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Abstract. Segmentation of complete neurons in 3D electron microscopy
images is an important task in Connectomics. A common approach for
automatic segmentation is to detect membrane between neurons in a first
step. This is often done with a random forest. We propose a new implicit
boundary learning scheme that optimizes the segmentation error of neu-
rons instead of the classification error of membrane. Given a segmenta-
tion, optimal labels for boundary between neurons and for non-boundary
are found automatically and are used for training. In contrast to train-
ing random forests with labels for membrane and intracellular space, this
novel training method does not require many labels for the difficult to
label membrane and reduces the segmentation error significantly.

1 Introduction

Connectomics studies the structure and function of neuronal circuits. One app-
roach to obtain these circuits is to reconstruct neuronal networks from 3D elec-
tron microscopy (3DEM) images. These 3D images are obtained by stacking 2D
images. An example of such an image is given in Figure 1. With serial block face
scanning electron microscopes [1] and focus ion beam scanning electron micro-
scopes (FIB-SEM) the resolution in all three dimensions is high enough for an
analysis in 3D. With FIB-SEM even isotropic resolution is possible. With these
microscopes the acquisition is almost completely automated while for recon-
struction the state of the art is still manual reconstruction. Skeleton tracings are
made by hundreds of undergraduate students [2] or supervoxels are merged in
the online game EyeWire1 from more than 80 000 people.

Various approaches are proposed for the automatic reconstruction of 3DEM
data. Some methods use segmentations from 2D slices and merge them to a
consistent segmentation in 3D [3,4]. Laptev et al. [5] do a segmentation per
slice and use neighboring slices to enrich the features for the slice. Andres et al.
[6] presented a method that is working truly in 3D. All these methods have
different approaches for the segmentation but all start with a random forest to
detect membranes in 3DEM images.

Liu et al. proposed a hierarchical segmentation method [7] that uses learned
membrane probability maps. In their experiments they use probability maps

1 http://eyewire.org
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Fig. 1. From left to right: input image, rough labels of the intracellular regions over-
layed on the input data, predicted probability map. Examples of the probability map
on test data are shown in Figure 6.

learned with cascaded hierarchical models [8] and a deep neuronal network
(DNN) from Ciresan et al. [9]. The drawback of DNNs is their requirement for
much training data and long training time often on special hardware clusters. In
contrast, random forests can be trained on normal workstations in a reasonable
time.

Other approaches try to learn the segmentation directly. Turaga et al. [10]
presented an online learning scheme for convolutional neuronal networks (CNN)
that optimize the Rand index. Similarly Jain et al. [11] introduced the “warp-
ing error” and traind a CNN to optimize for this error. A supervised learning
of image partitioning is proposed in [12]. A decision tree is learned in a greedy
manner by selecting the split that maximizes the Matthews correlation coeffi-
cient.

When using a random forest for segmentation, the usual approach is to train
a two class random forest with one class for membrane and one for intracellular
space (including organelles like vesicles and mitochondria). The labels are given
in advance or obtained interactively with the feedback of the prediction (e.g.
with ilastik [13]). The random forest training optimizes the classification error
given the training data. It is up to the user to select a set of labeled data that
is appropriate for the segmentation. Therefore, labels where the output of the
random forest leads to segmentation errors are important. These regions are
also often difficult to label for a human. Cell membranes are thin elongated
structures, sometimes only single pixels wide and occupy only a small fraction
of the space. This makes it hard to get many accurate labels especially where
the membrane is blurred, close to another membrane or touching organelles like
mitochondria.

We introduce a new method to automatically select and label training data
for a random forest. Instead of labels for membrane a rough segmentation of
intracellular space as shown in Figure 1 is used. In an iterative process, a ran-
dom forest is trained, the boundary prediction is analyzed in respect of the
segmentation and optimal points for boundary and non-boundary are added to
the training data. The segmentation error is reduced significantly compared to
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training with dense membrane labels or ilastik. In Figure 1 an example of the
input data, labels used for our method, and the predicted boundary is shown.

In Section 2 we describe the details of the implicit boundary learning scheme.
An evaluation and comparison to training with other methods is given in Section
3. Conclusion follows in Section 4.

2 Method

To learn a random forest for predicting a boundary that optimizes a segmenta-
tion we go for a hybrid approach. Using some initial labels, a two-class random
forest is trained to detect an initial boundary. After training, it is applied to the
complete training volume. New training samples are selected where segmentation
errors occur. Then the random forest is retrained with the additional training
data. This is repeated until convergence. The most important and difficult task
is to get new training samples that improve the segmentation. In active learning
samples close to the decision boundary are selected and the user is asked to
label them. But these samples are not necessarily critical for the segmentation.
In ilastik [13], the user searches for regions where the prediction is unsatisfying
and adds new labels there. This is where membrane has low membrane proba-
bilities or intracellular space is detected as membrane. In difference to that, our
method automatically identifies regions where segmentation errors occur and
adds labels there.

2.1 Finding Labels to Optimize Segmentation

For the reconstruction of neuronal circuits there are two important types of
segmentation errors: false mergers and false splits. A false merger erroneously
connects two regions to a common segment. A false split erroneously divides
a region in two segments. To evaluate these errors a segmentation model is
needed to transform the predicted probability into a segmentation. We use a
threshold segmentation. All pixels with a boundary probability above a threshold
are removed. The remaining connected components build the segmentation.

We define a path γ from a pixel xs to another pixel xe on the pixel grid (2D
or 3D) as

γ(xs, xe) = {xs, xa, xb, . . . , xe} , (1)

where xs, xa, . . . are unique neighboring pixels, i.e. the edges (xs, xa), (xa, xb), . . .
are edges in the neighborhood graph. The path of all paths from xs to xe for
which the maximum pixel value on the path is minimal we define as minimax
path:

γ∗(xs, xe) = arg min
γ∈Γ (xs,xe)

(
max
x∈γ

p(x)
)

, (2)

where Γ (xs, xe) is the set of all paths from xs to xe, and p(x) is the pixel value.
Using the threshold segmentation model, two points are in the same segment

if and only if there exists a path in the boundary probability map with all
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pixels on the path below or equal a threshold. We can formulate the following
conditions for false mergers and splits. A false merger occurs if

max
x∈γ∗(xs,xe)

p(x) ≤ threshold, (3)

where xs and xe are from different segments. A false split is induced if

max
x∈γ∗(xs,xe)

p(x) > threshold, (4)

with xs and xe from the same segment.
The false split and false merge both happen at the maximum of the minimax

path:
x∗(xs, xe) = arg max

x∈γ∗ p(x). (5)

This point can be found efficiently. We define the weight of the edges between
neighboring pixels xi, xj as:

wij = max(p(xi), p(xj)), (6)

and use Kruskal’s algorithm to find the minimum spanning tree (MST). From
[14] it is known that for any edge (xi, xj) that is not part of the MST it is wij ≥
max(wia, wab, . . . , wdj). With our definition of the edge weight, the maximal
edge weight on the path equals the maximal pixel value on the path. From that
follows that γ∗(xs, xe) is part of the MST. x∗ can then be found by searching
the maximum on the unique path between between xs and xe in the MST. This
is illustrated in Figure 2.

To label new data and add it to the training data, pairs (xs, xe) are sampled.
For xs and xe from different segments, x∗ is labeled as “membrane”. For xs

and xe from the same segments, x∗ is labeled as “intracellular”. The points x∗

are added to the training data regardless of their value p(x∗). This means no
threshold has to be specified for training.

For many pairs (xs, xe) the point x∗ is the same. For example, in Figure 2
all points from the red and blue segment share the same maximum x∗ on their
minimax path. Sampling xs and xe spatially close and restricting the region of
interest where the minimax path is searched gives more unique training data.
To keep the labels and training balanced, the same number of new training data
is added for boundary and non-boundary.

For the false mergers it can easily be seen that adding the maximum of the
minimax path to the training data is reasonable. For false splits this is not that
obvious. The path γ∗(xs, xe) is the path with the lowest maximum between xs

and xe, why should a new training label be taken from this path? Let’s compare
it to other methods to obtain a subset of training data from a segmentation.

(a) Randomly sample n points in the intracellular area. This is the simplest
method but gives no control to select a subset of informative labels.

(b) Choose n worst classified points that are labeled as intracellular space. While
this may reduce the classification error of the intracellular space, it is not
known if a better classification of these points improves the segmentation.
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Fig. 2. Illustration of the minimax path γ∗(xs, xe) (green). The corresponding prob-
abilities for boundary on this path are plotted below. The point with the highest
boundary probability is the minimax point x∗. All minimax paths in this region are
part of the minimum spanning tree (blue). Segment labels are shown as red, green and
blue regions. Note that for all paths between the red and blue segment, the shown
minimax point x∗ is the same.

(c) Randomly sample n pairs of points, with each pair within the same segment,
choose a point from the minimax path between the points. This selection
gives the only points that are known to be critical for the segmentation.
Choosing a point from another path, such as a random path, a minimal
(spatial) path, gives no such information.

To initialize the method an initial prediction for boundary is required. For
this we use a random forest that is trained with a few labeled pixels for membrane
and non-membrane. The method is robust against the initialization. Even the
intensity of the (inverted) input image can be used as initial boundary prediction.

After the selection of additional training data a new random forest is trained.
The procedure is repeated until no more improvement in the segmentation is
obtained or a maximum number of iterations is reached. The required number
of iterations depends on the number of new training samples that are added in
each iteration.

2.2 Difference to Learn Membrane

In neuronal tissue neurons are enclosed by a cell membrane that is visible in
3DEM images. Often a classifier is trained to detect this membrane and use it
for segmentation. This is not the same as the boundary in our approach. We
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(a) (b) (c) (d)

Fig. 3. (a) shows three segments A, B and C that are separated by a membrane. (b)
shows a labeling for membrane in blue. It is also a valid boundary that separates the
three segments. (c) and (d) show other possible boundaries that separate the segments
correctly.

learn the boundary from the segmentation and do not enforce it to match the
membrane. In Figure 3 an example for membrane and boundary is given. While
the membrane is a valid boundary there exist other boundaries that also lead to
a correct segmentation. By not enforcing the boundary to match the membrane
a boundary that is easier for the classifier can be found.

3 Experiments and Results

We evaluate the proposed method on a FIB-SEM stack of the olfactory bulb from
zebrafish larvae. The data is isotropic with a resolution of 6 nm. For training and
testing we use two non overlapping regions of size 512 × 512 × 256 and 300 ×
300 × 300 respectively. For both volumes we have a gold standard segmentation
that is obtained by manual labeling with the interactive method from [15].

For all random forests the same implementation and the same set of features
from the 3D rotation invariant Harmonic filters [16] in multiple scales are used.
With these features we get good results. However, cell membranes and the mem-
brane from mitochondria can not be differentiated. This results in mitochondria
becoming segments within the neurons. Special designed features and segmen-
tation methods for mitochondria [17,18] allow to detect and process them in a
later step. We leave mitochondria and its membrane unlabeled for all experi-
ments. This does neither enforce mitochondria to become segments of its own,
nor being part of the neurons segment.

For anisotropic data the resolution in the z-direction is often insufficient
leading to gaps between the membrane of consecutive slices. This allows an
analysis only within the high resolution slice. With isotropic data like the FIB-
SEM data the analysis can be done in 3D. We test if there is an advantage
with this method working in 3D. Two random forests are trained with different
sampling schemes. For the first, the pairs of points are sampled in a volume and
the minimax paths between these points are calculated in 3D. For the second, the
pairs of points are sampled within a slice parallel to the xy-, xz-, or yz-plane. The
minimax path is then calculated only in this slice. In 2D we use a 4-connected
neighborhood, in 3D a 6-connected neighborhood. While the training with the
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Fig. 4. Adapted Rand error for random forest trained with the given number of iter-
ations. Iteration 0 is from the initial random forest trained with a few strokes for
membrane and intracellular space. The segmentation error is evaluated for each slice
and the distribution over the stack is shown.

Table 1. Segmentation errors on the test data. Each slice is evaluated with the same
threshold and the error is calculated over all slices. For each method the optimal
threshold is used.

Pixel error Warping error
Adapted

Rand error

BEL[19] 0.123 0.00112 0.271
MSANN[20] 0.130 0.00111 0.176
ilastik 0.144 0.00128 0.227
dense labels 0.138 0.00081 0.177
implicit 0.121 0.00050 0.106

method working in 3D takes much longer than working only in-plane, there is
no difference in the segmentation error. Therefore, we use in-plane sampling also
for isotropic 3D data.

To analyze the convergence in training and the generalization to the test
data we evaluate the segmentation in each iteration. In each iteration 5 000 new
labels for boundary and non-boundary are added. This parameter depends on
the size of the training stack but is not critical for the resulting random forest.
More iterations are required for smaller values, for larger values more point pairs
must be sampled to get new unique labels. The adapted Rand error is calculated
for each slice individually and the distribution is shown in Figure 4. The largest
improvement is gained in the 1st iteration. The next iterations show a further
reduction of the adapted Rand error and the improvement converges rapidly.
The test error is slightly higher than the training error with a larger variance.
On the test data the adapted Rand error also converges after a few iterations.
It is sufficient to train only a few iterations, what keeps the training time short.
With further iterations the test error does not increase and no overfitting to the
training data is visible.
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Fig. 5. Distribution of pixel error, warping error and adapted Rand error, evaluated
for each slice in the test data. The methods used are BEL [19], MSANN [20], and
random forests trained with labels obtained interactively with ilastik, dense labels and
our proposed method.

We compare our method to random forests trained with labels from inter-
active labeling using ilastik and dense labels as well as boosted edge learning
(BEL) [19] and multi-scale contextual model (MSANN) [20]. The dense mem-
brane labels are obtained from the gold standard segmentation and used for
BEL, MSANN and random forest training. The implicit boundary learning uses
the segmentation labels directly. With ilastik an expert collected 9110 labels for
membrane and 9104 labels for the intracellular space. For balanced training of
the random forest with dense labels a subset of 50 000 labels per class is taken
randomly. Training is done for 10 iterations with 5 000 new points for bound-
ary and non-boundary in each iteration. If more than 50 000 labels per class
are present only a subset, like for the training with dense labels, is used. The
segmentation errors are calculated for the threshold that gives the lowest error.
For BEL the output is filtered with a Gauss kernel (σ = 1) what gives better
results than using it directly. The pixel error, warping error [11] and adapted
Rand error of the test volume are given in Table 1. Additionally, the errors
are calculated per slice (each with the optimal threshold) and the distribution
is shown in Figure 5. Note that the pixel error is for the segment labels and
not for classification of membrane. When evaluated per slice, BEL and MSANN
give similar warping errors than the random forest with dense labels, but if the
error is calculated with a common threshold over the volume the random forest
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raw/gold BEL MSANN ilastik dense implicit

Fig. 6. The first column shows the input slice and the gold standard segmentation. In
the next columns the probability maps for membrane / boundary and the corresponding
segmentations are shown for the different methods.

gives better results. For the adapted Rand error MSANN seems better than the
random forest with dense labels (but note that there are many outliers). If the
error is evaluated over the volume they have almost the same error. With all
error measures the proposed implicit boundary learning has the lowest error.
For warping error and adapted Rand error the error was reduced about 40%
compared to a random forest trained with dense labels and even more compared
to a random forest trained with labels from ilastik. The interactive labeling with
ilastik has the largest segmentation errors, but the labeling effort is the smallest.

We focus on the training of the random forests, not on segmentation. There-
fore, only thresholding is used to get a segmentation. This approach is limited
in practical use. Tiny holes in the boundary can produce huge errors in the seg-
mentation. But we think that segmentation methods like [3,4,6] can also benefit
of using random forests trained with our method. In Figure 6 the predicted
probability maps for membrane / boundary and the resulting segmentation are
shown. The output from our method shows sharp lines with high probability for
boundary at the membranes and very low probabilities in the remaining regions.
The output from the random forest trained with ilastik or dense labels are less
distinct and blurry. The smaller regions in the upper left corner are hardly vis-
ible in the output from ilastik while they are clearly visible with the proposed
method. BEL and MSANN have clear boundaries. But where the membrane is
not detected correctly it gets almost deleted, leading to holes in the boundary.

4 Conclusion

We have presented a new method to train a random forest for segmentation
where the boundaries are learned implicitly from a given segmentation. The
segmentation error with a threshold segmentation of the boundary probability is
reduced significantly compared to supervised learning with dense labels or labels
from interactive labeling with ilastik. Methods that use membrane probability
maps [3,4,6,7] can be used with the boundary probability maps and improve
the segmentation accuracy further.
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