior. The expert annotations depicted in Fig.1d mark parts of the organ
boundary on three axis-aligned slices. We use the introduced multiscale, block-
wise Gaussian distribution for generating the proposals (See footnote 2). As

2 The code for the model adaptation is available online at github.com/unibas-
gravis/probabilistic-fitting- ASM.
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this proposal distribution is symmetric the correction term of the transition
probability ratio cancels on line 4 in the Algorithm 2.

For the standard ASM fitting, we take the last state after a maximum of
1000 iterations or convergence. When sampling, we draw 10k samples and use
the one with the highest posterior value as result. We use a higher number of
samples compared to the standard fitting steps. This is motivated by the fact
that the standard approach looks at the appearance of 61 locations per iteration
while for one sample we evaluate only one. We report the dice coefficient, the
bi-directional average surface distance, and the Hausdorff distance to compare
the results.

5 Results

Simplicity: What is striking is the simplicity of the sampling-based approach. We
can use the exact same model in both approaches. For the standard approach, we
need to define a search strategy, choose the search distance, the point distance
threshold, the feature distance threshold and the model coefficient threshold. In
contrast, for the sampling, the posterior is completely specified by the model
itself. We need only to define the proposal distribution. Further, the standard
approach has a fixed search distance. In contrast, when we generate samples
from the proposal distribution, the model deformations depends on the local
variance of the PDM and hence is locally adaptive.

Dice Score Bi. Average Distance [mm] Hausdorff Distance [mm]

1

standard  sampling  w. lines standard  sampling . lines standard  sampling  w. lines

0.8 0.9
<>
10

5

0.7
0 10 20 30 40 50 60 70

Fig. 2. Segmentation accuracy using the model including the test item. This figure
shows that sampling finds a better segmentation compared to the standard ASM fitting.
The sampling has the higher dice score as well as the lower bi-directional average
distance value and Hausdorff distance. Including expert annotations further improves
the result.

Full Model: In the Fig.2, we show the evaluation of the results for the first
experiment, where the target shape is contained in the model. For the Dice
coefficient, the bi-directional average surface distance and the Hausdorff-distance
one can observe that the sampling outperforms the standard fitting. Including
also the expert annotations further improves the result.
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Leave-One-Out: The leave-one-out experiments in Fig. 3 show the same trends.
Comparing the values to the last experiment we can observe that the Hausdorff
distance drops much more than the other measures. This was to be expected,
as in this experiment the test item is excluded from the model, but often has a
very specific local shape compared to the training items. The expert annotations
have a stronger impact on the leave-one-out experiment. Note, also for this
experiment, the used model for a specific test case is the same for all methods.

We conclude from the experiments that sampling is a better strategy to adapt
an ASM to data. In addition, integrating additional constraints in a straightfor-
ward manner, we showed the example of expert annotations along the boundary,
helps to improve the accuracy further.

Dice Score Bi. Average Distance [mm] Hausdorff Distance [mm]

i

standard  sampling  w. lines standard  sampling  w. lines standard  sampling  w. lines
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Fig. 3. Segmentation accuracy of the leave-one-out experiment. The sampling outper-
forms the standard ASM fitting approach. Again, the result further improves when
expert annotations are provided.

6 Conclusion

We presented a fully probabilistic interpretation of ASM based segmentation as
Bayesian inference. Using a Metropolis-Hastings sampling approach, we deter-
mine the maximum a posteriori segmentation. Our method is simple to imple-
ment and leads to better results compared to the standard ASM algorithm. As
all the terms in our posterior formulation are motivated by the model, no arbi-
trary thresholds are needed. Furthermore, the probabilistic formulation provides
a principled way of integrating additional information, such as expert annota-
tions. For future work, additional constraints, such as regions in the image, which
the fitting result should not enter could be integrated. The crucial component for
the performance of our method is the proposal distribution. The better it reflects
the (unknown) target distribution, the more efficient the sampling is while con-
vergence is always guaranteed asymptotically. Smarter choices of the proposal
distribution than the used random walk proposals, which take the image inten-
sities into account, could improve the convergence rate. Such proposals could
be based on random forest regression steps [8], on a global estimated parameter
distribution [6] or even include deep learning.



146 A. Morel-Forster et al.

Acknowledgment. This work was supported by the Innosuisse project 25622.1
PFLS-LS.

References

1. Cootes, T., Baldock, E., Graham, J.: An introduction to active shape models. In:
Image Processing and Analysis, pp. 223-248 (2000)

2. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models-their
training and application. Comput. Vis. Image Underst. 61(1), 38-59 (1995)

3. Esfandiarkhani, M., Foruzan, A.H.: A generalized active shape model for segmen-
tation of liver in low-contrast CT volumes. Comput. Biol. Med. 82, 59-70 (2017)

4. van Ginneken, B., de Bruijne, M., Loog, M., Viergever, M.A.: Interactive shape
models. In: Medical Imaging 2003: Image Processing, vol. 5032, pp. 1206-1217.
International Society for Optics and Photonics (2003)

5. Heimann, T., van Ginneken, B., et al.: Comparison and evaluation of methods for
liver segmentation from CT datasets. IEEE Trans. Med. Imaging 28(8), 1251-1265
(2009). https://doi.org/10.1109/TMI.2009.2013851

6. Jampani, V., Nowozin, S., Loper, M., Gehler, P.V.: The informed sampler: a dis-
criminative approach to Bayesian inference in generative computer vision models.
Comput. Vis. Image Underst. 136, 32—44 (2015)

7. Kirschner, M., Becker, M., Wesarg, S.: 3D active shape model segmentation with
nonlinear shape priors. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI
2011. LNCS, vol. 6892, pp. 492-499. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-23629-7_60

8. Lindner, C., Thiagarajah, S., Wilkinson, J., Consortium, T., Wallis, G., Cootes, T.:
Fully automatic segmentation of the proximal femur using random forest regression
voting. IEEE Trans. Med. Imaging 32(8), 1462-1472 (2013)

9. Lithi, M., Gerig, T., Jud, C., Vetter, T.: Gaussian process morphable models.
IEEE Trans. Pattern Anal. Mach. Intell. 40, 1860-1873 (2017)

10. Norajitra, T., Maier-Hein, K.H.: 3D statistical shape models incorporating
landmark-wise random regression forests for omni-directional landmark detection.
IEEE Trans. Med. Imaging 36(1), 155-168 (2017)

11. Schoénborn, S., Egger, B., Morel-Forster, A., Vetter, T.: Markov chain Monte Carlo
for automated face image analysis. Int. J. Comput. Vis. 123(2), 160-183 (2017).
https://doi.org/10.1007/s11263-016-0967-5

12. Van Ginneken, B., Frangi, A.F., Staal, J.J., ter Haar Romeny, B.M., Viergever,
M.A.: Active shape model segmentation with optimal features. IEEE Trans. Med.
Imaging 21(8), 924-933 (2002)

13. Wimmer, A., Soza, G., Hornegger, J.: A generic probabilistic active shape model
for organ segmentation. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A.,
Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 26-33. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-04271-3 4

14. Zhang, Q., Bhalerao, A., Helm, E., Hutchinson, C.: Active shape model unleashed
with multi-scale local appearance. In: 2015 IEEE International Conference on
Image Processing (ICIP), pp. 4664-4668. IEEE (2015)


https://doi.org/10.1109/TMI.2009.2013851
https://doi.org/10.1007/978-3-642-23629-7_60
https://doi.org/10.1007/978-3-642-23629-7_60
https://doi.org/10.1007/s11263-016-0967-5
https://doi.org/10.1007/978-3-642-04271-3_4

	Probabilistic Fitting of Active Shape Models
	1 Introduction
	2 Background : Active Shape Models
	3 Method
	4 Experimental Setup
	5 Results
	6 Conclusion
	References




