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Motivation

Computer vision tasks are often difficult because of the large variability in the
data that is induced by changes in light, background, partial occlusion as well as the
pose, texture and shape of objects.

Generative approaches to computer vision such as 3D Morphable Models
(3DMM) [1] allow us to overcome this difficulty by explicitly modeling the physical
image formation process.

Facial Image Analysis with 3DMM
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Posterior Estimation: We sample p(©|]) with the Metropolis-Hastings (MCMC)
In a two-step process:

= Generate a new point from the proposal distribution: ©;1 ~ Q(-|6;).

= Accept with acceptance probability: A(©;.1,0;) = min (1 p<?’f+>122<$j|1%3>).

» Time to convergence of the posterior inference strongly depends on a
careful design of the proposal distribution Q)(-|6;).

Informing MCMC with BNN

Informed sampling:

= decompose the proposal distribution into local () and global (); as in [3],

Ot1 ~ aQ(+0) + (1 — a)Qs(+]z).
= make global ()7 depend on data (estimate conditional density © | x).

Bayesian Neural Networks:

 for model uncertainty, use a prior distribution on network’s weights:
p(X, 0 | W)p(W)
[ p(O | X, W)p(W)dW’
- for data uncertainty, define a Gaussian likelihood N (f" (z), o?)
on 3DMM parameters,

pW | X,0) =

= combine model and data uncertainties for Q;(-|z) as in [2].
Our approach:

« adopt the general informed sampling approach,
= estimate global distribution (;(-|z) with a BNN.
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Contributions

» We estimate a global, image-dependent proposal distribution.
» BNN-Informed MCMC significantly improves exploration of maximal

posterior regions.

Experiments

Dataset: We use a sample of 80 face images from the CMU-Multipie face dataset,
sampled from Session-01 using the frontal cameras.

Experiment 1: Probabilistic Estimation of 3DMM Parameters

Experiment 2: Posterior Estimation with BNN-informed MCMC,
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