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CHAPTER 1

Shape modeling using Gaussian
Process Morphable Models
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a Corresponding: marcel.luethi@unibas.ch

Abstract
In this article we discuss Gaussian Process Morphable Models (GPMM), which are a gen-
eralization of classical statistical shape models. GPMMs extend statistical shape models in
two ways: First they are formulated using Gaussian processes instead of the usual multivari-
ate normal distribution, which makes it possible to obtain continuous models of the shape
variability. Second, and more importantly, they allow us to model the shape variability using
analytically defined covariance functions. This makes it possible to use GPMMs in cases
where we do not have sufficiently many representative training examples. In particular, we
will show in this article how to use GPMMs for 1) establishing correspondence between
shapes where the GPMM is used as a shape-prior in the registration algorithm, and 2) fitting
statistical shape models to data with pathologies.
This article provides an introduction to the basic theory and concepts behind GPMMs as well
as a more tutorial style discussion on how to apply GPMMs in practical applications. As a
main theoretical contribution we will introduce a novel kernel, which enforces axial symmetry
of shape deformations. This is useful for modeling anatomical structures that are nearly
symmetric, such as the skull or the pelvis. In the tutorial part, we will study the problem
of building a skull model from noisy example data. This problem is challenging due to the
limited availability of training data, the frequently occurring holes and artifacts in the data,
as well as the complex topology of the skull itself. We will show how we can use GPMMs
to build different prior models of varying degree of sophistication. Our results confirm that
the better the model represents the characteristics of the skull, the better are the registration
results we obtain. We will also show how we can use GPMMs to improve statistical shape
models, such that they can better explain the full shape variability, or fit pathological shapes.
In this context we discuss a fitting method, which does not only provide an accurate fit to the
data, but allows us to split the result into the anatomically normal shape and the pathological
deformations.
All the modelling and visualization methods that we discuss in this article are publicly avail-
able as part of the open source software scalismo [19].

c© Elsevier Ltd.
All rights reserved. 1
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1. Introduction

Statistical shape models (SSMs) are a well established tool in medical image analy-
sis [9]. The core idea is that a statistical shape model represents the normal shape
variation of a class of shapes, which is then used as prior knowledge in an algorithm.
The most important examples of statistical shape models are the Active Shape Model
[5] and the Morphable model [4], which learn the shape variation from given training
examples, and represent the shape variation using the leading principal components.
These models are linear, parametric models with mathematically convenient proper-
ties. As they can only represent shapes that are in the linear span of the given training
examples, they lead to algorithms that are robust towards artifacts and noise. The
downside of this specificity is that to learn an expressive model (i.e. one that can ex-
press all possible target shapes), a lot of training data is needed. Lüthi et al. have
recently introduced a generalization of these classical statistical shape models, called
Gaussian Process Morphable Models (GPMM), which use the mathematical frame-
work of Gaussian processes to model shape variations [13]. GPMMs make it possible
to construct expressive shape priors using analytically defined covariance functions,
even when there are no or only few example shapes available to learn the shape varia-
tions from.

The main goal of this article is to give an introduction to GPMMs and to show that
with this not too complicated concept, we can solve many shape modelling problems
in a unified way, which previously required specialized algorithms. As a theoretical
contribution we introduce a novel covariance function, which allows us to formulate
GPMMs that enforce axial symmetric shape deformations. We will illustrate the use
of GPMMs in an extended practical use case, which addresses the problem of building
a skull model from a set of noisy skull surfaces. Our intention is that this use case
does not only illuminate the concepts, but also serves as a practical guide on how
to do shape modelling using GPMMs. In particular we want to illustrate the main
considerations that need to be taken into account when we design prior models, how
we can visualize and quantitatively asses the model quality and how we can choose
the free parameters.

In the final section of this article, we will also introduce a novel application of GP-
MMs, which is the analysis of pathological shapes using a statistical shape model. The
main idea is that we combine a classical statistical shape model, which is learned from
example data, with an analytically defined model for the pathology. This combined
model is fitted to the pathological shape and subsequently divided into the anatomi-
cally normal part, represented by the classical shape model, and the pathological de-
formation. This approach does not only make it possible to use a statistical shape
model to fit pathological shapes, but also provide us with the most likely anatomical
normal shape.
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2. Shape modeling using Gaussian processes

Gaussian process morphable models are a generalization of classical (i.e. PCA-based)
statistical shape models. We therefore start by revisiting the basic concepts of statis-
tical shape models, before discussing how these models can be interpreted using the
formalism of Gaussian processes.

2.1. Classical statistical shape models revisited
PCA-based statistical shape models assume that the space of all possible shape defor-
mations can be learned from a set of typical example shapes {Γ1, . . . ,Γn}. Each shape
Γi is represented as a discrete set of landmark points, i.e.

Γi = {xi
k | xk ∈ R

3, k = 1, . . . ,N},

where N denotes the number of landmark points. In early approaches, the points
typically denoted anatomical landmarks, and N was consequently small (in the tens).
Most modern approaches use a dense set of points to represent the shapes. In this
case, the number of points is typically in the thousands. The crucial assumption is
that the points are in correspondence among the examples. This means that the k-th
landmark point xi

k and x j
k of two shapes Γi and Γ j represents the same anatomical point

of the shape. These corresponding points are either defined manually, or automatically
determined using a registration algorithm. To build the model, a shape Γi is represented
as a vector ~si ∈ R

3N , where the x, y, z− components of each point are stacked into a
large vector:

~si = (xi
1x, x

i
1y, x

i
1z, . . . , x

i
Nx, x

i
Ny, x

i
Nz).

This vectorial representation makes it possible to apply standard multivariate statistics
to model a probability distribution over shapes. The usual assumption is that the shape
variations can be modeled using a normal distribution

~s ∼ N(~µ,Σ)

where the mean ~µ and covariance matrix Σ are estimated from the example data:

~µ = s :=
1
n

n∑
i=1

~si (1.1)

Σ = S :=
1

n − 1

n∑
i=1

(~si − s)(~si − s)T . (1.2)

As the number of points N is usually large, the covariance matrix Σ cannot be repre-
sented explicitly. Fortunately, as it is determined completely by the n example datasets,
it has at most rank n and can therefore be represented using at most n basis vectors.
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The basis vectors are found by performing a Principal Component Analysis (PCA)
[11]. In its probabilistic interpretation, PCA leads to a model of the form

~s = s +

n∑
i=1

αi

√
di~vi αi ∼ N(0, 1) (1.3)

where (~vi, di), i = 1, . . . , n, are the eigenvectors and eigenvalues of the covariance ma-
trix Σ [23]. It is easy to check that under these assumptions, ~s ∼ N(s, S ). Thus, we
have a efficient, parametric representation of the distribution.

2.2. Gaussian process morphable models
The literature of PCA based statistical shape models usually emphasizes the point that
it is the shape that is modeled. Equation 1.3 however, gives rise to a different inter-
pretation: A statistical shape model is a model of deformations ~φ =

∑n
i=1 αi

√
di~vi ∼

N(0, S ), with which the mean shape s is deformed. The probability distribution is on
the deformations. This is the interpretation we use when we generalize these models to
define Gaussian Process Morphable Models. We define a probabilistic model directly
on the deformations. To stress that we are modeling deformations (i.e. vector fields
defined on the reference domain ΓR), and to become independent of the discretization,
we model the deformations as a Gaussian process.

Let ΓR ⊂ R
3 be a reference shape and denote by Ω ⊂ R3 a domain, such that ΓR ⊆

Ω. We define a Gaussian process u ∈ GP(µ, k) with mean function µ : Ω→ R3 and
covariance function k : Ω ×Ω→ R3×3. Note that any deformation û sampled from
GP(µ, k), gives rise to a new shape Γ by warping the reference shape ΓR:

Γ = {x + û(x) | x ∈ ΓR}.

Similar to the PCA representation of a statistical shape model used in (Equation 1.3),
a Gaussian process GP(µ, k) can be represented in terms of an orthogonal set of basis
functions {φi}

∞
i=1

u(x) ∼ µ(x) +

∞∑
i=1

αi
√
λiφi(x), αi ∈ N(0, 1), (1.4)

where (λi, φi) are the eigenvalue/eigenfunction pairs of the integral operator

Tk f (·) :=
∫

Ω

k(x, ·) f (x) dρ(x),

where ρ(x) denotes a measure. The representation (1.4) is known as the Karhunen-
Loève expansion of the Gaussian process [3]. Since the random coefficients αi are
uncorrelated, the variance of u is given by the sum of the variances of the individual
components. Consequently, the eigenvalue λi corresponds to the variance explained
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by the i-th component. This suggests that if the λi decay sufficiently quickly, we can
accurately approximate the process using the first r components only:

ũ(x) ∼ µ(x) +

r∑
i=1

αi
√
λiφi(x). (1.5)

The expected error of this approximation is given by the tail sum
∞∑

i=r+1

λi.

The resulting model is a finite dimensional, parametric model, similar to a standard
statistical shape model. Note, however, that there is no restriction that the covari-
ance function k needs to be the sample covariance matrix. Any valid positive definite
covariance function can be used.

The question remains how we can compute the eigenfunction/eigenvalue pairs in
(1.5). Although for some kernel functions analytic solutions are available (see e.g.
[2, 8]) for most interesting models we need to resort to numeric approximations. For-
tunately, this problem has been widely studied in the literature (See e.g. Flannery et
al. Chapter 18 [6]). A classical method, which we use in our implementation, is the
Nyström method [17]. This method is discussed in detail in Appendix A.1.

2.3. Defining Gaussian processes
To define a Gaussian process GP(µ, k) for modelling shape deformations, we need to
define the mean function µ : Ω→ R3 and a covariance function k : Ω ×Ω→ R3×3. In
the following, we will discuss two important strategies for choosing these parameters.
As we are only interested in modelling the deformations on the reference surface ΓR,
we always let Ω = ΓR.

2.3.1. Learning deformations from data
Similar to classical statistical shape models, we can learn the mean and covariance
structure of the models from example data. Let {Γ1, . . . ,Γn} be the example surfaces
and {u1, . . . , un}, ui : ΓR → R

d denote the corresponding deformation fields, which es-
tablish correspondence between the reference ΓR and the respective surface, i.e.

Γi = {x + u(x)|x ∈ ΓR}.

We can define the mean at every point x as the sample mean

µSSM(x) =
1
n

n∑
i=1

ui(x) (1.6)
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and the covariance function at the points x and x′ by the sample covariance

kSSM(x, x′) =
1

n − 1

n∑
i=1

(ui(x) − µSSM(x))(ui(x′) − µSSM(x′))T . (1.7)

We refer to this kernel kSSM as the sample covariance kernel or empirical kernel.

2.3.2. Modeling smooth deformations
We can also define a Gaussian process model when we have no example shapes. In this
case, we usually assume that the chosen reference shape is close to the (hypothetical)
average shape of the modeled class of shapes and let the mean deformation be zero

µ(x) = (0, 0, 0)T .

In absence of other prior knowledge, the most basic assumption when modeling shape
deformations is that shape deformations vary smoothly. A well known covariance
function that enforces smooth functions is the scalar-valued Gaussian kernel, defined
by

g(x, x′) = exp(−‖x − x′‖2/σ2),

where σ2 defines the range over which the function values at the points x and x′ are
correlated. The larger the values of σ, the more smoothly varying the resulting defor-
mations fields will be. In order to use this scalar-valued kernel for modeling deforma-
tions, we can define a matrix valued Gaussian kernel as

k(x, x′) = s · diag(g) := s

 g(x, x′) 0 0
0 g(x, x′) 0
0 0 g(x, x′)

 .
The diagonal structure of the resulting 3 × 3 matrix means that the x, y, z component of
the modeled vector field are independent. The parameter s ∈ R determines the variance
(i.e. scale) of a deformation vector. This construction can be generalized by defining
the matrix valued kernel k as

k(x, x′) = AT g(x, x′)A, A ∈ R3×3, (1.8)

which would allow us to introduce anisotropic scaling and correlations between the
components [14].

2.3.3. Combining kernels
From a mathematical point of view, the only requirement that is needed to define a
valid Gaussian process is that the covariance function is a symmetric and positive
semi-definite kernel [1]. It is well known that the Gaussian kernel satisfies this prop-
erty [17]. While it is in general rather difficult to prove that a symmetric function is
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positive semi-definite, the following rules can be used to construct kernels that have
this property [21, 14]:

Theorem 1. Let g, h : Ω ×Ω→ R be two symmetric positive semi-definite kernels and
f : Ω→ R an arbitrary function. Then the following rules can be used to generate new
positive semi-definite kernels:
1. k(x, x) = g(x, x) + h(x, x)
2. k(x, x) = αg(x, x), α ∈ R+

3. k(x, x′) = g(x, x′)h(x, x′)
4. k(x, x′) = f (x) f (x′)
5. BT h(x, x′)B, B ∈ Rr×n

6. k(x, x′) = k3(φ(x), φ(x′)) k3 : Rn × Rn → R, φ : Ω→ Rn

Using these simple rules we can easily proof that the covariance functions that we
defined above are positive semi-definite.1 More importantly, however, they allow us to
combine existing kernels to build more complicated models. We will make extensive
use of these rules in Section 4 and 5, in order to define application specific shape
priors.

2.3.4. Modeling symmetric variations
Many biological shapes are mirror symmetrical. It turns out that we can also encode
this property directly into a covariance function, and thus obtain shape priors that
enforces such symmetries. Without loss of generality, we assume that the mirror plane
is orthogonal to the first dimension of the domain over which the Gaussian process is
defined and that this plane is positioned at the origin. The mirrored position of a given
point can then be expressed by flipping the sign of the first coordinate. We can define
a symmetry-kernel over R3 from a valid scalar valued kernel k(·, ·) as

ksym(x, x′) = Ik(x, x′) + Īk(x, x̄′) , (1.9)

where I is the 3 × 3 identity matrix and

Ī =


−1 0 0
0 1 0
0 0 1

 , x̄′ =


−x′1
x′2
x′3

 . (1.10)

1Combine rule 4, 1 and 2 for deriving the empirical covariance kernel, and rule 5 for the matrix-valued
Gaussian kernel.
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The flipped sign of x̄′ reflects the point at the above mentioned mirror plane.2 The
negative sign for a specific diagonal entry in Ī favors opposed oriented deformations
for symmetric points along this dimension. A proof that this kernel is positive semi-
definite is given in [15].

It turns out that defining a GPMM using the symmetric kernel ksym leads to a model
with increased variance compared to the original covariance function k. First the total
variance changes for points close to the symmetry plane. Second the variance paral-
lel to the symmetry plane increases while it is reduced in the perpendicular direction.
Exactly on the symmetry plane the perpendicular variance is zero. While the change
in perpendicular direction is expected, we correct the increased variance using a cor-
rection function S (x, x′), which reduces the variance depending on the distance to the
symmetry plane:

S (x, x′) =


1 0 0
0 f (x) f (x′) 0
0 0 f (x) f (x′)

 , f (x) =

√
1.0

2.0 − k(x, x) + k(x, x̄)
. (1.11)

The final symmetric kernel is given as:

ksym(x, x′) = k(x, x′) + S (x, x′)Īk(x, x̄′). (1.12)

3. Non-rigid registration using Gaussian process priors

In this section we show how we can use GPMMs as prior models for non-rigid surface
registration. The idea is that we define a GPMM of possible shape deformations u ∼
GP(µ, k) to model the shape variability with respect to a reference shape ΓR. Our main
assumption is that we can identify for each point xR ∈ ΓR, the corresponding point
xT ∈ ΓT of the target surface ΓT . The goal of the registration problem is to recover the
deformation field u that relates the two surfaces.

To this end, we formulate the problem as a MAP estimate:

arg max
u

p(u|ΓT ,ΓR) = arg max
u

p(u)p(ΓT |ΓR, u), (1.13)

where p(u) ∼ GP(µ, k) is a Gaussian process prior over deformation fields and the
likelihood function is given by p(ΓT |ΓR, u) = 1

Z exp(−η−1D[ΓT ,ΓR, u]), where D is a
metric that measures the similarity of two surfaces, η ∈ R is a weighting parameter and
Z a normalization constant.

In order to find the MAP solution, we reformulate the registration problem as an
energy minimization problem. Taking logs in (1.13) we arrive at the equivalent mini-

2This corresponds to the sum over the orbit method for constructing a kernel following this mirror invari-
ance (see [7]).
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mization problem

arg min
u
D[ΓR,ΓT , u] − η ln p(u) (1.14)

Using the low-rank approximation (Equation (1.5)) we can restate the problem in the
parametric form

arg min
α
D[ΓR,ΓT , µ +

r∑
i=1

αi
√
λiφi] + η′‖α‖2. (1.15)

Here we used that the coefficients α in (1.5) are independent and hence p(u) ∝ exp(−‖α‖2).
By denoting the model by

M[α](x) = µ(x) +

r∑
i=1

αi
√
λiφi(x)

we can write this in the simpler form:

arg min
α
D[M[α],ΓT ] + η′‖α‖2. (1.16)

The final registration formulation (1.16) is a parametric optimization problem, which
can be approached using standard optimization algorithms. This formulation also
makes it clear that the registration problem is really a problem of model fitting, and that
all the prior assumptions about possible deformations are represented in the GPMM
M[α].

3.1. Hybrid landmark and surface registration
Using Gaussian processes as a prior for surface registration also gives rise to a simple
way to include landmark constraints. Let LR = {l1R, . . . , l

n
R)} and LT = {l1T , . . . , l

n
T )} be

two sets of corresponding landmarks. Assume that a user has defined a number of
landmark points LR = {l1R, . . . , l

n
R)} on a reference shape together with the matching

points LT = {l1T , . . . , l
n
T )} on a target surface. These landmarks provide us with known

deformations at the matching points, i.e.

L = {(l1R, l
1
T − l1R), . . . , (lnR, l

n
T − lnR)}

=: {(l1R, û
1), . . . , (lnR, û

n)}.

If we choose the likelihood function as

p(L|u) =

N∏
i=1

N(u(liR)|ûi, σ2Id),

which asserts that the inaccuracies of the landmarks can be modeled as independent
Gaussian noise, then the problem is an instance of Gaussian process regression and the
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posterior distribution p(u|L) is known in closed form [17]. It turns out that the distri-
bution p(u|L) is again a Gaussian process GP(µp, kp), and its mean µp and covariance
kp are given by

µp(x) = µ(x) + KX(x)T (KXX + σ2I)−1Û (1.17)

kp(x, x′) = k(x, x′) − KX(x)T (KXX + σ2I)−1KX(x′). (1.18)

Here, we defined

KX(x) = (k(x, xi))n
i=1 ∈ R

3n×3,

KXX =
(
k(xi, x j)

)n

i, j=1
∈ R3n×3n

and

Û = (û1 − µ(x), . . . , ûn − µ(x))T ∈ R3n.

This implies that the posterior p(u|L) is again a valid GPMM (that is, a shape model),
which already includes information about a given target surface. Thus we can use
this posterior as the prior in the registration formulation (1.13). This results in a hy-
brid registration approach for surface registration, where the landmark information is
implicitly enforced by the shape prior.

4. Case study: Building a statistical shape model of the skull

In this section we show how Gaussian process morphable models can be used in prac-
tice. We consider the task of building a statistical shape model of the human skull.
There are several aspects that make this task challenging: 1) The skull is a large and
complex organ, with many structures that are difficult to model. 2) Due to the limited
CT resolution, data segmented from CT usually contains holes and missing data. 3)
Most data that we get in practice are images of elderly people, and hence teeth are
often missing and dental fillings lead to large metal artifacts. 4) Finally, it is difficult
to acquire sufficiently many example shapes to estimate the full shape variability of
skulls.

The most important step in building a statistical model of the skull is to establish
correspondence between the example shapes, which is performed using surface regis-
tration. In order to make this process robust to artifacts in the data, we already need a
strong shape prior in this step. We will, of course, use a GPMM for this purpose.

In a first step we build a GPMM and discuss how we specifically tailored the prior
to the problem of skull registration, using only analytically known covariance func-
tions. In the second step we use this prior to establish correspondence between sur-
faces in a non-rigid registration task. In the final step, we learn a statistical shape
model from the registered data, and demonstrated how to overcome the problem of
not having a sufficiently large dataset to capture all shape variation.
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Figure 1.1 The reference skull used to build the skull models. Cranium and mandible are mod-
eled separately. The cranium mesh has approximately 46’000 vertices and the mandible mesh
approximately 26’000.

4.1. Data and experimental setup
As a basis for all our modeling tasks we use a manually segmented, anatomically
normal reference skull, which we denote by ΓR. This reference skull is depicted in
Figure 1.1. An issue that a good skull model should address is that the mouth can
open and close. As this is not conveniently modeled using Gaussian processes, we
have separated the cranium from the mandible and built separate models for each part.
In this section we will only discuss the model built for the cranium, which is the more
complicated of the two structures. The same considerations apply also when building
a model of the mandible.

As example data, we use a set of automatically segmented CT images of the skull.
Due to the poor quality of the example surfaces, we cannot use them directly to eval-
uate the quality of our models. In order to generate a ground-truth dataset, we have
performed a surface-to-surface registration, which was guided by 16 manually defined
landmark points. We then warped the reference skull with the resulting deformation
field. A detailed description of how registration was done is given in Appendix A.2.
Figure 1.2 shows typical example surfaces together with our generated ground truth.

For computing the low-rank approximation we choose 700 points on the surface
of the reference skull ΓR, which are used in the Nyström approximation (Cf. Ap-
pendix A.1). For all the experiments we approximate the original Gaussian process
using the 200 leading eigenfunctions.

4.2. Modeling shape priors for the skull
The first step is to build a shape prior that can be used in surface registration. In this
section we will develop several different prior models, starting from simple smooth-
ness priors to more sophisticated models that also enforce symmetry. For all the mod-
els we use a zero mean Gaussian process GP(~0, k), where ~0 = (0, 0, 0)T is the zero
vector and k : ΓR × ΓR → R

3×3 is a matrix-valued covariance function. As discussed
previously, the assumption that the process is zero-mean, implies that we believe that
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Original skull surfaces segmented from CT images

Ground-truth data
Figure 1.2 Three examples of skull surfaces, which were segmented from CT data, and the
corresponding ground-truth shapes, which we use for our evaluation.

the shape of the reference skull is approximately average.

4.2.1. Modeling smooth deformation using a single Gaussian kernel
The most basic modelling assumption we can make is that the deformations that re-
late two shapes of the same shape family are smooth. As discussed in Section 2.3.2
smooth deformations can, for example, be modeled using a Gaussian kernel for each
component.

k(s,σ)
g (x, x′) = s diag(exp(−

‖x − x′‖2

σ2 )).

There are two parameters that we have to define: the smoothness σ and the scale of
the deformation s. Both parameters have a natural interpretation and and unit (usually
mm). The scale directly translates to the variance of the size of the deformation. Hence
it is measured in mm2. Taking into account that with high probability the deformation
component are not larger than 3 standard deviations, we have an indication of how
to choose the parameter. The parameter σ2 determines the strength of the correlation
between two points x and x′. We know that for the Gaussian kernel, that values further
away than 2σ from the mean are already small, and hence almost uncorrelated. We
should therefore choose the parameter such that 2σ corresponds to approximately the
range of correlations (in mm) that we expect.
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σ = 100 mm, s = 100 mm2

σ = 100 mm, s = 200 mm2

σ = 50 mm, s = 100 mm2

Figure 1.3 Random samples from a GPMMs defined using a Gaussian kernel with different
values for scale parameter s and smoothness parameter σ.

An important feature of Gaussian process models is that they are generative, and
thus we can visualize samples from the prior to see if our assumptions are reasonable.
To visualize the samples, we draw a random deformation field ui form the Gaussian
process model and warp the reference surface with this deformation. More precisely,
the new surface is defined by warping all the points of the reference with the deforma-
tion field. Figure 1.3 shows random samples for different parameters of s and σ.

From visual inspection, we clearly see that choosing s = 200mm2 leads to unnatu-
rally big deformations. We therefore prefer to use the value s = 100mm2 in our model,
which seems approximately right. For the smoothness parameter σ2, the samples with
σ = 100mm look more natural than those where σ = 50mm. On the other hand, such
a strong smoothness assumption also implies that the registration algorithm will not
be able to explain more detailed shape variations.
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Side view

Frontal view

Figure 1.4 Three random samples from a GPMM defined using a multiscale kernel.

4.2.2. Modeling deformations on multiple scale levels
The dilemma that small deformations are needed to explain detailed variations, but
that these seem to produce unnaturally looking samples can be resolved by combin-
ing smaller and larger deformations in one model. The rules for combining kernels
defined in Section 2.3 makes it possible to mix properties of different models. In par-
ticular, we can sum two covariance functions g, h : Γ × Γ→ R3,3 to obtain a new valid
covariance function k(x, x′) = g(x, x′) + h(x, x′). Under this new covariance function
k, two deformations u(x), u(x′) are correlated, if they are either correlated by g(x, x′)
or h(x, x′). The variance of the deformation is the sum of the deformations defined by
g and h. For modeling deformations for our skull prior, we define the kernel

kms(x, x′) = k(70,100)
g (x, x′) + k(30,50)

g (x, x′).

This multiscale kernel assumes that large shape deformations are smoothly varying,
but still allows for more local, but smaller changes.3. Note that while the smoothness
parameter is a combination of the above defined models, it has the same total variance
as the kernels k(100,50)

g and k(100,100)
g defined above. From the random samples in Fig-

ure 1.4 we see that this model produces more natural shape variations, but still allows
for flexible deformations.

3This idea of defining multiscale kernels is discussed in more detailed by Opfer et al. [16]
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Side view

Frontal view

Figure 1.5 Three random samples from a GPMM defined a symmetric kernel.

4.2.3. Incorporating symmetries into the prior
One important aspect of the skull is not yet represented in our model. Skulls are nearly
symmetric about the sagital plane. From the generated samples we see, however, that
the models we built so far do not enforce such a symmetry. To incorporate symmetry
into the model, we use the method discussed in 2.3.4 and define the symmetric kernel
kpsym from the multiscale kernel kms:4

kpsym(x, x′) = kms(x, x′) + S (x, x′)Īkms(x, x̄′),

where S and x̄ and Ī are defined as in Section 2.3.4. The kernel kpsym models perfect
symmetry, which is usually not given in natural shapes. We therefore also allow for
small asymmetric deformations, which we again model using a Gaussian kernel. The
final kernel has the form

ksym(x, x′) = kpsym(x, x′) + diag(k(2,100)
g (x, x′))

Sampling from this model already leads to much more realistically looking skull
shapes, as shown in Figure 1.5.

4To define the symmetry plane we used 3 manually clicked points on the sagital plane. We then use this
information to rigidly transform the skull so that the symmetry plane aligns with the y-z plane at the
coordinate axis.
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4.2.4. Quantitative comparison of different prior models
So far we have selected the model using purely qualitative arguments and with the
help of the visualized samples. In this section we support our choices by providing a
quantitative evaluation of our models. For this purpose we use the standard metrics of
generalization, specificity as well as a compactness introduced by Styner et al. [22].

The generalization ability measures how accurately the model, denoted byM[α],
can fit the datasets from the modeled class of shapes, which is here represented by the
set of ground truth datasets {Γ1, . . . ,Γm}. More precisely, we define generalization for
a modelM as:

gen(M) =
1
m

m∑
i=1

min
α∈Rn

D[M[α],Γi].

As a distance measure we use the averaged squared Euclidean distance of the corre-
sponding points. As the model is in correspondence with the ground-truth dataset, we
can compute the minimization in closed form.5

Specificity is a measure of how well randomly generated samples from the model
resemble valid instances from this class of shapes. It is evaluated by comparing the
distance of k randomly generated sample shapes (determined by the set of model pa-
rameters {α̃1, . . . , α̃k}) to the closest shape of a set of valid example shapes

spec(M) =
1
k

k∑
j=1

min
i

D[M[α̃ j],Γi].

Finally, compactness indicates how much variance the model represents when it is
represented using only the first r basis functions. This variance is given by the sum of
the leading r eigenvalues:

var(M) =

r∑
i=1

λi.

We report here two measures of compactness: 1) how many basis functions are needed
to represent 99% of the total variance of the model and 2) how much of the total
variance of the process (given by

∫
ΓR

k(x, x) dx) is approximated using the first 200
eigenfunctions). Compactness can be seen as a measure of complexity. The more
complex the model (i.e. the more flexible it is to represent many different shapes
accurately) the more eigenfunctions are needed to accurately represent the model.

Table 1.1 shows the 3 measures applied to the different prior models. We see
that the numbers confirm our visual impression that the symmetric model is clearly

5To compute the minimum in practice, we use Gaussian process regression with an anisotropic noise of
0.1 mm, on a 1000 uniformly sampled points.
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Model Generalization Specificity 99 % Var. Approx. Var
k(100,100)

g 0.30 mm 14.6 mm 48 0.999
k(200,100)

g 0.30 mm 20.6 mm 48 0.999
k(100,50)

g 0.28 mm 15.5 mm 183 0.978
Multiscale 0.24 mm 14.7 mm 126 0.994
Symmetric 0.21 mm 12.5 mm 73 0.999

Table 1.1 Quantitative evaluation of the model quality for different models. The last two columns
show the compactness of the model. The second last column shows how many basis functions
were required to approximate 99 % of the variance, while the last column shows how much of
the models total variance was approximated using 200 basis functions.

the best, followed by the multi-scale model. For both models we managed to keep
the compactness and specificity low by incorporating more knowledge about the true
structure of the shape variability. That the symmetric model can at the same time be the
most specific and the most general is a consequence of the strong prior assumptions.
The leading 200 eigenfunctions, which are used to represent the model, capture most
of the characteristic variations in the class of skull shapes. In contrast, the leading 200
eigenfunctions of the more generic models include variations that are not occurring in
this class.

4.3. Skull-registration using model fitting
Once we have the prior model defined, we can perform the actual surface registration.
Recall from Section 3 that to perform the registration we minimize the functional

arg min
α
D[ΓT ,M[α]] + η′‖α‖2. (1.19)

For the distance measureD, we choose a robust distance measure

D[Γ1,Γ2] =

∫
Γ1

ρ(x −CPΓ2(x)) (1.20)

where CPΓ(x) = arg minx′∈Γ(‖x − x′‖) finds the closest points to x on the surface Γ and
ρ is the Huber loss function [10] defined by

φ(x) =

{
x2/2

(|x| − k/2) k = 1.345.

Figure 1.6 show the accuracy of registration results evaluated using the ground-
truth data. We see that the results correspond to what we expected from the model
metrics. The symmetric kernel clearly yields the best results, followed by the mul-
tiscale kernel. Figure 1.7 shows a typical registration result, where the red surface
shows the registration solution and the white (transparent) surface the ground truth.
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Figure 1.6 Registration results for the different models. The numbers represent the Procrustes
distance (in mm) between the registered surface and the ground truth.

We see that the shape is well matched in general. Upon close inspection, however, we
can spot places where there are still larger errors (indicated by the arrow). We could
now start to tune the parameters of our model in the hope that we can find values which
reduce this error. A more direct and efficient solution is to define landmark points to
enforce the correct deformations manually and to include these as known observations
into the model. As discussed in Section 3.1, the resulting posterior model is again
a Gaussian process, and thus can itself be used as the prior model in the registration
functional (1.19). Figure 1.7 (right) shows the same registration, but this time with
landmarks. We see that the error is greatly reduced when we enforce the deformation
using a landmark. That adding landmark points will reduce the error for all models is
shown in Figure 1.8, where we used 6 manually defined landmarks on all the skulls.

4.4. Computing the statistical shape model
In the final step we can use the registered data to compute a statistical shape model
[5, 4]. Let {u1, . . . , un}, ui : ΓR → R

d denote the deformation field resulting from the
registration, which establishes correspondence between the surfaces ΓR and Γi. As dis-
cussed above, in the Gaussian process framework, a statistical shape model is simply
a Gaussian process model GP(µSSM, kSSM), where the mean and covariance functions
are estimated from the data using the formulas for the sample mean and sample covari-
ance (Equation (1.6) and (1.7)). It is interesting to compute the quantitative measures
from the previous section (Cf. Table 1.1) also for this model.6 In Table 1.2 we see

6In this case we perform a leave-one-out procedure to estimate the generalization error.
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Figure 1.7 Left: A typical registration result. The shape is in generally well matched, but some
local features still show some registration error. Right: The same registration result, but when
the correct matching is enforced using a landmark that is placed in the erroneous region.

Figure 1.8 Registration results for the different models when 5 landmarks were used to guide
the registration. The numbers represent the Procrustes distance (in mm) between the registered
surface and the ground truth.

that the generalization error is comparably large, but the model is much more specific
and also more compact than the previously defined models. The good specificity value
constitute the big advantage of statistical shape models.

The relatively large generalization error of 0.89mm is due to the small number of
example shapes. It shows that 46 examples are not sufficient to cover the full shape
variation of the skull. Fortunately, combining different kernels also yields a simple
solution to this problem. The idea is to model the missing variability as a small, but
smoothly varying deformation using e.g. a Gaussian kernel kg(100, 1). Combining this
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Model Generalization Specificity 99 % Var. Approx. Var
SSM 0.89 mm 3.6 mm 24 1.000
SSM (augmented) 0.23 mm 4.6 mm 23 0.999

Table 1.2 Quantitative evaluation of the model quality for the classical statistical shape models
and the augmented model.

with the statistical shape model leads to the augmented model

kaug(x, x′) = kSSM(x, x′) + kg(100, 1),

where we assumed that the scale of the error is around 1 mm and is smoothly varying.
Computing the usual metrics reveals that this final model generalizes much better,
while it still provides excellent specificity and compactness (see Table 1.2). Hence, in
practical applications this model is likely to be superior to a classical statistical shape
model.

5. Modeling and analyzing pathologies

That GPMMs allow us to increase the variability of a statistical shape model makes it
possible to use statistical shape models for fitting pathological shapes. In this section
we discuss this important topic on the exemplar case study of fitting a skull model to
a CT scan of a patient with an overbite. The idea is to use the statistical skull model in
order to devise a surgical plan to attain a desired aesthetic facial profile [20].

Fitting a statistical shape model built from healthy examples only does not work in
this case. The model would trade-off the fitting accuracy in the healthy regions against
a better explanation of the pathological deformations. To overcome this difficulty, we
explicitly model the pathological part using an analytically defined Gaussian process.
While we could use exactly the same approach, as for extending the model variation in
a statistical skull model (Cf. Section 4.4), we use here a variant of this approach, which
does not compute a low-rank approximation of the full model, but approximates the
statistical shape model and the model for the pathological part separately. This allow
us to separate the healthy part of the deformation from the combined deformation
including also the pathological part after the fitting, as illustrated in Figure 1.9 (right).

5.1. Simultaneous fitting of healthy and pathological deformations
Let uSSM ∼ GP(µSSM, kSSM) and up ∼ GP(0, kg(x, x′)) be two GPMMS which explain
the healthy and the pathological part of a shape deformation. Assuming that we have



i
i

“gp-pathologies-book” — 2016/12/3 — 10:19 — page 21 — #21 i
i

i
i

i
i

Chapter Title 21

Figure 1.9 Registration of a pathological skull with overbite On the left the pathological
target skull is illustrated. The middle shows the fitting result using the statistical model combined
with the pathological model. On the right the fitting result in green as overlay on top of the SSM
part only in red, predicting the healthy shape.

for both models computed the low-rank models (Cf. Section 2.2),

MSSM[αSSM] = µSSM +

r∑
i=1

αSSM
i

√
λSSM

i φSSM
i (1.21)

Mp[αp] =

r′∑
j=1

α
p
j

√
λ

p
jφ

p
j , (1.22)

we can write any shape Γ as

Γ = {x +MSSM[αSSM](x) +Mp[αp](x)|x ∈ ΓR}

for some sets of parameters αSSM and αp.
Thus, we can write the combined registration problem as

arg min
αSSM,αp

D
[
MSSM[αSSM] +Mp[αp],ΓT

]
+ η‖αSSM‖2 + η‖αp‖2,

where D is the distance measure defined in (1.20). The optimal parameter-sets αSSM

and αp, represent the explanations of the different deformation models. The anatom-
ically normal skull shape is thus given by the modelMSSM and the associated model
parameters αSSM.

5.2. Building a model for pathologies
The main modes of deformation of the combined model are not necessarily orthogo-
nal. This means that it might be possible to explain certain shape deformation with
either of the models. To reduce this effect, the model explaining the pathological de-
formations should not account for deformations outside the region where we expect
the shape to depict pathological variability. A model can be restricted to a predefined
region of the full domain by using a spatially varying kernel ksv(x, x′). The spatially
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Figure 1.10 Landmark placement on the reference shape For this example we have placed
8 landmarks in the teeth and mandible region of the skull. The landmarks in the teeth region
prevent the model from adapting to the metal artifacts in the teeth region.

varying property of the kernel is defined through a function a(x) that damps the size
of the deformations a kernel allows based on the location of the points. We define the
spatially-varying kernel as

ksv(x, x′, k) = a(x)k(x, x′)a(x′)

where k itself is an arbitrarily chosen kernel and a(x) is the function that damps the
kernel functions magnitude except in a defined region.

In our example we expect the pathological deformation to appear in the region of
the mandible. Therefore we defined the bias model only in the region of the mandible,
where we expect the pathology and hence need additional flexibility. We use a function

a(x) = exp (−‖x − xc‖
2/σ2)

defining a region around the mandible with xc as the closest point to x on the mandible.
The parameter σ controls the size of the region around the mandible with function
values of 1.0 for points that are close to the mandible and smoothly go to 0.0 for
points that are further away.

5.3. Experiment
We applied this procedure to fit the skull shown in Figure 1.9. As there are large metal
artifacts in the teeth region we decided to place 8 landmarks to increase the fitting
accuracy (see Figure 1.10). The fitting results are depicted in Figure 1.9. The green
surface (middle/right) is our final fitting result while on the left the original target skull



i
i

“gp-pathologies-book” — 2016/12/3 — 10:19 — page 23 — #23 i
i

i
i

i
i

Chapter Title 23

Figure 1.11 Sliced mesh representation of the fitting result In all the illustrations we can see
the registration target in blue, the fitting result with bias model in green and the part explained
by the statistical shape model in red. On the left we see the fitting result to the blue target. The
region of the mandible the shape is well aligned. The middle shows the parts explained by the
statistical shape model in red and the additional part from the bias model in green. It can be
seen that the bias model allows for additional flexibility in the mandible region, which originates
from the spatially varying kernel. On the right we see that most of the target skull is explained
well by the statistical shape model. However, in the mandible region it is helpful to add more
flexibility with the bias model.

is depicted. On the right the part explained by the statistical shape model only is
depicted in red. The visible difference, of the fitting result of the combined model and
the statistical shpe model only reconstruction, demonstrates the ability to separate the
pathological deformation using the combined model approach. The results are also
shown in the profile view for 2D slices through the skull in Figure 1.11. The target
is shown in blue, the fitting result in green and the part explained exclusively by the
statistical shape model in red. Again, it can be seen that the statistical shape model
does not explain the overbite, but the pathological part of the deformation is explained
by the added spatially varying model.

6. Conclusion

In this article we have discussed GPMMs, a generalization of PCA-based statistical
models. With GPMMs we are not restricted to estimate all the covariance structure
from training examples, but can additionally use analytically defined kernels to model
our prior assumptions. Typically, these analytically defined kernels encode smooth-
ness assumptions of the deformation. However, also more complex constraints, such
as that the model should match observed deformations can be formulated, or that the
model shape variation is symmetric around a given axis. The rules for constructing ker-
nels, allow us to combine learned and analytically defined kernels, and thus to build



i
i

“gp-pathologies-book” — 2016/12/3 — 10:19 — page 24 — #24 i
i

i
i

i
i

24 Book Title

expressive shape priors even when there are not sufficiently many example surfaces
available to learn the full shape variability.

We have presented an extended use case, where we discussed how GPMMs can be
used for the problem of building a model of the skull. We have shown how we can
start with simple prior assumptions, and gradually incorporate more knowledge into
the model. We have seen that a practical way to assess if our prior is reasonable is by
visualizing random samples from the model. Our quantitative evaluation of the differ-
ent models confirmed that incorporating more prior knowledge into the model does not
only lead to a better model as measured by the model metrics, but that this translates
directly to better registration results. Our experiments also confirmed the usefulness of
combining a learned statistical shape model with an analytically defined prior. In cases
when we do not have sufficiently many example surfaces to learn the shape variation,
we showed that augmenting it with an analytically defined model greatly enhances the
generalization ability, without sacrificing much of the specificity of the model. Indeed,
the result suggest that whenever we have training data available, it is always benefi-
cial to include these into the model. We have also shown how the combination of a
statistical shape model and analytically defined model make it possible to fit shapes
with deformities or pathologies. The result can even be divided up again, to obtain
the most likely anatomical normal explanation of the data and an explanation of the
pathological part.

All the different applications of GPMMs that we showed in this article are based on
the same mathematical principle and are made possible thanks to the great flexibility
of Gaussian processes. We believe that being able to use a single, mathematically well
established concept for all these different task, is the biggest advantage of GPMMs for
shape modelling. It greatly reduces the algorithmic complexity and lets us focus on
modelling the problem at hand. Moreover, all the methods that are needed for using
GPMMs are available as open source, as part of the modelling software Scalismo [19]
and Statismo [12].

Appendix
A.1. Approximating eigenfunctions using the Nyström method

The goal of the Nyström method is to obtain a numerical estimate for the eigenfunc-
tions/eigenvalues of the integral operator

Tk f (·) :=
∫

Ω

k(x, ·) f (x)dρ(x). (.23)

The pairs (φi, λi), satisfying the equation

λiφi(x′) =

∫
Ω

k(x, x′)φi(x) dρ(x), ∀x′ ∈ Ω (.24)
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are sought. The Nyström method is intended to approximate the integral in (.24).
This can, for example, be achieved by letting dρ(x) = p(x) dx where p(x) is a density
function defined on the domain Ω, and to randomly sample points X = {x1, . . . , xn}

according to p. The samples (xl)l=1,...,N for x′ in (.24) lead to the matrix eigenvalue
problem

Kui = λmat
i ui, (.25)

where Kil = k(xi, xl) is the kernel matrix, ui denotes the i−th eigenvector and λmat
i the

corresponding eigenvalue. Note, that since the kernel is matrix valued (k : Ω ×Ω→

Rd×d), the matrices K and kX are block matrices: K ∈ Rnd×nd and kX ∈ R
nd×d. The

eigenvalue λmat
i approximates λi, while the eigenfunction φi in turn is approximated

with

φ̃i(x) =

√
n

λmat
i

kX(x)ui ≈ φi(x), (.26)

where kX(x) = (k(x1, x), . . . , k(xn, x)).
Clearly, the quality of this approximation improves with the number of points n,

which are sampled. In our applications, we usually find that 500 to 1000 randomly
sampled points are sufficient to obtain a good approximation. For a more thorough
evaluation of how the number of points affects the approximation quality, we refer to
Rosasco et al. [18] for a theoretical treatment, and Lüthi et al. for a practical evaluation
for shape modelling [13].

A.2. Obtaining the ground-truth

Due to the low quality of the available example shapes, which contains both missing
parts (e.g. missing teeth), segmentation artifacts as well as metal artifacts around the
teeth, we decided to perform our evaluations on a clean ground-truth dataset. The
idea is to start from a clean reference shape (shown in Figure .12), which is used
as an atlas, which is then registered on each data set. In this way it is ensured that
our numerical comparison are not distorted by the large amount of artifacts in the
data. For registration of the reference skull to the examples, we use the registration
approach discussed in Section 3. As a shape prior we used a combination of a multi-
scale kernel, which was symmetrized, plus two additional Gaussian kernel to allow for
non-symmetric deformations.

ksym(k50,100
g (x, x′) + k20,50

g (x, x′)) + k(2,100)
g (x, x′) + k(20,5)

g (x, x′). (.27)

The last kernel in Equation .27 allows for non-symmetric, local deformations and thus
ensures that the model is not bias by the symmetric kernel and can accurately repre-
sent the target surface. To also retain this flexibility in the low-rank approximation,
we represent the model using the leading 400 basis functions. The registration has
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Figure .12 16 landmark points were defined on each skull, to enforce the correct correspon-
dences for the ground-truth registrations. Integrating the landmark points improves the registra-
tion results especially for cases where there are large artifacts or holes in the data.

been performed using the same setup as discussed in Section 4.3. In order to ensure
correct correspondences, we have in incorporated 16 landmarks, which are shown in
Figure .12. In absence of meaningful registration metrics (which are not available as
the original data is too noise) we ensured by visual inspection that the registration
result accurately matched its target.
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