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Abstract

We propose an efficient self-shadowing illumination

model for Morphable Models. Simulating self-shadowing

with ray casting is computationally expensive which makes

them impractical in Analysis-by-Synthesis methods for ob-

ject reconstruction from single images. Therefore, we pro-

pose to learn self-shadowing for Morphable Model pa-

rameters directly with a linear model. Radiance transfer

functions are a powerful way to represent self-shadowing

used within the precomputed radiance transfer framework

(PRT). We build on PRT to render deforming objects with

self-shadowing at interactive frame rates. It can be illu-

minated efficiently by environment maps represented with

spherical harmonics. The result is an efficient global illu-

mination method for Morphable Models, exploiting an ap-

proximated radiance transfer. We apply the method to fitting

Morphable Model parameters to a single image of a face

and demonstrate that considering self-shadowing improves

shape reconstruction.

1. Introduction

Morphable Models [6] describe the variation of shape

and texture of objects such as faces. They allow to draw

new samples, create animations of morphing between two

instances, and to reconstruct shape, texture, and illumina-

tion from a single image by adapting model parameters

to it. Currently Morphable Models are oblivious to self-

shadowing. Self-shadowing has a large effect on images.

The extent depends on how much the shape shadows it-

self and under which illumination it is lit. In faces, ex-

pressions and aging are deformations resulting in substan-

tial self-shadowing. Self-shadowing comes with a signifi-

cant computational cost which makes morphing and model

adaptation impractical. Being able to interact with the Mor-

phable Model or making inverse rendering practical re-

quires a fast self-shadowing model. In this work, we pro-

pose a method for fast and realistic self-shadowing for the

Morphable Model.

Simulating self-shadowing requires tedious sampling of

the hemisphere for every point on the surface by casting

rays [17]. We represent self-shadowing with radiance trans-

fer functions. For a given shape PRT [20] allows to pre-

compute them. The shape can then be lit under arbitrary

low-frequency environment maps [20], and BRDFs [8] at

interactive frame rates. This method is suitable for rigid

objects. PRT is expensive and unfeasible for rendering de-

forming objects like those arising from Morphable Models.

For every surface change we would have to compute the ra-

diance transfer with ray-casting.

In the Morphable Model, shape is modelled linearly.

Similar shapes are close to each other in the shape space.

It can be expected that self-shadowing of neighbouring

shapes is similar too. As a consequence, we compute self-

shadowing only for a few hundred shapes instead of expen-

sive ray casting for every possible shape. In this work we

model the radiance transfer field of the Morphable Model.

The idea is to approximate radiance transfer directly from

shape parameters. We learn the mapping between Mor-

phable Model shape parameters with linear regression. We

assume the object to be of diffuse reflectance to be lit by

a low-frequency environment map represented with spher-

ical harmonics. Extension to other BRDFs and interreflec-

tions is possible. In the methods section we describe the lin-

ear approximation of the radiance transfer field of the Mor-

phable Model. In the experiments section we show that a

linear approximation is sufficient and compare the proposed

fast Morphable Model self-shadowing model (MoMo-PRT)

to the exact and expensive PRT method. We show that re-

constructing face shape from a single image is improved

with the proposed method. Figure 1 gives an overview over

the proposed approach.

1.1. Related Work

Morphable Models were first introduced by Blanz and

Vetter [6]. They model face shape and texture indepen-

dently of each other. Face shape and texture are mod-

elled as a linear combination of Principal Component Ana-

lyis (PCA) basis vectors computed from exemplar 3D face

scans. The Analysis-by-Synthesis method of Schönborn et

al. [18] uses a MCMC Metropolis Hastings method to re-
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construct shape, texture, and illumination from a single im-

age. Analysis-by-Synthesis methods require realistic and

fast rendering methods.

Screen-space methods are fast in calculating effects

like ambient occlusion [22] frame by frame. In screen

space directed occlusion [15] the local contribution of self-

shadowing is computed in screen space and the global con-

tribution on the coarsened mesh by ray tracing. Screen-

space methods do not consider the distribution of shad-

ows created by the Morphable Model shape distribution.

Our proposed method exploits the Morphable Model shape

statistic to create shadowing. Many Morphable Model

adaptation frameworks exploit the deterministic connec-

tion between shadowing and shape parameters to estimate

shape, texture, and illumination. In screen space methods

the connection between self-shadowing and shape param-

eters is difficult to establish. MoMo-PRT provides trivial

derivatives of self-shadowing with respect to shape param-

eters which would be difficult with screen-space methods.

This work builds on PRT, which represents self-

shadowing with linear radiance transfer functions. It was

introduced by Sloan and Kautz [20] and speeds up the ren-

dering of non-deforming objects with global illumination.

They use the concept of radiance transfer functions to rep-

resent self-shadowing. They compute radiance transfer for

every point on the surface by simulating light-surface inter-

action, once, for the given shape with ray tracing. Because

the radiance transfer of the shape can be reused for different

illuminations, interactive rendering of non-deforming sur-

faces but changing environment map illumination becomes

possible in real-time.

Early Morphable Model based image analysis methods

included self-shadowing using a single light source and a

Phong illumination model ([6], [16]). Aldrian and Smith

et al. [2] and Schönborn et al. [18] use spherical har-

monics to approximate the environment map and can pro-

duce more realistic illumination settings but lack shadow-

ing. The work of Shahlaei and Blanz [19] uses an illumi-

nation cone to combine multiple light sources to approx-

imate the environment map and includes cast shadows in

rendering. An approximation to self-shadowing with ambi-

ent occlusion and bent normals [11] for Morphable Models

was proposed by Aldrian et al. [1]. They show that texture

and illumination reconstruction can be improved with their

approach. These methods are coarse approximations of

true self-shadowing. Radiance transfer functions however,

model the full surface-light interaction. Self-shadowing ex-

pressed within the PRT framework results in more realistic

rendering.

Shape from shading methods as post processing of Mor-

phable Model reconstructions are used by different methods

([21, 14]) to obtain more detailed reconstructions. These

methods do not respect self-shadowing and are therefore not

suited to reconstruct details lit by self-shadowing.

Previous work coupling shape and ambient occlusion

was done by Kontkanen and Aila [9] who model ambient

occlusion of an animated character as a linear combination

of animation parameters. In this work we show how to

model global illumination with radiance transfer matrices

for Morphable Models illuminated by low frequency envi-

ronment maps.

2. Methods

For efficient rendering we directly estimate self-

shadowing from Morphable Model shape parameters using

linear regression. We can thus eliminate the computation-

ally expensive ray casting calculation during rendering. The

overall computational burden of computing self-shadowing

for a deforming object is significantly reduced. Calculation

of a radiance transfer matrix, as required by PRT rendering,

is reduced to a matrix-vector multiplication. For full ben-

efit of explicit shelf-shadowing, we correct texture images

and remove effects of ambient occlusion. Finally, we also

present how the efficient, linear self-shadowing model can

be applied to efficiently estimate an unknown illumination

environment map from a single face image. Figure 1 gives

an overview over the methods.

2.1. Morphable Model

Our 3D Morphable Face Model is derived from the the

Basel Face Model [13], built from face scans of 200 people

taken with a structured light 3D scanner. We extended it

with a multi-linear model to incorporate facial expressions

as proposed by Amberg et al. [3]. The model is composed

of two independent PCA models for shape and texture as

well as an additional PCA model for facial expressions. Ex-

pressions are modelled as difference to the neutral faces.

2.2. Morphable Model Radiance Transfer

For Morphable Model Radiance Transfer (MoMo-PRT),

we estimate shelf-shadowing radiance transfer directly from

the model’s shape representation. The method is based on

PRT [20] but introduces a computationally efficient way of

finding transfer matrices.

Within the PRT framework, emitted radiance r on the

surface of an illuminated object is calculated by linear trans-

fer of incoming irradiance l. All functions on the sphere are

expanded in a Spherical Harmonics basis. For every point i

on the surface this is

ri = Til. (1)

The transfer matrix Ti describes the surface-light inter-

action and includes all shelf-shadowing effects. In PRT,

it needs to be calculated by solving a full ray casting in-

tegration for each object while viewpoint and illumination

changes do not require recomputing.

3866



Figure 1: Efficient self-shadowing for the Morphable Model (MoMo-PRT). We approximate self-shadowing for the Mor-

phable Model parameters. Model building: First, we simulate self-shadowing for different faces in face space. Second, we

find a linear mapping between shape parameters and self-shadowing parameters. Efficient Rendering: For a new Morphable

Model shape, we estimate its corresponding self-shadowing parameters using the linear model. This allows to efficiently

compute a rendering with self-shadowing for arbitrary Morphable Model parameters.

Observed radiance Li at a position i is a linear combina-

tion of radiance r with spherical harmonics basis functions

Y evaluated in normal direction n of the surface

Li = (Y(ni) ∗ bi)
t
ri = (Y(ni) ∗ bi)

t
Til. (2)

Y(ni)∗bi is the convolution of spherical harmonics ba-

sis functions with the BRDF b. In this work, we assume a

constant BRDF (Lambertian reflectance) on the whole sur-

face and expand functions on the sphere using three bands

of real spherical harmonics Ylm, l = 0, 1, 2 (9 coefficients).

MoMo-PRT. For a Morphable Model, we model a linear

relationship Wi(θ) between radiance transfer matrices and

shape parameters θ at every vertex i of the mesh

Ti = Wi(θ) (3)

and therefore the outgoing radiance

ri = Wi(θ)l. (4)

Matrices within triangles are found by barycentric inter-

polation.

Training. To actually find mappings W, we perform mul-

tivariate linear regression on a training data set consisting of

pairs of shape parameters and corresponding transfer matri-

ces T. Transfer matrices for training are calculated by full

self-shadowing integration using ray tracing for each exam-

ple shape on each vertex of the mesh.

Example shapes are obtained by varying principal com-

ponents of the Morphable Model. We sample components

at ±2 standard deviations. More specifically, samples lie

on a hypercube in parameter space with edge length 4. We

systematically sample all corners on the hypercube for the

first three principal components of shape and expression.

For every vertex i, we search the linear transform Wi

Wiθ + T̃
0

i
= T̃i. (5)

Here, Wi is a matrix mapping shape parameters to the

vectorized transfer matrix T̃i. Below, we treat the constant

offset T̃0

i
implicitly and remove it from notation to prevent

clutter.

For each vertex i, we get a system of linear equations for

n training examples
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Wiθ =
[

T̃i1
, T̃i2

, . . . T̃in

]

. (6)

We render n = 600 training examples and have a dimen-

sionality 9 × 9 = 81 of T̃. We then obtain Wi for each

vertex as the least-squares solutions of above systems.

Shelf-shadowing approximated by the proposed linear

method is visually indistinguishable from the full PRT com-

putation while dramatically faster, see Fig. 2 and Table 1.

2.3. SelfOcclusion Correction of Textures

Textures of face scans contain shading due to self-

shadowing even when lit with ambient illumination. In the

classical Morphable Model, the texture model still contains

such shading. Because shape and texture are modelled in-

dependently, shading due to self-occlusion can be expressed

with the texture model, without changing the shape. With

explicit shadow rendering, we correct scan textures to pre-

vent double application of self-shadowing effects.

We remove the shading due to ambient occlusion simi-

larly to the approach of Beeler et al. [5]. To remove shading

due to self-occlusion, we subtract it from captured textures

under ambient illumination. We explicitly calculate shelf-

shadowing for the 3D scan geometry and find the amount

of shading d due to self-shadowing by subtracting a render-

ing without self-shadowing Rs̄ from a rendering with self-

shadowing Rs. The corrected texture image Is̄ is obtained

by subtracting the shading due to self-shadowing d from the

input image Is

Is̄ = Is − (Rs −Rs̄) . (7)

Physically-based rendering relies on a linear color space.

We therefore linearize input colors in the sRGB color space

with gamma correction before subtraction and rendering.

The texture model is also built in linear color space.

2.4. Model Fit to an Image

The Morphable Model provides rich prior knowledge to

obtain a 3D reconstruction of a face from a single image

in an Analysis-by-Synthesis manner. Fitting the model to

the image reconstructs shape, texture, pose and illumina-

tion. Our linear shadowing model can be directly applied

to inverse rendering in the fitting process. It is possible

to efficiently obtain the illumination condition of the face

by solving a linear system which relates observed pixel

colors, surface normals, self-occlusion, albedo and the en-

vironment map. Such estimation of illumination respects

self-shadowing as an effect of surface-light interaction. For

adapting the model to an image, we employ the Markov

chain Monte Carlo fitting framework of Schönborn et al.

[18].

To obtain the illumination estimation, we rewrite (2) as a

system of linear equations for N observed radiance values

L =
[

L1 L2 · · · LN

]T

L = Al. (8)

The rows of A are

ti = (Y(ni) ∗ bi)
t
Ti. (9)

We use our linear estimate of the transfer matrices Ti =
Wiθ in above system and obtain the environment map l as

the least-squares solution.

3. Experiments

We evaluate the approximation quality of the Morphable

Model with self-shadowing and compare its 3D recon-

struction performance to a Morphable Model without self-

shadowing. The model with linear approximate shelf-

shadowing can improve on face reconstruction on synthetic

and real-world data.

3.1. Approximation Quality

We quantitatively compare renderings obtained with

MoMo-PRT to its ground truth, a full PRT shelf-shadowing

calculation. We evaluate the image difference between the

obtained face renderings as a measure of error. We choose

all other settings identical and directly compare the effects

of including shelf-shadowing. To get a diverse, averaged

result, we randomly sample face instances at increasing dis-

tance from the mean and thus decreasing statistical plausi-

bility. For each distance value, we draw 10 samples, ren-

der the local illumination model, our linear approximation

with MoMo-PRT and do the full shadowing calculation of

PRT. The renderings use two different illumination setups,

an evenly-lit ambient setup and a shadowing scene with il-

lumination from the side. Both renderings are compared

to full PRT calculation. The image reconstruction error is

a pixel-wise Root Mean Square (RMS) difference of RGB

values. For comparability, it is scaled relative to the max-

imally possible value (white). The results are presented in

Fig. 3.

While the local model shows a difference of 3% and

higher, the linear approximation is consistently below 1.5%,

even below 0.5% for ambient light (only ambient occlusion

effect). We observe a slightly increasing reconstruction er-

ror for more extreme shapes (farther from mean), which is

completely expected. However, the MoMo-PRT deals with

it quite well and only shows a very moderate increase for

plausible shapes.

The low reconstruction error of the proposed method

corresponds to a perceptually hardly visible difference. The
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(a) local illumination (b) global illumination (ours) (c) global illumination (PRT) (d) norm of RGB difference

Figure 2: A comparison of the different rendering methods with the same environment map applied to a face with expression

(top) and an aged face (bottom). The local model assumes Lambertian reflectance and contains no global illumination effects

(a). The proposed model consists of local illumination plus efficient self-shadowing (b). It approximates physically based,

accurate but slow self-shadowing of the PRT method (c). The approximate MoMo-PRT method (b) is visually indistinguish-

able from the full calculation (c). In contrast, the local model misses shadows to the left of the nose and cannot render the

nasolabial fold with a satisfying impression of depth.This can be seen in (d). It shows the norm of the RGB difference vectors

between (b) and (c). The mean error for the top row is 0.01 and for the bottom it is 0.02. The maximal possible deviation is

1.73. The maximum deviation is 0.35 and 0.67.

proposed model leads to renderings of faces with expres-

sion and aged faces with deeper folds which are visually

indistinguishable from the full PRT calculation, see Fig. 2.

The small approximation error shows that linear methods

are justified for this application. We do not see a benefit

in the additional precision we would gain with non-linear

methods due to the added cost. At least within the range of

the shape variations we apply the model to.

3.2. Computational Performance Comparison

We compare the speed of rendering different faces with

the proposed method to the full self-shadowing calcula-

tion of PRT. We sample random faces from the Morphable

Model and render them with the simple local illumination

model, the proposed model and with full PRT. We timed

rendering and drawing a model sample in all three models.

All meshes consist of roughly 50 000 vertices and 100 000

triangles. For a fast triangle lookup in the full PRT integra-

tion [20], we use an octree [12] implementation. It is to note

that we are using a software renderer for all methods. To

measure time of computation we repeated the experiment

ten times on an Intel Xeon CPU with 4 cores (8 threads at

3.6Hz. One thread each was used for the local and MoMo-

PRT models and six for the full PRT simulation. In Ta-

ble 1, we present the dramatic speedup of roughly 685× us-

ing the linear approximation MoMo-PRT compared to the

full self-shadowing simulation. For comparison, the local

illumination model is still faster but does not consider any

shadowing effects and generates less realistic face render-

ings. Whilst the full PRT rendering is not suitable for real-

time-applications the proposed MoMo-PRT rendering can

be performed in real-time.

3.3. Reconstruction Experiment on Artificial Data

We evaluate the self-shadowing model in terms of its

quality of face reconstruction from images in a model fit-

ting application. We therefore compare Morphable Model

face reconstruction of shape, texture and illumination on ar-

tificial renderings to their ground truth values. The artificial

target images depict a single face, illuminated by shadowing
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Figure 3: Gap between different models and true

self-shadowing. Comparison of the local illumination

model and MoMo-PRT with true self-shadowing for ran-

dom face shapes with increasing distance to the mean.

We compare renderings using the respective approximate

model (MoMo-PRT and local illumination) with true self-

shadowing under two different illumination conditions, am-

bient and with strong self-shadowing under illumination

from the side (shadow). The approximation quality of

MoMo-PRT is very high. It reproduces the image obtained

by full shelf-shadowing calculation with less than 1.5% dif-

ference. However, local illumination cannot capture shad-

owing and reproduces the image considerably worse. Dif-

ference values are relative average RGB magnitudes of

pixel-wise differences.

Table 1: Performance comparison. All values are relative

to the full simulation. The mesh consists of 50 000 ver-

tices and 100 000 triangles. Besides rendering, the mea-

sured times contain drawing a model sample in all three

methods. More details can be found in Section 3.2.

Model Speedup

PRT 1

MoMo-PRT 685

local 1 410

light, as used in Fig. 2. Model fitting is based on the MCMC

method presented in [18]. We use their presented setup but

replace illumination estimation with our own shadow-aware

version presented in Section 2.4.

We render 20 randomly generated face images using a

full physically based self-shadowing simulation as target

images. Reconstructions are obtained by fitting the Mor-

phable Model with our linear radiance transfer extension

and with a local illumination model only. The fit is prop-

erly initialized at the right face pose to focus on actual face

reconstruction rather than initialization. We evaluate fits on

the best of 10 000 drawn samples.

Evaluation is based on RMS differences to the ground

truth data used for rendering. We evaluate shape difference,

albedo reconstruction, illumination estimation and image

reconstruction. Shape is a point-wise comparison of the 3D

shape positions at each vertex. Texture is compared directly

on a normalized image without any illumination. Illumi-

nation is compared by rendering a sphere under the esti-

mated environment map and comparing the resulting im-

ages [4]. The image reconstruction error measures how well

we can approximate the target image with the model fit. All

color values are RMS differences in RGB space, see above.

Shape difference is in mm. We test if improvements by the

proposed method over the baseline are statistically signifi-

cant with the Wilcoxon signed-rank test on the sample of 20

examples.

The experiment demonstrates a significant superior

shape reconstruction performance when self-shadowing is

considered. Also, the final model-reconstructed image is

more similar to the original image. The effect can be em-

phasized for shapes which show more geometric details,

such as aged faces. Table 2 presents a summary of the re-

construction results.

Table 2: Reconstruction performance of the proposed self-

shadowing model (global) and the model with only local

illumination (local) when adapted to an image. Recon-

struction of shape and image are significantly (*) better

with self-shadowing. Reconstruction errors measure Root

Mean Square (RMS) differences between reconstruction

and ground truth, for details refer to Section 3.3.

local global (ours)

shape [mm] 2.51 2.12*

texture 0.11 0.11

illumination 0.14 0.14

image 0.14 0.12*

3.4. Reconstruction Experiment on Photographs

To offer more intuitive analysis of fitting performance,

we qualitatively demonstrate the result also on a few real-

world images. We manually initialized fitting with user-

provided landmarks locations. Fitting is performed with

the same settings as in the above experiment. In Fig. 4

we present the resulting image reconstructions of our Mor-

phable Model with shelf-shadowing and compare it to a fit

obtained with a locally illuminated model.
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(a) Local Illumination (b) Target (c) MoMo-PRT

Figure 4: Morphable Model fits to target photograph (b), with the local illumination model (a) and our MoMo-PRT method

(c). Improved aging and nasolabial fold in the first row. Second row exhibits self-shadowing: the left eye and left part of

the mouth is less visible because of self-shadowing. Images are from Labeled Faces in the Wild (LFW) ([7]) and Annotated

Facial Landmarks in the Wild (AFLW) ([10])

We performed a more detailed analysis of how the fitting

result is composed of the different components of the face

model. Whilst the reconstruction of the local model often

looks feasible too, it tends to explain illumination effects by

the texture model (see Fig. 5).

The resulting fits demonstrate the increased quality of

reconstruction. With characteristic shapes and shadowing

illuminations we observe the largest difference in image re-

construction between ours and the local model. The results

of the self-shadowing based image analysis appear better in

regions where shadows have strong effects on facial appear-

ance. Mainly in the eye, nose and nasolabial fold regions

the image reconstruction is better and those regions are bet-

ter explained by shape and illumination and not the texture

model. Nasolabial folds tend to be more pronounced and

shadows can be reproduced better.

4. Conclusion

We presented an efficient global illumination model

that allows interactive rendering of deformable Morphable

Model instances with self-shadowing. We combined Mor-

phable Models with Precomputed Radiance Transfer by

modeling radiance transfer as a linear function of shape. We

thus extended the applicability of efficient PRT rendering

to deformable shapes. For the Morphable Model of faces,

we achieved a visually indistinguishable approximation to

the expensive ray casting calculating of self-shadowing but

at a far lower computational load. Interactive rendering

speed and a linear relation make inverse rendering including

self-shadowing from a single image practical. We demon-

strated that fitting a Morphable Model with self-shadowing

to images improves face reconstruction and respects shad-

owing, for synthetic and real-word applications. The lin-

ear approach is open to integrate inter-reflections, arbitrary

BRDFs and subsurface scattering in the future. For future

work non-linear methods could be explored to improve the

3871



(a) Target (b) Local Illumination (c) MoMo-PRT

Figure 5: Explanation of target image (a) with either texture or self-shadowing. Reconstruction with local model (b).

Reconstruction with our model (c). Both reconstructions hold a feasible image explanation (left). The constructed tex-

ture rendered on mean shape lit with ambient illumination (right) reveals the how the different models explain the target

image. For the first example (top) the nasolabial fold is explained in the texture using the local illumination model and

with shape and illumination using the proposed MoMo-PRT. The second example depicts the dark eye region in the target

image reconstructed by the local illumination model explaining shadowing in the texture by making it unnaturally darker

around the eyes. Our model explains the shadowing of the eye with self-shadowing. Upper Image: LFW [7], lower Image:

KEYSTONE/EPA/Justin Lane

radiance transfer regression from shape parameters. To im-

prove quality and speed MoMo-PRT could be combined

with screen-space methods. Derivatives of self-shadowing

with respect to shape parameters can be computed simply

which opens the approach to other methods of shape re-

construction and possibly other applications in computer vi-

sion.
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