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Abstract: Principal component analysis is a ubiquitous method in parametric appearance modeling for describing depen-

dency and variance in a data set. The method requires that the observed data be Gaussian-distributed. We show

that this requirement is not fulfilled in the context of analysis and synthesis of facial appearance. The model

mismatch leads to unnatural artifacts which are severe to human perception. In order to prevent these artifacts,

we propose to use a semiparametric Gaussian copula model, where dependency and variance are modeled sep-

arately. The Gaussian copula enables us to use arbitrary Gaussian and non-Gaussian marginal distributions.

The new flexibility provides scale invariance and robustness to outliers as well as a higher specificity in gen-

erated images. Moreover, the new model makes possible a combined analysis of facial appearance and shape

data. In practice, the proposed model can easily enhance the performance obtained by principal component

analysis in existing pipelines: The steps for analysis and synthesis can be implemented as convenient pre- and

post-processing steps.

1 INTRODUCTION

Parametric Appearance Models (PAM) describe

objects in an image in terms of pixel intensities. In the

context of faces, Active Appearance Models (Cootes

et al., 1998) and 3D Morphable Models (Blanz and

Vetter, 1999) are established PAMs to model appear-

ance and shape. The dominant method for learning

the parameters of a PAM is principal component anal-

ysis (PCA) (Jolliffe, 2002). PCA is used to describe

the variance and dependency in the data. Usually,

PAMs are generative models that can synthesize new

random instances.

Using PCA to model facial appearance leads to

models which are able to synthesize instances which

appear unnaturally. This is due to the assumption that

the color intensities or, in other words, the marginals

at a pixel are Gaussian-distributed. We show that

this is a severe simplification: The pixel intensities

of new samples will follow a joint Gaussian distribu-

tion. This approximation is far from the actual ob-

served distribution of the training data and leads to

unnatural artifacts in appearance.

The ability to synthesize random and natural in-

stances is important when generating new face in-

stances (Mohammed et al., 2009) and in face ma-

nipulation (Walker and Vetter, 2009). This is be-

cause human perception is very sensitive to unnatu-

ral variability in a face. On the other hand, PCA face

models are used as a strong prior in probabilistic fa-

cial image interpretation algorithms (Schönborn et al.,

2013). Hence, such applications require a prior which

follows the underlying distribution as closely as pos-

sible and, which is therefore, highly specific to faces.

In order to enhance the specificity of a PCA-based

model, an obvious improvement would be the exten-

sion to a Gaussian mixture model (Rasmussen, 1999).

Here, each color channel at a pixel is modeled with

an (infinite) mixture of Gaussians. However, we skip

this step and propose to use a semiparametric copula

model directly.

A copula model provides the decomposition of the

dependency and the marginal distributions such that

the copula contains the dependency structure only.

This separate modeling allows us to drop the paramet-

ric Gaussian assumption on the color channels and to

replace them with nonparametric empirical distribu-

tions. We keep the parametric dependency structure;

in particular, we use a Gaussian copula because of its

inherent Gaussian latent space. PCA can then be ap-



Figure 1: This figure shows the pre- and post-processing steps necessary to use a Gaussian copula before calculating PCA.

plied in the latent Gaussian space and is used to learn

the dependencies of the data independently from the

marginal distribution. The method is analytically an-

alyzed in (Han and Liu, 2012) and is called Copula

Component Analysis (COCA). Samples drawn from

a COCA model follow the empirical marginal distri-

bution of the training data and are, therefore, more

specific to the modeled object.

The additional steps for using COCA can be im-

plemented as simple pre- and post-processing before

applying PCA. The data is mapped into a space where

it is Gaussian-distributed. This mapping is obtained

by first ranking the data and then transforming it by

the standard normal distribution. We perform PCA

on the transformed data to learn its underlying depen-

dency structure. All necessary steps are visualized in

Figure 1.

A semiparametric Gaussian copula model also

provides additional benefits: First, learning is invari-

ant to monotonic transformations of all marginals, in-

cluding invariance to scaling. Second, the implemen-

tation can be done as simple pre- and post-processing

steps. Third, the model also allows changing the color

space. For facial-appearance modeling, the HSV

color space is more appropriate than RGB. The HSV

color space is motivated by the separation of the hue

and saturation components and brightness value. On

the other hand, without adaptions, PCA is not appli-

cable to facial appearance in the HSV color space

because of its sensitivity to differently-scaled color

channels.

In summary, methods building on PCA can easily

benefit from these advantages to improve their learned

model.

1.1 Related Work

The Eigenfaces approach (Sirovich and Kirby, 1987;

Turk et al., 1991) uses PCA on aligned facial images

to analyze and synthesize faces. Active Appearance

Models (Cootes et al., 1998) add a shape component

which allows to model the shape independently from

the appearance. The 3D Morphable Model (Blanz and

Vetter, 1999) uses a dense registration, extends the

shape model to 3D and adds camera and illumination

parameters. The 3D Morphable Model allows han-

dling appearance independently from pose, illumina-

tion and shape. These methods have a common core:

They focus on analysis and synthesis of faces and all

of them use a PCA model for color representation and

can, therefore, benefit from COCA.

Photo-realistic face synthesis methods like Visio-

lization (Mohammed et al., 2009) use PCA as a basis

for example-based photo-realistic appearance model-

ing.

1.2 Organization of the paper

The remainder of the paper is organized as follows:

The methods section explains the copula extension

for PCA and presents the theoretical background for

learning and inference. Additionally, practical infor-

mation for an implementation is provided. In the ex-

periments and results we demonstrate that facial ap-

pearance should be modeled using the copula exten-

sion. We qualitatively and quantitatively show that the

proposed model leads to a facial appearance model

which is more specific to faces.

2 METHODS

2.1 PCA for Facial Appearance

Modeling

Let x ∈ R
3n describe a zero-mean vector representing

3 color channels of an image with n pixels. In an RGB

image, the color channels and the pixels are stacked

such that x = (r1,g1,b1,r2,b2,b3, . . . ,rn,gn,bn)
T . We

assume that the mean of every dimension is already

subtracted. The training set of m images is arranged

as the data matrix X ∈ R
3n×m.

PCA (Jolliffe, 2002) aims at diagonalizing the

sample covariance Σ = 1
m

XXT , such that

Σ = 1
m

US2UT (1)

where S is a diagonal matrix and U contains the trans-

formation to the new basis. The columns of matrix U

are the eigenvectors of Σ and the corresponding eigen-

values are on the diagonal of S.

PCA is usually computed by a singular value de-

composition (SVD). In case of a rank-deficient sam-

ple covariance with rank m < n we cannot calculate



U−1. Therefore, SVD leads to a compressed rep-

resentation with a maximum of m dimensions. The

eigenvectors in the transformation matrix U are or-

dered by the magnitude of the corresponding eigen-

values.

When computing PCA, the principal components

are guided by the variance as well as the covariance in

the data. While the variance captures the scattering of

the intensity value of a pixel, the covariance describes

which regions contain similar color. This mingling of

factors leads to results which are sensitive to differ-

ent scales and to outliers in the training set. Regions

with large variance and outliers could influence the

direction of the resulting principal components in an

undesired manner.

We uncouple variance and dependency structure

such that PCA is only influenced by the dependency

in the data. Our approach for uncoupling is a copula

model which provides an analytical decomposition of

the aforementioned factors.

2.2 Copula Extension

Copulas (Nelsen, 2013; Joe, 1997) allow a detached

analysis of the marginals and the dependency pat-

tern for facial appearance models. We consider a re-

laxation to a semiparametric Gaussian copula model

(Genest et al., 1995; Tsukahara, 2005). We keep the

Gaussian copula for describing the dependency pat-

tern, but we allow nonparametric marginals.

Let x∈R
3n describe the same zero-mean vector as

used for PCA, representing 3 color channels of an im-

age with n pixels. Sklar’s theorem allows the decom-

position of every continuous and multivariate cumu-

lative probability distribution (cdf) into its marginals

Fi(Xi), i = 1, . . . ,3n and a copula C. The copula com-

prises the dependency structure, such that

F(X1, · · · ,X3n) =C (W1, . . . ,W3n) (2)

where Wi = Fi(Xi). Wi are uniformly distributed and

generated by the probability integral transformation1.

For our application, we consider the Gaussian

copula because of its inherently implied latent space

X̃i = Φ
−1 (Wi) , i = 1, . . . ,3n (3)

where Φ is the standard normal cdf. The multivari-

ate latent space is standard normal-distributed and

fully parametrized by the sample correlation matrix

Σ̃ = 1
m

X̃ X̃T only. PCA is then applied on the sample

correlation in the latent space X̃ .

1The copula literature uses U instead of W . We changed
this convention due to the singular value decomposition
which uses X =USV T .

Algorithm 1: Learning.

Input: Training set {X}
Output: Projection matrices U , S

for all dimensions do

for all samples do

x̃i j = Φ
−1

(

ri j(xi j)
m+1

)

find Ũ , S̃ such that Σ̃ = 1
m

Ũ S̃2ŨT (via SVD)

The separation of dependency pattern and

marginals provides multiple benefits: First, the Gaus-

sian copula captures the dependency pattern invariant

to the variance of the color space2. Second, whilst

PCA is distorted by outliers and is generally incon-

sistent in high dimensions, the semiparametric copula

extension solves this problem (Han and Liu, 2012).

Third, the nonparametric marginals maintain the non-

Gaussian nature of the color distribution. Especially

when generating new samples from the trained distri-

bution, the samples do not exceed the color space of

the training set.

2.3 Inference

We learn the latent sample correlation matrix Σ̃ =
1
m

X̃ X̃T in a semiparametric fashion using nonpara-

metric marginals and a parametric Gaussian copula.

We compute ŵi j = F̂emp,i(xi j) =
ri j(xi j)
m+1

using empiri-

cal marginals F̂emp,i, where ri j(xi j) is the rank of the

data xi j within the set {xi•}. Then, Σ̃ is simply the

sample covariance of the normal scores

x̃i j =Φ
−1

(

ri j(xi j)

m+1

)

, i= 1, . . . ,3n, j = 1, . . . ,m.

(4)

Equation (4) contains the nonparametric part, since Σ̃

is computed from the ranks ri j(xi j) solely and con-

tains no information about the marginal distribution

of the x’s. Note, x̃ ∼ N (0, Σ̃) is standard normal dis-

tributed with correlation matrix Σ̃. Subsequently, an

eigendecomposition is applied on the latent correla-

tion matrix Σ̃.

Generating a sample using PCA then simply re-

quires a sample from the model parameters

h ∼ N (0, I) (5)

which is projected to the latent space

x̃ = Ũ
S̃√
m

h (6)

2More general, a copula model is invariant against all
monotonic transformations of the marginals.



Algorithm 2: Sampling.

Output: Random sample x

h ∼ N (0, I)

x̃ = Ũ S̃√
m

h

for all dimensions i do
wi = Φ(x̃i)
xi = F̂emp,i(wi)

and further projected component-wise to

wi = Φ(x̃i) , i = 1, . . . ,3n. (7)

Finally, the projection to the color space requires the

empirical marginals

xi = F̂emp,i(wi), i = 1, . . . ,3n. (8)

All necessary steps are summarized in Algorithms 1

and 2 and visualized in Figure 1.

It is possible to smoothen the empirical marginals

with a kernel k and replace Equation (8) by xi =
k(wi,Xi•), i = 1, . . . ,3n.

2.4 Implementation

The additional steps for using COCA can be imple-

mented as simple pre- and post-processing before ap-

plying PCA. Basically the data is mapped into a latent

space where it is Gaussian-distributed. The mapping

is performed in two steps. First, the data is trans-

formed to an uniform distribution by ranking the in-

tensity values. Then it is transformed to a standard

normal distribution. On the transformed data, we per-

form PCA to learn the dependency structure in the

data.

To generate new instances from the model, all

steps have to be reversed. Figure 1 gives an overview

of all necessary transformations. The following steps

have to be performed, e.g. in MATLAB, to calculate

COCA:

% calculate empirical cdf

[empCDFs , indexX] = sort(X, 2);

% transform emp. cdf to uniform

[~, rank] = sort(indexX , 2);

uniformCDFs = rank / (size(rank , 2)+1);

% transform uni. cdf to std. normal cdf

normCDFs = norminv(uniformCDFs ',0,1)';

% calculate PCA

[U,S,V] = svd(normCDFs , 'econ');

Listing 1: Learning

To generate an image from model parameters, the fol-

lowing steps are necessary:

% random sample

m = size(normCDFs , 2);

h = random('norm' ,0 ,1 ,m ,1);

sample = U * S / sqrt(m) * h;

% std. normal to uniform

uniformSample = normcdf(sample , 0, ...

1) * (m - 1) + 1;

% uniform to emp. cdf

empSample = ...

empCDFs(sub2ind(size(empCDFs), ...

1:size(data , 1), ...

round(uniformSample ')))';

Listing 2: Sampling

These are the additional steps which have to be

performed as pre- and post-processing for the analysis

of the data and the synthesis of new random samples.

In terms of computing resources we have to consider

the following: The empirical marginal distributions

Femp are now part of the model and have to be kept

in memory. In the learning part, the complexity of

sorting the input data is added. In the sampling part,

we have to transform the data back by looking up their

values in the empirical distribution.

The copula extension comes with low additional

effort: it is easy to implement and has only slightly

higher computing costs. We encourage the reader to

implement these few steps since the increased flexi-

bility in the modeling provides a valuable extension.

3 EXPERIMENTS & RESULTS

For all our experiments, we used the texture of

200 face scans used for building the Basel Face Model

(BFM) (Paysan et al., 2009). The scans are in dense

correspondence and were captured under an identical

illumination setting. We work on texture images and

use a resolution of 1024x512 pixels. Our experiments

are based on the appearance information only, the last

experiment merging the appearance and shape to a

combined model. We used the empirical data directly

as marginal distribution. The results are rendered with

an ambient illumination on the mean face shape of the

BFM.

3.1 Facial Appearance Distribution

In a first experiment we investigate if the color inten-

sities in our face data set are Gaussian-distributed. We

followed the protocol of the Kolmogorov-Smirnov



Test (Massey Jr, 1951). We estimate a Gaussian dis-

tribution for every color channel per pixel and com-

pare it to the observed data. The null hypothesis of

the test is that the observed data is drawn by the esti-

mated Gaussian distribution. The test measures the

maximum distance of the cumulative density func-

tion of the estimated Gaussian Φµ̂,σ̂2 and the empirical

marginal distribution Femp of the observed data:

d = sup
x

∥

∥

∥
Femp(x)−Φµ̂,σ̂2(x)

∥

∥

∥
(9)

Here, µ̂ and σ̂
2 are maximum-likelihood estimates for

the mean and variance of a Gaussian distribution re-

spectively. In Figure 2 we visualize the maximal dis-

tance value over all color channels per point on the

surface.

Figure 2: The result of the Kolmogorov-Smirnov Test to
compare the empirical marginal distribution of color values
from our 200 face scans with a Gaussian-reference proba-
bility distribution. We plot the highest value of the three
color channels per pixel, because the values for the individ-
ual color channels are very similar. We show two exemplary
marginal distributions in the eye and temple region. They
are not only non-Gaussian but also not similar.

We assume a significance level of 1−α = 0.05.

The critical value dα is approximated using the fol-

lowing formula (Lothar Sachs, 2006):

dα =

√

ln( 2
α
)

√
2n

(10)

With n = 200 training samples we get a critical

value of 0.096. Non-Gaussian marginal distributions

of color intensities are present in the region of the

eyebrows, eyes, chin and hair, where multi-modal ap-

pearance is present. In total for 49% of the pixels

over all color channels, the null hypothesis has to be

rejected. In simple monotonic regions, like the cheek,

the marginal distributions are close to a Gaussian dis-

tribution. In more structured regions like the eye, eye-

brow or the temple region, the appearance is highly

non-Gaussian. This leads to strong artifacts when

modeling facial color appearance using PCA (see Fig-

ure 3 and Figure 4). Since those more structured re-

gions are fundamental components of a face, it is im-

portant to model them properly.

3.2 Appearance Modeling

We evaluate our facial appearance model by its capa-

bility to synthesize new instances. We measured this

capability by comparing the major eigenmodes, ran-

dom model instances, the sample marginal distribu-

tions and the specificity of both models. The speci-

ficity is measured qualitatively by visual examples

and quantitatively by a model metric.

Figure 3: PCA and COCA are compared by visualizing
the first two eigenvectors with 3 standard deviations on the
mean. The components look very similar, except that the
PCA artifacts on the temple (arrows) in the second eigen-
vector do not appear using COCA.

3.2.1 Model Parameters

The first few principal components store the strongest

dependencies. We visualize the first two components

by setting their value hi to σ = 3 standard deviations

and show the result in Figure 3. The first parameters

of PCA and COCA appear very similar in the vari-

ation of the data they model. The second principal

component of PCA causes artifacts in the temple re-

gion. These artifacts are caused by the linearity of

PCA. COCA is a nonlinear method and therefore, the

artifacts are not present.



3.2.2 Random Samples

The ability to generate new instances is a key fea-

ture for generative models. A model which can pro-

duce more realistic samples is desirable for various

applications. For example, the Visio-lization method

to generate high resolution appearances is based on

a prototype generated with PCA (Mohammed et al.,

2009).

Another field of application for the generative

part of models are Analysis-by-Synthesis methods

based on Active Appearance Models (AAM) or 3D

Morphable Models (3DMM). They can profit from a

stronger prior which is more specific to faces and re-

duces the search space (Schönborn et al., 2013).

Generating a random parameter vector leads to a

random face from our PCA or COCA model. We

sample h according to Equation (5) independently

for all 199 parameters and project them via PCA

or COCA on the color space following Equation 6.

Random samples using COCA contain fewer artifacts

and, therefore, appear much more natural (see Fig-

ure 4). These artifacts are caused by the linearity of

PCA. For non-Gaussian-distributed marginals, PCA

does not only interpolate within the trained color dis-

tribution but also extrapolates to color intensities not

supported by the training data.

The most obvious problem is the limited domain

of the color channels: using PCA, color channels have

to be clamped. The linearity constraint of PCA leads

to much brighter or darker color appearance than

those present in the training data in regions which are

not Gaussian-distributed. In the next experiment, we

show that the higher specificity is not only a qualita-

tive result but can also be measured by a model met-

ric.

Few samples od COCA contain artifacts arising

from outliers in the training data which appear at the

borders of the empirical cdfs. Those artifacts can be

removed by slightly cropping the marginal distribu-

tions (removing the outliers) or by applying COCA in

the HSV color space.

3.3 Appearance Marginal Distribution

We analyze the marginal distributions of our ran-

dom faces at a single point at the border between the

pupil and the sclera of the eye. In this region the

Kolmogorov-Smirnov Test rejected the null hypoth-

esis. We analyze the empirical intensity distribution

of a single color channel at this point (Figure 5a).

The sample marginal distributions drawn from 1000

random instances generated by PCA and COCA are

shown in Figure 5b and Figure 5c respectively. Whilst

COCA is able to generate samples distributed similar

to our input data, PCA is approximating a Gaussian

distribution, which is inaccurate in a lot of facial re-

gions.

(a) Empirical marginal distribution

(b) PCA sample marginal distribution

(c) COCA sample marginal distribution

Figure 5: The marginal distribution of the red color intensity
of a single point in the eye region. (a) shows the distribution
observed in the training data, (b) shows the distribution of
samples drawn from a PCA model and (c) from a COCA
model.

3.3.1 Specificity and Generalization

To measure the quality of the PCA and COCA mod-

els, we use model metrics motivated by the shape

modeling community (Styner et al., 2003). The

first metric is specificity: Instances generated by the

model should be similar to instances in the training



Figure 4: The first and second row show random samples projected by PCA and COCA respectively. Using PCA, we can
observe strong artifacts in the regions where the marginal distribution is not Gaussian (see Figure 2). The improvement of
COCA can be observed in the temple region, on the eyebrows, around the nostrils, the eyelids and at the border of the pupil.
We chose representative samples for both methods.

set. Therefore, we draw 1000 random samples from

our model and compare each one to its nearest neigh-

bor in the training data. We measure the distance us-

ing the mean absolute error over all pixels and color

channels in the RGB-color space. The COCA model

is more specific to facial appearance (see Figure 6).

This corresponds to our observation of a more realis-

tic facial appearance (Figure 4).

Specificity should always be used in combination

with the generalization model metric (Styner et al.,

2003). The generalization measures how exactly the

model can represent unseen instances. We measure

the generalization ability of both models using a test

set and use the same distance measure as for speci-

ficity. The test data consists of 25 additional face

scans not contained in the training data. We observe

that both models generalize well to unseen data. PCA

generalizes slightly better, see Figure 7.

The third model metric is compactness - the abil-

ity to use a minimal set of parameters (Styner et al.,

2003). The compactness can be measured directly by

the number of used parameters. In our experiments,

the number of parameters is always the same for both

models.

There is always a tradeoff between specificity and

generalization. Whilst PCA performs slightly better

in generalization, COCA performs better in terms of

specificity. The better generalization ability of PCA

comes at the price of a lower specificity and clearly

visible artifacts.

Figure 6: The specificity shows how close generated in-
stances are to instances in the training data. The average
distance of 1000 random samples to the training set (mean
squared error per pixel and color channel) is shown. A
model is more specific if the distance of the generated sam-
ples to the training set is smaller. We observe that COCA is
more specific to faces (lower is better).

3.3.2 Combined Shape and Color Model

Color appearance and shape are modeled indepen-

dently in AAMs and 3DMMs. Recently, it was

demonstrated that facial shape and appearance are

correlated (Schumacher and Blanz, 2015) and those

correlations were investigated using Canonical Cor-

relation Analysis on separate shape and appearance

PCA models.

The main reason to build separate models is a

practical one - shape and color values are not in the



Figure 7: The generalization ability shows how exactly un-
seen instances can be represented by a model. The lower
the error, the better a model generalizes. As a baseline, we
present the generalization ability of the average face. We
observe that PCA generalizes slightly better (lower is bet-
ter).

same range. Some approaches accommodate this is-

sue by normalization (Edwards et al., 1998). How-

ever, this approach is highly sensitive to outliers.

Since Copula Component Analysis is scale invariant,

we can directly apply it to the unscaled data.

We learned a COCA model combining the color

and shape information (see Figure 8 and Figure 9).

Shape and texture vectors are combined by simply

concatenating them. By integrating this additional de-

pendency information, the model becomes more spe-

cific (Edwards et al., 1998).

As a future extension, COCA allows us to also

integrate attributes like age, weight and size or even

social attributes like thrustworthiness or social com-

petence directly into the model.

4 CONCLUSIONS

We showed that the marginal distribution of fa-

cial color is not Gaussian-distributed for large parts

of the face and that PCA is not able to model fa-

cial appearance properly. In a statistical appearance

model, this leads to unnatural artifacts which are eas-

ily detected by human perception. To avoid such ar-

tifacts, we propose to use PCA in a semiparamet-

ric Gaussian copula model (COCA) which allows to

model the marginal color distribution separately from

the dependency structure. In this model, the paramet-

ric Gaussian copula describes the dependency pattern

in the data and the nonparametric marginals relax the

restrictive Gaussian requirement of the data distribu-

tion.

The separation of marginals and dependency pat-

tern enhances the model flexibility. We showed qual-

+2σ-2σ

1st

2nd

3rd

Figure 8: We learned a common shape and appearance
model using COCA. We visualize the first eigenvectors
with 2 standard deviations, which show the strongest de-
pendencies in our training data. Whilst the first parameter
is strongly dominated by appearance the later parameters
are targeting shape and appearance. Since the model is built
from 100 females and 100 males, the first components are
strongly connected to sex.

itatively that COCA models facial appearance better

than PCA. This finding is also supported by a quanti-

tative evaluation using specificity as a model metric.

Moreover, the COCA model enables to add fur-

ther data to the model: Age, weight, size, and other

data like social attributes living on different scales can

be incorporated in the model in an unified way. To

demonstrate this feature, we showed that the inclusion

of shape also increased the specificity of the model.

The computer graphics and vision community is

heavily modeling and working with color intensities.

We believe that these intensities are most often not

Gaussian-distributed and, therefore, our findings can

be transferred to a lot of applications.

Finally, we again want to encourage the reader to

replace PCA with a COCA model, since the addi-

tional model flexibility comes with almost no imple-

mentation effort.



Figure 9: Random samples projected by a common shape and appearance model using COCA.
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