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Face image interpretation with generative models is done by reconstructing the input image as well as
possible. A comparison between the target and the model-generated image is complicated by the fact
that faces are surrounded by background. The standard likelihood formulation only compares within
the modeled face region. Through this restriction an unwanted but unavoidable background model
appears in the likelihood. This implicitly present model is inappropriate for most backgrounds and leads
to artifacts in the reconstruction, ranging from pose misalignment to shrinking of the face. We discuss the
problem in detail for a probabilistic 3D Morphable Model and propose to use explicit image-based
background models as a simple but fundamental solution. We also discuss common practical strategies
which deal with the problem but suffer from a limited applicability which inhibits the fully automatic
adaption of such models. We integrate the explicit background model through a likelihood ratio correc-
tion of the face model and thereby remove the need to evaluate the complete image. The background
models are generic and do not need to model background specifics. The corrected 3D Morphable Model
directly leads to more accurate pose estimation and image interpretations at large yaw angles with strong

self-occlusion.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

A human face in a typical image is surrounded by arbitrary
background. In Analysis-by-Synthesis settings, generative, para-
metric face models such as Active Shape Models, Active Appear-
ance Models or Morphable Models, serve to reconstruct the input
face as well as possible [5,4,2]. Depending on its parameter values,
the model produces a synthetic image which is then compared to
the input image through its likelihood under the model for a given
set of parameter values. Since the face only occupies a part of the
input image and it can appear in front of any background, one
avoids to include background into the model likelihood. Conse-
quently, the likelihood considers only the visible parts and ignores
the rest of the image. But as we show in this article, even though
background is ignored, it is still present in the model likelihood
in the form of an implicit and usually wrong background model.

The wrong background model leads to a strong preference for
background over the face. Wherever possible, the optimization
algorithm will try to reduce the support of the face. This leads to
unnatural optimal solutions which range from a strong shrinking
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effect to pose misalignment in non-frontal situations with self-
occlusion (Fig. 1).

The issues with the implicit background model become evident
as soon as the visibility of model parts can change with respect to
the model parameters. So far, most model fitting methods kept the
visibility constant, either by model restriction or determining it in
advance. For a fully automatic model adaption in unconstrained
situations, the full flexibility of the face is needed and the visibility
cannot be fixed in advance.

Due to the unavoidable use of an implicit background model,
we simply propose to use an explicitly controlled, image-based
background model to resolve the problems. For practical imple-
mentations, we show how it is sufficient to correct the model like-
lihood for this background assumption without actually evaluating
the whole background of the image. These minimal background
models work by replacing the model likelihood by a likelihood
ratio of model and background. The change in model likelihood
is a fundamental change within the model likelihood and can be
used to improve any fitting algorithm. It renders the desired inter-
pretation more stable and leads to a likelihood maximum which is
more consistent with the expectations of a face interpretation.

We focus the discussion of the problem mainly on the 3D
Morphable Model (3DMM) [2] but in principle, our results apply
to different generative models. We present an analysis of the prob-
lem within the probabilistic interpretation of the 3DMM fitting
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(a) Target

(b) Shrinking

(c) Pose Misalignment

Fig. 1. Wrong background models let the fit fail. Image-based evaluation leads to shrinking whereas model-based evaluation is prone to pose misalignments.

problem from Schonborn [15] which reveals a variable domain of
evaluation as the underlying problem.

Model fitting at larger yaw angles is especially susceptible to
effects of varying support size due to a large amount of self-occlu-
sion and thus a changing visibility. We evaluate different back-
ground models with respect to their performance for pose
estimation with the 3DMM. The empirical background model,
based on a histogram of the image performs best in the evaluation.
But all controlled background models lead to better results than
the parasitic model arising from ignoring the effect.

Standard fitting algorithms for generative face models evaluate
the image difference in the model domain. They project the target
image back into the normalized model view and compare within
the model, termed model-based evaluation. On the other side, the
likelihood can also be evaluated directly within the target image,
called image-based evaluation. Image-based evaluation leads to
higher quality reconstructions and more accurate pose estima-
tions. Contrary to model-based evaluation, it is even more suscep-
tible to effects of varying visibility since the support of the face in
the image changes strongly in accordance with the parameters.

We will first discuss the research background and theoretical
setup followed by our analysis of the problem. The proposed solu-
tion using explicit background models is then discussed together
with different choices of possible background models. In the eval-
uation part, we compare different models with respect to their per-
formance solving a pose estimation problem, a face recognition
problem and additionally, we qualitatively compare their perfor-
mance on real-world images.

2. Background

The adaptation of a parametric, generative face model to an
image is usually posed as an optimization problem, seeking the
parameter values which explain a given image best. The two main
types of generative face models, Active Appearance Models and 3D
Morphable Models are discussed in the following [2,4].

Active Appearance Models (AAM) consist of a variable texture
image which is deformed to match the target image [4]. The fitting
algorithms warp back the target image to the model reference
domain where it is compared to the model texture image. AAMs
do not model self-occlusion and thus keep the model domain for
evaluation constant [4,11]. They are not suited to capture the full
3D variability of face images, especially for large yaw angles with
strong self-occlusion. There exist extensions of the model to deal
with occlusions [6] but our focus lies on the 3DMM in this article.

The original 3D Morphable Model (3DMM) of Blanz and Vetter
|2] reconstructs the image by rendering a deformable 3D template
mesh into the image. The authors evaluate the likelihood per ver-
tex of the underlying 3D mesh which forms a fixed evaluation
domain. Since changing visibility due to self-occlusion directly

affects the evaluation domain, the visibilities are kept constant
for most of the optimization run. Romdhani and Vetter [14]
extended the cost function to include more terms, especially con-
tour costs. User-provided landmark positions are used to initialize
the algorithm. Knothe [8] later extended the use of feature point
positions to keep the model position and visibility fixed during
optimization. All the methods keep the visibility of model parts
constant during the optimization.'

Aldrian and Smith [1] took a fresh view on the fitting algorithm
and proposed to use a mainly linear procedure. The feature points
determine the camera and shape of the model while later steps,
which depend on image intensities, only change normals, illumina-
tion and albedo.

We already presented a face recognition pipeline with the
3DMM, making practical use of a background model [15]. The pipe-
line is based on a probabilistic Data-Driven Markov Chain Monte
Carlo sampler which can deal with unreliable input information.
The present article focuses more on theoretical and implementa-
tion aspects of background models while the former puts an
emphasis on a recognition application.

Summarizing, there are different strategies in use to prevent the
shrinking problem in practice:

Model-based evaluation. Evaluating in the normalized model
domain works especially well for 2D models and to some extent
with 3D models if the visibility of face parts is fixed while it breaks
down with variable visibilities due to self-occlusion.

Regularization. Penalizing parameter values can only work in
restricted situations. Generally, neither the pose nor the face size
in the image are known in advance and can thus not be restricted.

Landmarks. Predetermined feature point locations can prevent
the problems through fixing the visibilities in advance or forcing
the model to always match the given key points in the image.
The information is generally not available or unreliable if obtained
automatically.

Edge or contour terms. To force the model to match contour lines
within the image does also depend on predetermined additional
information. Just as with landmarks, contours are not generally
available and hard to detect reliably.

Explicit Image Segmentation. In the case of image-based evalua-
tion, image segmentation can fix the visibilities in advance. How-
ever, using a general-purpose image segmentation method is not
straightforward as the face can change its appearance and size
drastically in different illumination and pose settings. Therefore,
the use of image segmentation methods needs careful design and
is most successful if directly integrated into the fitting algorithm
[9]. Such an approach renders the system much more complex
and does not solve the problem for model-based evaluation.

! Some allow the visibility to change very slowly compared to the parameter
values.
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Image segmentation can motivate a fresh view on the prob-
lem. Especially region-based segmentation shares many similari-
ties with image-based evaluation. For example, the concept of
region competition [18], where two regions compete to explain
an image pixel, is a formalization with many similarities to our
problem. Contrary to most image segmentation methods, we
use a very sophisticated foreground likelihood model with strong
(marginal) correlations between different parts of the face region
and have a high level prior through the 3DMM. The assumption
that a foreground model cannot be adapted well without consid-
ering what is beyond is a fundamental insight from image seg-
mentation [12].

In this article, we deal with large yaw angles and finally use a
fully automatic pipeline [15] for face recognition which makes
use of automatic detections. It is thus necessary to use a model
which can support a large pose range and deal with uncertain
input data. The unreliable nature of landmarks detection prevents
early decisions and needs the model to explore many possible
interpretations. Therefore, it is neither possible to fix the visibilities
nor the location and size of the face in the image in advance.

We prefer image-based evaluation over model-based
evaluation because its reconstruction quality is higher. Image-based
evaluation makes a systematic treatment of the shrinking effect
beyond the pragmatic solutions necessary.

3. Understanding shrinking

In this article, we interpret images of human faces with the
generative 3DMM. Although we focus on the 3DMM of faces,
the results conceptually apply to any generative model fitting
problem.

In the probabilistic setting, the generative model will assign a
likelihood value L(0|I) to each parameter setting 0 given an input
image I. The goal of inference is to find the posterior distribution
of the parameters P(0|I) oc L(0|)P(0) or at least some measures of
it. The prior P(6) captures the statistics of the face model in use
and ensures a camera and illumination setup. Maximum-A-Poste-
riori (MAP) inference in the Bayesian framework is equivalent to
regularized cost minimization, where the cost is given by —logL.
But in the remainder of the article, we will use the probabilistic
formulation.

The parameters 0 of a deformable face model consist of trans-
formation parameters which describe the positioning and align-
ment of the face either in 3D or directly on the image plane. 0
also contains parameters describing the shape and appearance of
the face itself, traditionally derived from a Probabilistic Principal
Components Analysis (PPCA) or similar model. The 3D models also
contain parameters describing the illumination setup. In this work
we make use of the Basel Face Model (BFM) [13] which is publicly
available. The actual choice of model and details is not crucial for
our discussion, we mainly assume that the model is able to pro-
duce an image which can then be compared to the target image
using the likelihood discussed below.

Image-based evaluation. A standard assumption of the model is
to consider the pixels to be conditionally independent given the
model parameters. The resulting likelihood is typically a large
product of individual pixel likelihoods inside the face region

Lol = ] Jem(

XeF

(x; 0)[1(x) (1)

In image-based evaluation, the index x runs over all pixels lying
within the explained face region F, and M(x; 0) is the image ren-
dered by the model. The individual pixel likelihood is usually
Gaussian (see Fig. 2)

(M (x; 0)[1(x)) = N (I(X)IM(x; 0), 6%).

Fig. 2. Problem setup: The 3DMM reconstructs the input image (left) in 3D model
space (right). Where the model is mapped to the image through the rendering
function R, there is foreground F (inside dashed contour) surrounded by background
B (grayed).

The size of the face region F within the image is not constant but
depends on the parameter values.” A parameter change can thus
alter the number of evaluated pixels. Consider a change 6 — 0~ such
that the likelihood values at individual pixels are approximately
constant but the support size reduces by a single pixel p. The new
likelihood value is given by removing ¢, from the product in L, where
£,(0) = £(0)I(p)) is the likelihood value at the pixel p (Fig. 3).

The likelihood ratio r~ is then given by the pixel’s likelihood

L~ 1 R

ST r=1=b (2)

In the above equation, we also included r* which results from a
similar argument for including an additional (different) pixel p.

The ratio r~ determines whether the pixel will likely be
excluded during the inference run. The smaller region is preferred
if ¢, < 1. For many likelihood models, this is true for all possible
values of I(p), therefore the exclusion of p is preferred no matter
how well the pixel actually fits the model assumptions. The
likelihood ratio arising from different numbers of explained pixels
leads to a net “force” towards smaller face explanations with fewer
pixels to explain.

The formulation reveals the dependence of the algorithm on the
absolute value of the likelihood ¢,. Since likelihoods can be
arbitrarily scaled, this behavior is undesired.

Model-based evaluation. The evaluation of the likelihood on the
model reference leads to

m(0lD) = [ [em( [(x(2))). 3)

vey

Here, the index v runs over all visible parts V of the model ref-
erence. x(v) = P(v;0) is the projection of v into the image plane.
There are no image correspondences to compare the invisible
model parts to.

The product also has a varying number of factors if the visibility
of the model parts can change through self-occlusion. The exclu-
sion of a single location » from the product due to a slight geometry
change leads to the likelihood ratios of transitions

L1 LU
=T=1 and r T =4, 4)
with £,(0) = ((M(x(2); 0) [(x(2))).

The ratios drive the model to remove parts from the evaluation
if ¢, < 1. The effect is strongest where there is much visibility
change, for example around yaw angles above 45° (Fig. 4).

To get a meaningful gradient for use in an optimization algo-
rithm, traditionally used fitting algorithms fixed the visibilities in
advance to get a likelihood product with a constant number of
factors.

2 For example, moving away from the camera reduces the support due to a smaller
projected area in the image.
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Fig. 3. Model situations without considering background. Dotted pixels are implicitly present background pixels, filled circles are part of foreground. Removing a pixel from
the foreground region (orange) also removes its contribution from the likelihood. (For interpretation of the references to colour in this figure legend, the reader is referred to

the web version of this article.)
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Fig. 4. The visible area of the face reduces considerably with increasing yaw angle
for both, image-based and model-based evaluation.

4. Background models

The variable-length likelihoods above lead to a dependence on
absolute likelihood values and also to problems with gradient cal-
culations. A background model prevents the likelihood product
from changes in the number of factors. It is an additional model
b for background pixels B. The total likelihood (1) becomes

Lol = [Jeone[bux (5)
XeF xX'eB

Now, removing a pixel from the face region moves it into the
background section (Fig. 5). The shrinking and growing ratios
change accordingly to

rt=r (6)

A comparison of the full background model (6) with the partial
model (2) reveals the latter as a special case of a full model with a
unit background likelihood

b=1. (7)

Even without considering background at all, the model always
compares to an implicitly present unit likelihood background
model. A unit likelihood for background is not appropriate for most
model likelihoods and leads to shrinking, as explained above. It is
reasonable to extend the model by a background model which
can be controlled.

The values r— and r+ are ratios of likelihoods, they are more
appropriate than absolute likelihood values. The exclusion of a
pixel is favored whenever the background model assigns it a higher
likelihood than the face model. And vice versa, a pixel is actively
included into the face region if the face model can explain it better
than the background model.

Adding an explicit background model is not easily possible for
model-based evaluation. There is no image correspondence and
therefore no image intensity value available for invisible parts of
the model. A background model can only be defined per model
location, independent of the actual image, but an implicit correc-
tion is still possible.

4.1. Background correction

The face model should be ignorant about specifics of back-
grounds and concentrate its modeling capacity on the foreground
to interpret. While the background model is conceptually neces-
sary, it can be replaced by a much more lightweight mechanism
which is sufficient to prevent shrinking. It is enough to get the
exclusion and inclusion ratios r~ and r* right because they deter-
mine the behavior with respect to variable likelihood lengths.
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Fig. 5. Model situations with an explicit background model. Background pixels are always evaluated (empty circles). Exclusion of pixel (orange) adds it to the background
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part. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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With a background correction, the model likelihood for a single
pixel value ¢, is replaced by the likelihood ratio which compares
this value with the background likelihood value b, at the same
location

6= 8)

The total image likelihood L' is evaluated within the face region
only

b

(o)) = b 9)

XeF

The correction of the individual likelihoods leads to different
absolute likelihood values L' but shows the same exclusion and
inclusion ratios r~ = b, /¢, and r* = ¢,/b, as the full background
model.

The correction only takes visible parts of the model into
account. It is therefore also applicable to model-based evaluation
which lacks the possibility to have an image-based background
model. With model-based evaluation, the corrected likelihood
becomes

(10)

4.2. Different background likelihoods

The background likelihood reflects the assumptions taken about
the image background color distribution. These can vary strongly
and in extreme range up to a fully modeled background. We dis-
cuss rather simple and generic background models since we intend
to keep the focus of our modeling power on the face in the
foreground.

Uniform distribution. The uniform background model captures
the assumption of a uniformly distributed background color with
a constant likelihood. Through b = 1, this includes the ignored
background from above.

The uniform likelihood leads to a background model where only
the limits of the foreground model are relevant. The constant value
determines where the face likelihood falls below acceptance. For
example, a constant value of b= ¢(|I(p) — M(p; )| = 20) prefers
an explanation as background beyond two standard deviations
away from the model prediction (Fig. 6).

The uniform model can thus be used to encode a completely
background-ignorant model. The background likelihood just sets
the bounds of what is still considered a “good” foreground
explanation.

Gaussian. A Gaussian background likelihood is suited to model
single mode color distributions without strong deviations. The
assumption usually holds only in restricted setups, such as lab ses-
sions. Mean and covariance of the Gaussian ., Zgc are specific to
the image at hand.

b= N(p|ptec, Zec)

The parameter estimation follows a simple maximum likeli-
hood approach using all image pixel colors with full covariance
between color channels.

Histograms. The color histogram captures the color distribution
of the whole image, including the face and thus represents the dis-
tribution of all the colors in the image. The model is image-specific
and thus always adapts to the image at hand. It enforces a “con-
trast” between the face region and the rest of the image. The face
model is better only where it leads to a more accurate prediction
of a color value than the general image color distribution.

Alog L

oy

Fig. 6. A background correction shifts the log likelihood such that it can compete
with the implicit background model logh = 0 (blue shaded region). Without a
background model, the foreground likelihood (dashed line) can never compete with
the implicit background model. d is the color difference between target and
reconstruction. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

The background likelihood is derived from the histogram of rel-
ative color frequencies h with bin volume 6, interpreted as a prob-
ability density

1

The N bins have the same size each, in RGB space with values in

. . 3
[0,M]? their volume is 6 = (¥)°.

Filter responses. In place of a color distribution, we can also eval-
uate with respect to a collection of filter responses. Spatial filters
gather information from the surroundings at each location. We
directly implement the background model proposed by Wu and
co-workers introduced with Active Basis models in [16]. They
model a unit exponential distribution of the squared filter response
values ri(x,y) = (I, By i), where By, ; is the filter i, centered at loca-
tion (x,y). The scalar product is standard. For simplicity we only
consider the filter responses on the intensity image.

We use the model as proposed in [16], including all the authors’
choices, such as size and selection of Gabor filters as well as the
whitening and heavy-tail correction transform F. The model,
including whitening through the global response variance 62,
essentially is a unit exponential distribution

i
- logF(a—2> ~ exp(1).

The authors approximate the heavy tail correction through
—logF(x) ~ G(x), G(x)=min(16,x).

They additionally propose more elaborate transforms G in [17]
but we consider the actual choice rather uncritical in this context.
The background likelihood is

bixy) = ey [ Texp (6(H2) ).

where N is the normalization constant with respect to a varying
background intensity at the current location. The normalization also
turned-out to be uncritical in our experiments, the use of the unit
exponential distribution exp(1) distribution as an approximation
(intensity and thus response range is not infinite) leads to the same
qualitative results.
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Locally constant background. Locally constant color is a common
pattern of generic background models, at least on a small scale. To
model this, we introduce a Gaussian distribution on a local region
around each pixel. The distribution is defined on each color chan-
nel but without covariance between them. Mean and variance are
estimated with standard maximum likelihood, separately for each
color channel. The free parameter of this model is the size of the
rectangular local regions. We chose it to yield a local region having
approximately 1% of the total image area. With this value of the
window size, the average reconstruction probability of a complete
natural image is similar to that using the histogram model. The
background likelihood is then

b(x,y) = H N(PC\HC(X,Y),U?(XJ))-

ce{R,G,B}

The locally constant model differs slightly from a piecewise-
constant background model since it models each pixel’s
surroundings.

5. Evaluation

We compare the effect of different assumptions on background
on the result of face model adaption. First, we will demonstrate the
effects of the implicit unit likelihood background model which is
present when background is simply ignored. Then, the background
model correction is compared to the complete background model
(5), where we can strengthen the theoretical considerations of
equivalence. In a larger experiment, different background models
are compared in a pose estimation task. Pose estimation is
especially suitable to study the effects of background models since
there is considerable self-occlusion and shrinking of the visible
face area in the image above a yaw angle of 45° (Figs. 7 and 4).
Finally, a fully automatic face recognition experiment underpins
the need for a background model. To evaluate the performance in
more natural situations, we add experimental results using images
from the high-variation face database Annotated Facial Landmarks
in the Wild (AFLW) [10].

General setup. We fit the 3DMM to the input image using the
Data-Driven Markov Chain Monte Carlo adaption algorithm from
Schonborn [15]. In most experiments user-provided landmarks
are used (Fig. 8). They serve to initialize a fit but are “forgotten”
afterward. The initialization just determines a pose setting to start
from, nothing is kept fixed and during the inference run, only the
image likelihood as discussed above is considered. In the fully

Fig. 7. Self-occlusion of the face at a yaw angle of 45°. The right image shows
occluded regions in yellow. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 8. The landmark points in use. They are user-provided as well as automatically
detected, depending on the experiment.

automatic recognition experiment, nothing but the image itself is
used as input.

The face model likelihood for each pixel p is an isotropic Gauss-
ian distribution, centered at the currently predicted model color
M(p; 0) with a standard deviation of 6% of the intensity scale
(11). All color values are 3-tuples in the RGB color space.

((01(p)) = N (I(p)IM(p; 0), 6°1). (11)

5.1. Background model

A controlled background model resolves the problems arising
from the implicit and inappropriate model above (Figs. 1 vs. 9).
Properly setup, all five models presented in (4.2) can resolve the
problems but mildly differ in performance in the large-scale exper-
iments below.

In a small experiment, the background models are confronted
with synthetically generated backgrounds which aim to mimic
the face. The two background targets consist of the mean color of
the face and of colors sampled from the color histogram of the face.
The global and local Gaussian background models confuse the
mean color with the face while the histogram model deals well
with both cases, even though they share the same histogram
(Fig. 10). None of the background models has troubles with a
clearly distinct background, such as plain white or randomly
colored.

5.2. Pose estimation

As an observation in practice, we can say that pose estimation
in non-frontal face views is especially prone to background fail-
ures. In the relevant parameter regions, the visibility of pixels is
heavily changing with respect to the rotation parameters.

We thus compare the finer differences among background mod-
els in a pose estimation problem on the Multi-PIE database [7]. The
database contains images with strong but controlled pose varia-
tion. For the experiment, we selected neutral photographs of the
249 individuals in the first session with different yaw angles up
to 90° (Table 1). Due to the lab setting, the background is very sim-
ilar and rather controlled.

We use user-provided landmark information for initialization
but the model fitting algorithm uses the fully flexible model with
only image likelihood terms afterward, landmarks are ignored
during the adaptation. The visibility is never fixed, it changes in
each iteration. We chose the manual initialization to compare the
performance of the free model after a certainly good initialization.
We chose the yaw angle of the best reconstruction of 10,000 sam-
ples as a MAP estimate for yaw.
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(a) Target

(b) Image-based Fit

(c) Model-based Fit

Fig. 9. The background model resolves the problems of both, image-based and model-based evaluation. The model fits are overlaid. Compare to Fig. 1 without correction.

Also, the reconstruction quality of (b) is visually more satisfactory than (c).

(a) Target

(d) Target

(b) Gaussian

(e) Gaussian

(c) Histogram

(f) Histogram

Fig. 10. Synthetically generated backgrounds to mimic the face. In the first row, the background consists of the mean face color. In the lower row, the background is sampled

from the face color histogram. The columns differ in the background likelihood model.

We compare both, image-based and model-based evaluation
with all background models, including the unwanted implicit
model b =1 (called NoBG). We plot the resulting mean pose esti-
mation (Fig. 11a), averaged for all 249 ids and also the Mean Abso-
lute Error compared to the ground truth label as a measure of
accuracy (Fig. 11b).

Table 1
Multi-PIE labels of images used in the experiments. ID is 001 ...250.
Yaw [deg] Multi-PIE
0 ID_01_01_051_16
15 ID_01_01_140_16
30 ID_01_01_130_16
45 ID_01_01_080_16
60 ID_01_01_090_16
75 ID_01_01_120_16
90 ID_01_01_110_16

The experiments reveal the inappropriate setup without a back-
ground model as the worst of the runs. With image-based evalua-
tion, there is not even a result to compare to due to failed fits. With
model-based evaluation, the model constantly tries to occlude as
much of the face as possible and therefore aligns the face in a
strong side-view. The pose is severely overestimated for small
angles whereas it actually fits for the side-view. Controlled back-
ground models resolve the problems and lead to acceptable results
which are worst around angles with a high variability of visibility.
There are only minor differences in performance between most
choices of the background model.

The background model based on Gabor filter responses
performs worst of all background models. A manual analysis of
the results reveals a bad background reconstruction probability,
foreground often “wins”, even where not appropriate. This is
probably due to a high complexity of this model, it is too general.
In the original context in [16], this model is used in a more bal-
anced setup with a foreground model which is also composed of
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(b) Image-based evaluation. The filter-based background model is too generic and
cannot compete with the foreground model, it leads to strong misalignments with a
preference for a frontal view.

Fig. 11. Pose estimation on Multi-PIE.
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¥ il
(a) original (b) histogram  (c¢) constant (M)  (d) no bg (M)
Fig. 13. Fitting results on a few selected images of the AFLW database. Each column has been created using a different background model. In (b), we used image-based

evaluation while (c) and (d) are created using model-based evaluation (M). Background models are necessary but the exact type is uncritical. Face ids: 39370, 39796, 39853,
40199, 40505, 41008, 43311.
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Gabor wavelets. In our context, this model is not useful in this form
(see also Fig. 13).

We note that image-based evaluation yields higher quality
reconstructions which also improve pose estimation over model-
based evaluation.

The behavior of the complete background model (5) is equiva-
lent to using the background correction (9). Both variants did not
diverge in their results in this experiment.

5.3. Fully automatic recognition

Our fitting algorithm integrates unreliable detection informa-
tion, resulting in a fully automatic face interpretation system. In
this experiment, we test different background models for their per-
formance when used in a fully automatic recognition pipeline [15].

Additionally to the pose estimation, we also perform a face
recognition experiment with variable pose. The experiment setup
is as described in [15] with a similarity measure S between two
face representations f;, f, from [3]:

_ <f]7f2>
SULI2) = 1R (12)

The image of a person in the frontal view serves as gallery
whereas the non-frontal view is our probe. A recognition is suc-
cessful if the most similar gallery image shows the same person.
Contrary to the experiments above, the used fitting pipeline is fully
automatic and we thus do not use any user-provided information.
We do not evaluate with respect to all different background mod-
els since most of them perform very similarly.

The results show a decrease in performance with increasing
yaw angle which is expected as the fitting quality deteriorates
(Fig. 12). The automatic pipeline integrates unreliable detection
through enforcing probabilistic consistency of the model with pos-
sible landmark detection candidates. Therefore, the solution has to
adhere to detection results during the optimization. This forcing
acts as a model restriction, keeping the model in place. The manu-
ally initialized runs (“Manual”) make use of the exact same setup
as in the previous experiment. They rely on user-provided land-
mark positions for initialization only but do not restrict anything
in the model.

The recognition experiments allow three main observations.
First, image-based evaluation methods are superior to model-
based evaluation. Second, an unconstrained model without a back-
ground model, even though properly initialized, is not able to reach
useful recognition rates. The artifacts arising from the inadequate
implicit background model are too strong (“Model NoBG Manual”,
image-based failed). And third, the results improve by restriction
through the automatic detections (“Model NoBG”, “Image NoBG”)
but the best performance can be achieved with an explicit back-
ground model (“Model HistBG Manual”, “Image HistBG (Manual)”).

5.4. Qualitative evaluations on AFLW

The AFLW database [10] provides a high degree of variability of
facial images taken in “real-world” scenarios. The Basel Face Model
is a neutral face model without the possibility to deal with facial
expression. Additionally, the fitting algorithm is not able to handle
rough occlusions inside the face properly. These include strong
make-up, beard or hair as well as various objects in front of the
face. Therefore, we selected a few examples of these real-world
photographs with considerable background variation to underpin
the need for a background model when dealing with natural
images of faces with real-world backgrounds.

The experiments are setup according to the manual initializa-
tion scenario, with manually labeled facial features. After initializa-
tion, nothing is kept fixed, as above.

The qualitative evaluation indicates the need of a background
model (Fig. 13). However, the exact choice of background model
is not critical to obtain a good fit. As long as a correction is made,
the model adaptation converges. But the final quality of recon-
struction then depends on the applicability of the background
model for the current image. Without a background correction,
there are the typical misalignment artifacts when using model-
based evaluation while image-based evaluation completely fails.

5.5. Discussion

The experiments underpin the need for a controlled background
model for both image-based and model-based likelihood evalua-
tion. Without an explicit background model, the inappropriate
implicit model with b =1 becomes active with varying visibility.
Variable visibility is not an exotic case but a realistic requirement
for a face model without user-provided information. Even with
user-provided initialization, the model can be expected to
converge without keeping certain parameters or visibilities fixed
during the optimization. Our experiments clearly show the danger
the implicit background model brings in this case. The model
diverges or seriously misaligns the face in the image.

The controlled models can be used either in their explicit form
(5) or through the likelihood correction (9) which makes the model
likelihood compete well with the implicit background model. We
prefer the likelihood correction and suggest to use this formulation
because it avoids evaluating the complete image.

The actually evaluated background models do not display many
differences. The histogram model shows a stable performance in all
experiments while the Gaussian model performs very well in the
restricted Multi-PIE setup. The most important background model
selection task is to actually use a background model while the
concrete choice does not matter that much.

The fully automatic pipeline cannot yet deal with very large
yaw angles well. For poses from frontal to 60° side views it already
works as well as manually initialized models if image-based
evaluation is used. Through the undetermined visibility, the back-
ground model becomes very important. An evaluation with the
unconstrained implicit model severely breaks down with respect
to recognition performance.

6. Conclusion

The face reconstruction of an image in unconstrained situations
needs the 3DMM'’s full flexibility, including variable visibilities.

The standard likelihood of generative models always includes
an implicit background model if it is only evaluated on visible parts
of the face. The parasitic model is equivalent to a unit likelihood
background model which is rarely appropriate and leads to strong
artifacts due to background preference. The effect reveals itself
whenever the visibility of model parts can vary which is the case
in unconstrained and uninformed situations like fully automatic
model adaption.

While fitting algorithms so far fixed the visibility in advance or
used additional information to constrain the model, we proposed
and discussed the use of image-based background models to
improve the likelihood fidelity. Our integration of background
models through a simple likelihood ratio resolved the problem of
evaluating the model on the complete image since the correction
takes place completely within the foreground region. This implicit
background model even made it possible to use an image-based
background correction in model-based evaluation. A background
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model with unit likelihood includes the standard likelihood
approach above as a special case. Therefore, ignoring background
in the standard likelihood formulation is equivalent to using an
inappropriate background model.

Background modeling makes it possible to move to likelihood
evaluation in the image domain which leads to face reconstruc-
tions of higher quality. Image-based evaluation severely suffers
from variable visibilities and has not been possible without our
background model before.

The discussion and evaluation of different background models
promote the empirical model, based on a color histogram, as a use-
ful background assumption. Generally, all evaluated background
models led to fewer artifacts than the standard likelihood. Pose
estimation at larger yaw angles with strong self-occlusion clearly
benefits from a proper background correction.

The consequent future development direction of image-based
model evaluation and background models is the step towards full
image segmentation in conjunction with model adaption. Such a com-
bination allows background inside the face region, a capability which
can be used to remove face occlusion such as glasses, beards or hair.
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