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Abstract

Hierarchical compositional models (HCMs) have shown impressive generalisation
capabilities, especially compared to the small amounts of data needed for training. How-
ever, regarding occlusion and other non-linear pattern distortions, experimental setups
have been controlled so far. In this work, we study the robustness of HCMs under such
more challenging pattern recognition conditions. Our contribution is three-fold: First, we
introduce a greedy EM-type algorithm to automatically infer the structure of composi-
tional active basis models (CABMs). Second, we formulate the proposed representation
and its learning process in a fully probabilistic manner. Finally, building on the statis-
tical framework, we augment the CABM with an implicit geometric background model
that reduces the models sensitivity to pattern occlusions and background clutter. In order
to demonstrate the robustness of the proposed object representation, we evaluate it on
a complex forensic image analysis task. We demonstrate that probabilistic CABMs are
capable of recognising patterns under complex non-linear distortions that can hardly be
represented by a finite set of training data. Experimental results show that the forensic
image analysis task is processed with unprecedented quality.

1 Introduction

Hierarchical compositional models (HCMs) have shown impressive generalisation capabil-
ities in standard classification [7], transfer learning [3] and one-shot learning [28]. Further-
more, they have been shown to be efficient object representations leading to a great reduction
of inference times [31]. However, a further critical property for computer vision systems is
the robustness against pattern distortions and structured background. Regarding this, ex-
perimental setups have been controlled so far. In this paper, we study the robustness of
compositional models under such more challenging pattern recognition conditions.

The automated analysis of forensic images is highly suitable for studying this question. The
task of forensic footwear impression recognition is particularly interesting because it unifies
many computer vision questions in a well-defined application scenario (Figure 1). Given
a probe image, the task is to recognize the corresponding reference impression out of a
database. Some of the most interesting properties of this application are that: 1) The pat-
terns in probe images are significantly occluded and subject to other non-linear distortions
that interfere with the pattern. 2) The background signal contains structured geometry that

(© 2016. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.


Citation
Citation
{Fidler, Boben, and Leonardis} 2014

Citation
Citation
{Dai, Hong, Hu, Zhu, and Wu} 2014

Citation
Citation
{Wong and Yuille} 2015

Citation
Citation
{Yuille and Mottaghi} 2016


2 KORTYLEWSKI, VETTER: PROBABILISTIC CABM

"
En
54

~
Cl

-

G
—
S

T
4
AN

(a) (b) (© (d)

Figure 1: Overview over the process of automated footwear impression analysis. (a) A
typical probe image. The pattern is non-linearly distorted compared to (b) the corresponding
reference impression; (c) A sketch of the learned CABM for the reference impression in (b).
Pixels that share the same colour are explained by the same type of part. (d) An overlay of
the learned CABM over the probe image with the spatial transformation that maximises the
posterior probability. Despite complex structured background and missing parts, the correct
spatial transformation has been recovered.

is difficult to distinguish from the actual pattern of interest. 3) The geometry of the patterns
is diverse and complex. 4) Probe images are scarce compared to the number of reference
impressions, thus learning has to be performed without knowledge about the target domain.

We propose to formulate this pattern recognition task in a statistical estimation setting. We
represent a reference impression with a generative model and estimate the posterior distribu-
tion of the model parameters given the probe image. As pattern representation, we introduce
the concept of a compositional active basis model (CABM). During learning, the model is
composed hierarchically from groups of active basis models in a bottom-up manner. The
CABM s structure is learned with a greedy EM-type clustering process (Sections 3.1 & 3.2).
The resulting representation encodes local as well as long-range geometric properties of the
pattern. In this way it forms a powerful prior for the distinction of the actual pattern of inter-
est from the structured background patterns. We present a fully probabilistic formulation of
the model and the learning process. Building on the statistical framework, we enhance the
CABM with an implicit geometric background model that increases the robustness against
occlusion and clutter. The main novelties of this work are:

i) A greedy EM-type algorithm that can infer the full structure for hierarchical composi-
tional models in general

ii) The introduction of the concept of compositional active basis models, together with a
fully probabilistic formulation of the model and its learning process

iii) An implicit geometric background model that increases the CABMs robustness to
occlusion and structured background clutter

iv) A significant improvement of the performance in footwear impression retrieval
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Prior Work on HCMs: Hierarchical compositional models have been successfully applied
in computer vision applications e.g. in [7, 8, 9, 19, 24, 28, 33]. However, the models are
usually applied in a relatively controlled experimental setup with respect to distortions of the
patterns and occlusions and/or trained with a lot of data. In this work, we learn a hierarchical
compositional representation from just one training sample and perform pattern recognition
under highly unconstrained conditions. Our work builds on the compositional sparse cod-
ing procedure proposed in [3, 29]. However, we do not stop after the dictionary learning
phase, but encode higher structural relationships between dictionary templates in a hierar-
chical compositional model. Probabilistic HCMs have been proposed for representing faces
in [26, 30] and for general objects in [3]. However, in contrast to these, we automatically
learn the structure of the hierarchy based on the greedy EM-type algorithm proposed. This
renders possible the automated selection of the number of dictionary templates and hierarchi-
cal layers. Unsupervised learning of HCMs has been successfully performed in e.g. [6, 33].
However, [6] is not probabilistically formulated. The work in [33] is most related to our
method. The main differences are that we use fully generative compositional units instead
of invariant features. Furthermore, we do not make hard decisions on the detection of parts
during learning. Instead the full part likelihoods are used in the structure induction process.
Finally, our model is enhanced with an implicit geometric background model, which makes
it more robust to occlusions and background clutter. Despite the popularity of hierarchical
compositional models, to the best of our knowledge, this is the first time they are shown to
achieve state-of-the-art recognition performance in a highly unconstrained vision task.
Prior Work on Footwear Impression Analysis: Earlier attempts in footwear impression
recognition learn global [1, 5, 11] or local [13, 21, 22, 25] hand-crafted feature representa-
tions. However, it was shown that the application scenario of these works is limited [13, 15]
(see also experiments in Section 4). The main reasons are that pure local as well as pure
global representations are sensitive to local distortions of patterns. Several works enrich
local features with global constraints [2, 4, 17, 20, 27]. However, the main assumption in
all works is that the object structure can be distinguished from the background by a purely
local process. Thus, local ambiguities as well as structured backgrounds and local pattern
distortions have not been taken into account. In this work, we propose to encode both the
local and global structure in a joint pattern model.

Experiments. Experimental comparison is performed on the FID-300 database [13]
(http://fid.cs.unibas.ch/). We demonstrate an increase in recognition performance by a wide
margin compared to previous works [2, 5, 11, 13, 27].

In Section 2, we will introduce the theoretical background of traditional active basis mod-
els. Section 3 introduces a detailed probabilistic formulation of compositional active basis
models, a greedy EM-type learning process and an implicit geometric background model.
Experimental results are presented in Section 4.

2 Theoretical Background - Active Basis Models

In this Section we shall introduce active basis models (ABMs). Detailed information con-
cerning ABMs can be found in the original work [29]. We concentrate on the results that
are relevant for understanding our contribution. We adapt the notation used in [29] at some
points such that it fits into the theoretical framework presented in Section 3.

ABMs are a type of deformable template for describing object shapes under small local shape
deformations. An ABM is composed of a set of basis filters at positions X; = {x;,y;} with
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orientations ¢;. Throughout this work, we use combinations of even and odd Gabor wavelets
B as basis ﬁlters. We keep the frequency fixed. The set of parameters per filter is denoted
by ﬁo { , (xio}. The spatial parameters are encoded relative to the position of the overall
template .31 , which is, for now, assumed to be given. The position of an individual basis
filter in the image frame therefore is f; = {X; = X! + X?, &; = o} + ¢’ }. The parameters of
an ABM are denoted by IT = {B]i = 1...N}. The global spatial configuration of the basis
filters is rigid. However, each filter can perturb its location and orientation independently
of the other filters within a small specified range A = {AX,Aa}. This active deformation
enables the model to compensate small changes in the object shape without the need for re-
optimising the state of all other variables, as would be the case when using a global shape
model.

An ABM is a linear additive model in the form of the well-known sparse coding principle
proposed by Olshausen and Field [18]. An important difference, however, is that the ABM
is applied to represent a whole ensemble of image patches {[,,,m = 1,...M}. Each patch is
represented by:

N
Im :CmBH+U = Ci,nlBﬁi+Um- (1)
i=1
The patches I, are linearly decomposed into a set of orthogonal basis filters Bry with coef-
ficients C,, and the residual image U,,. The individual coefficients are calculated by ¢; ,, =
(In,Bp,). The basis filters have zero mean and unit /; norm. The probability density of a
patch I, given the template IT is modelled by:

N
P(In|TL) = p(Un|Con) p(CnlTT) = p(Un| Co) [T (B 1BY ) P(crnil BY) @)

i=1

The factorization in Equation 2 is based on the assumption that the model has a tree struc-
ture and that parts do not overlap. In the original equation as introduced in [29], the factor
p(BP|B}) is omitted. This is equivalent to assuming that the patches {I,,|m = 1,...,M} are
aligned and depict an object that is exactly in the same pose. This assumption is a major
weakness of the active basis model approach. In Section 3.1 we will show that the model
can be learned from unaligned training images as proposed in [12]. A more challenging task
is to resolve the assumption about the fixed pose of the object. This is, however, beyond the
scope of this work as footwear impressions can be approximated by rigid objects.

The template IT can be learned based on a set of training patches /,, with a matching pur-
suit process [16]. Subsequently, the composition of filters By could be directly applied
as an object detector. However, in order to be less sensitive to strong edges in the back-
ground clutter we estimate the expected distribution of filter responses in a background im-
age q(cmi|B) and compare it to the one we observe in the training patches p( 0). Let
q(I|IT) = g(C,U|IT) = q(U|C)q(C|IT) model the distribution of filter responses and remdual
images as they occur in natural images. The ratio between the foreground and the back-
ground model is:

PUnTD) _ p(Un|Ca) TTE, p(B?1BY)P(cm.il BY) ﬁ (BB p(cnilB)
G0 q(Un|C) T, a(BY 1B} )a(emil BY) izt a(BY B )a(emil BY)

An important assumption in Equation 3 is that the probability densities of the residual back-
ground are the same (U, |Cy) = p(Unu|Cr) [12, 29], thus they cancel out of the equation.

3
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This means that those parts of the image that cannot be explained by the basis filters fol-
low the same distribution. Furthermore, we assume that p(B°|B]) can be modelled by a
uniform distribution over the range of active perturbation Ugo (AB) around B°. The back-

ground model ¢(BP|B]) = U(D, &) is uniform over the orientations & and the patch domain
D =d x d, where d is the size of the patch. We assume g(c;,;|B?) is stationary and therefore
translation-, rotation- and scale-invariant. The distribution g(cy ;| ﬁio) can be estimated by
pooling a histogram of basis filter responses from a random set of natural images. In contrast
to the standard assumption of a Gaussian distribution, g(c;,;|3°) is much more heavy-tailed
and can therefore better explain strong edges that occur in the cluttered background. This
approach of reducing the sensitivity to clutter was introduced in [29]. We will introduce an
additional implicit background model on the relative geometry of filters in Section 3.3.

The foreground distribution p;(c,y,;|B) is modelled in the form of an exponential family

model:
exp(Aio(|em,il?))q(cm,i| BY)
(szMflvﬁ ) Z(lj) ’ “)

As proposed in [29], we apply a sigmoid transform & (r) = 7[2/(1 + e~ /%) — 1] that satu-
rates at value 7. The normalising constant Z(4;) as well as the mean of the model 1 (4;) can
be estimated for a range of A values on a set of natural training images by numerical integra-
tion Following the maximum entropy principle [23], the maximum likelihood estimate for
Y(XM_ 6(|emil?)/M). The coupling of the matching pursuit process with the mod-
elhng of the expected distribution of the coefficients is generally referred to as shared match-
ing pursuit [29]. We denote the final ABM by ® = {II, A}, where A= {A]i=1,...,N}.
In the next Section 3, we will introduce a pattern model that hierarchically composes ABMs.
We propose a greedy EM-type learning scheme that makes it possible to induce the com-
plete hierarchical model structure automatically. Furthermore, we embed the methodology
in a fully probabilistic theoretical framework.

3 Compositional Active Basis Models

In this Section we will extend the active basis model framework to encompass hierarchic
compositions of ABMs (Section 3.1 & 3.2). The advantages of hierarchical compositional
models in general have been argued in detail in e.g. [8, 32, 34]. Regarding the traditional
flat ABM, a hierarchical model makes it possible to decouple the globally rigid dependence
structure between the random variables into localised group-wise dependencies. The hier-
archical decoupling will allow us to decreases the models sensitivity to missing object parts
with an implicit geometric background model and will thus lead to a more robust recognition
of patterns in the Experiments (Section 4).

For ease of notation, we will use in all equations the example of a level-two compositional
active basis model. A graphical model with N; = 2 level-one groups is depicted in Figure
2. This is the simplest possible CABM. However, the presented results fully generalise to
arbitrary numbers of layers and compositions per node. Note that the standard ABM is a
special case of a CABM with no compositional layer.

The probability density of an image patch given a level-two CABM factorises in the follow-
ing way:

pIn®) = p(UnlCn) 1 pB;1BE) T p(BYI1B})p 0), )

JEch(ﬁl ) lEch(ﬁ )
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(a) (b)
Figure 2: Graphical model of a level-two compositional active basis model. (a) The full
graphical model; (b) The common way of illustrating hierarchical models, by focusing on
the model structure. We depict the most simple model structure, a binary-tree structured
Markov random field.

where the term ch(f3 ]1 ) denotes the set of child nodes of the node 3 ]_1 . The compositional layer
introduces the factor p(B?|B jl ), which conditions the spatial configuration of the individual

basis filters [)’l-o on different parent nodes 3 jl. In this way, the global dependence structure is
broken into multiple conditionally independent groups. However, this additional flexibility
comes at the cost of having to estimate more parameters.

In this work, we present an algorithm that is capable of estimating the number of parts per
layer (Section 3.1) as well as the number of layers (Section 3.2). During learning, we benefit
from the compositional structure of the model, as it allows us to first learn the level-one
ABMs, before composing them into a level-two model. This property facilitates the efficient
learning of complex hierarchical structures as demonstrated in [6, 33]. We manually set
the number of parts that are composed to two. However, the proposed learning scheme can
be applied with any number of compositional units. Following the standard active basis
model framework, we assume that the geometric relation between compositional units can
be modelled as uniform distribution over the range of active perturbation. Therefore we
define p(B}[B7) = Up) (AB).

In the following Section 3.1 we will introduce an algorithm that will infer the number of
parts for a layer N; given the parts of the previous layer with a greedy EM-type clustering
process.

3.1 Greedy EM-type Clustering

In order to learn the parts of the first layer in the hierarchy based on a training image I, we
must first gather the training patches for the individual part models. This can be done by
applying standard K-Means clustering as proposed in [32, 33]. However, in an unsupervised
learning setup it is desirable to automatically determine the optimal number of clusters. We
therefore introduce a greedy EM-type clustering scheme. We learn the ABMs for the first
layer with a greedy clustering process that is inspired by the EM-type learning scheme as
proposed in [12]. In difference to [12], we introduce a default background model that makes
it possible to infer the number of part models from the data.

We start by learning the first level-one model ®{ according to the following procedure: In
the first iteration r = 1, we sample an initial set of patches I} € I according to an initial dis-
tribution Q. We will define Q to be uniform on the image lattice Q(x,y) = U(x,y). However,
alternative distributions that are based on prior measures could be possible (e.g. based on


Citation
Citation
{Fidler and Leonardis} 2007

Citation
Citation
{Zhu, Lin, Huang, Chen, and Yuille} 2008

Citation
Citation
{Yuille} 2011

Citation
Citation
{Zhu, Lin, Huang, Chen, and Yuille} 2008

Citation
Citation
{Hong, Si, Hu, Zhu, and Wu} 2013

Citation
Citation
{Hong, Si, Hu, Zhu, and Wu} 2013


KORTYLEWSKI, VETTER: PROBABILISTIC CABM 7

saliency or on the gradient information). We learn an initial ABM 6] from /{ with the shared
matching pursuit algorithm [29]. For the next learning iteration, we gather all image patches
for which the likelihood under the model 6/ is higher than under a default background model
d. Thus, a training patch k € /™' must fulfil:

p(kl6}) > d() (60
ex i Cmi2 Cm,i )
max [T p(p0)pH) “2ACU DB e T 0(B0tcnsl). (o0

icch(B)) icch(B))

The default model d (k) simply assumes that the parts follow independent uniform distribu-
tions over the domain of the patch. Note that the parameters Bio can be different for the two
sides of the inequality. The set of patches that satisfies Equation 6b serves as training data
for the next iteration of shared matching pursuit. Alternatively, a fixed detection threshold
could also be applied for gathering the training patches. We terminate the iterative learning
process when p(k|60]) does not change significantly over all patches in the image k € I be-
tween consecutive iterations. Finally, we set G)% = 61’ .
We repeat the above procedure for the second level-one model 65, but this time the object
model 65 must achieve a better prediction on the training patches k € I} than all previously
learned models:

p(k|8) > max(d(k), p(k|©})). ™)

In this way, ABMs are learned greedily until a new model is unable to explain some parts of
the image better than previously learned models.

Given a set of level-one ABMs, we shall in Section 3.2 compose these into higher-order
models that encode long-range structural dependencies of the training pattern.

3.2 Compositional Structure Induction

A common way of learning higher-order compositional models is to detect the learned level-
one models G)i1 based on a fixed threshold, and to subsequently learn part compositions
using standard clustering techniques [6, 32, 33]. However, we propose to follow the same
greedy EM-type clustering as introduced in Section 3.1 in order to learn compositions of
active basis models. Hence, we replace the Gabor wavelets as basis filters with the learned
level-one models @,-1. The main advantage compared to other approaches is that we can
avoid to take an early decision on the activation of level-one models. Thus, we can leverage
additional knowledge from the level-two model when deciding on the activation a of level-
one model. This late commitment is possible because of p(I,, |®3) is a weighted summary of
low level statistics p(I,,|®}) (Equation 5). Therefore, if one of these p(I,,|®}) is a bit too low,
the compositional distribution p(1m|®§) can still compensate for this in order to outperform
the default model. In this way, parts can be recovered that would have been classified as
background before. This process can be observed in Figure 3 multiple times, whenever
image regions that are not encoded by parts in one layer get encoded in the layer above.
The selection process for the training patches I5 can again be guided by the independence
principle as in Equation 6. The procedure is repeated for multiple levels until no further
compositions are found, thus generating a dictionary of compositional active basis model
D= {@}, . ’®11\’1 e @,LVL}. The results of the learning process are illustrated in Figure 3.

In order to build a holistic model of the reference impression from the dictionary D, we must
not apply a complex top-down process as e.g. [33]. We can assume that the structure in the
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Figure 3: The results of the compositional learning procedure when applied to a reference
impression. (a) The input image. (b-f) The learning result for each layer (1 —35) of the
hierarchy. Bottom row: Illustration if the learned CABMs with different colours in their
mean position. The individual Gabor wavelets are represented by small strokes. Top row:
The input image when encoded with the learned models of each layer.

training image is generated by the object of interest. Therefore, the full CABM can be built
by connecting all detected parts to the root node that are not explained away by a part from
a higher layer (Figure 1).

At this point, we have learned a holistic compositional active basis model ®" that represents
a particular reference impression. The number of layers L as well as the number of parts
for each individual layer N; . ; have been inferred automatically. Furthermore, we have
formulated the pattern model as well as the learning process in a fully probabilistic manner.
These achievements mark the main contribution of this work.

In the following Section 3.3, we further propose to augment the CABM with an implicit
background model that reduces the sensitivity to outliers due to occlusions or structured
clutter.

3.3 Robust Inference

Given a two-level CABM @7 as depicted in Figure 2, the optimal spatial configuration for a
test image I can be inferred by maximising the posterior p(IT|/r, @2). According to Bayes’
rule the posterior can be written as:

p(T|I7,©%) < P(Ir|T1,0%)P(I1|©?). ®)

We can infer the parameters with a standard recursive bottom-up inference procedure as e.g.
presented in [3, 6, 33]. A main issue is, however, that in the probe images some parts of the
reference impression are missing ( Figure 1 ). Without adjustments to the standard model
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(Equation 5), missing parts are evaluated at the background and thus heavily decrease the
posterior probability at the correct position. As we do not have prior information on what
parts are occluded or on the appearance of the background, we cannot pre-learn an explicit
occlusion model as e.g. in [9, 14]. Instead, we augment the distribution that models the
geometry between parts with an implicit background model:

p(BIB}) +Ur
—=—

(BB} ) = 9)

The uniform distribution U, is defined over the whole patch domain. In this way, part con-
figurations that could not be explained by p(f3’|f8 jl) at all are assigned a small probability in
p(BLIB Jl ). Thus the CABM is able to compensate locally unlikely part configurations if the
other parts of the model still fit well with the data.

4 Experiments

We evaluate the proposed methodology on the FID-300 dataset [13] (http://fid.cs.unibas.ch/).
The footwear impression dataset contains 300 probe images Ip and 1175 reference impres-
sions. During training we learn a pattern model ® for each of the reference impressions. At
testing time we calculate the posterior p(Ilg|lp,®g) for each model.

Cumulative Match Curve FID-300

r Random

09 r DeChazal [6]
Kortylewski [13]
0.8 - Gueham [11]
Dardi [5]

0.7 F Tang [26]

| | m—Ours

Probability of a correct match

0 5 10 15 20
Rank in % of database size

Figure 4: Image retrieval results on the FID-300 dataset.

According to the standard evaluation procedure, we sort the models based on their pos-
terior probability and record the position of the correct reference from the ranked list. Af-
terwards, we calculate the cumulative distribution of the rank histogram. Figure 4 shows the
cumulative match curves of our method compared to a reimplementation of five other ap-
proaches [2, 5, 11, 13, 27]. The section on the y-axis marks rank-1 performance. Compared
to the other approaches the proposed method is able to increase the performance by a wide
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margin. We constantly outperform the state-of-the-art by approximately 15% starting from
3% of the ranked list.

5 Conclusion & Future Work

In this paper we propose an approach for learning the structure of compositional active basis
models. We infer the number of layers per model as well as the number of parts in each layer
with a greedy EM-type clustering process. Furthermore, we formulate the pattern model as
well as the learning process in a fully probabilistic manner. Finally, based on the statistical
framework, we augment the pattern model with an implicit background model that reduces
the models sensitivity to pattern occlusions and structured clutter. We show that the proposed
methodology is capable of solving the complex pattern analysis task of footwear impression
recognition with unprecedented quality.

We think that part sharing between pattern models would facilitate the learning of semantic
regularities between patterns. Furthermore, it is now possible to model articulated objects
with active basis models which opens another promising directions for future research.
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