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Abstract. Footwear impressions are one of the most frequently secured
types of evidence at crime scenes. For the investigation of crime series
they are among the major investigative notes. In this paper, we introduce
an unsupervised footwear retrieval algorithm that is able to cope with
unconstrained noise conditions and is invariant to rigid transformations.
A main challenge for the automated impression analysis is the separa-
tion of the actual shoe sole information from the structured background
noise. We approach this issue by the analysis of periodic patterns. Given
unconstrained noise conditions, the redundancy within periodic patterns
makes them the most reliable information source in the image. In this
work, we present four main contributions: First, we robustly measure
local periodicity by fitting a periodic pattern model to the image. Sec-
ond, based on the model, we normalize the orientation of the image and
compute the window size for a local Fourier transformation. In this way,
we avoid distortions of the frequency spectrum through other structures
or boundary artefacts. Third, we segment the pattern through robust
point-wise classification, making use of the property that the amplitudes
of the frequency spectrum are constant for each position in a periodic
pattern. Finally, the similarity between footwear impressions is measured
by comparing the Fourier representations of the periodic patterns. We
demonstrate robustness against severe noise distortions as well as rigid
transformations on a database with real crime scene impressions. More-
over, we make our database available to the public, thus enabling stan-
dardized benchmarking for the first time.

1 Introduction

Footwear impressions are one of the most frequently secured types of evidence
at crime scenes. For the investigation of crime series they are among the major
investigative notes, permitting the discovery of continuative case links and the
conviction of suspects. In order to simplify the investigation of cases committed
by suspects with the same footwear, the crime scene impressions are assigned
to a reference impression (see Fig.1). Through the assignment process, the
noisy and incomplete evidence becomes a standardized information with out-
sole images, brand name, manufacturing time, etc. Currently, no automated
systems exist that can assess the similarity between a crime scene impression
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Fig. 1. A crime scene impression and the corresponding reference impression. A main
challenge for pattern recognition systems is to isolate the shoe sole pattern from the
structured noise. Moreover, the impression is incomplete and the zigzag line is shifted
between the impressions. Therefore no point-wise similarity measure can be applied.
Furthermore, the relative orientation and translation between the images is unknown.

and reference impressions, due to the severe image degradations induced by
the impression formation and lifting process. The main challenges here are the
combination of unknown noise conditions with rigid transformations and miss-
ing data (see Fig. 1). Moreover, the image modalities could be inverse, meaning
that the impression information could be white for one impression and black
for the other. Furthermore, training and testing data are scarce, because usu-
ally no or few crime scene impressions are available per reference impression.
Additionally, in many cases no point-to-point correspondence exists between the
impressions because different parts of the shoe sole are produced independently
of each other. This results for example in a phase shift of the zigzag line between
the impressions in Fig. 1. Therefore, a higher level understanding of the pattern
is necessary. In this work, we introduce an unsupervised image retrieval algo-
rithm that overcomes the limitations of existing work by detecting and analyzing
periodic patterns in the footwear impressions under unconstraine noise condi-
tions. The only assumption being, that the noise signal is not strictly periodi-
cally structured. The basic idea behind our approach is that periodic structures
are the most preserved information under unknown noise conditions because of
their inherent redundancy. In our reference impression database containing 1175
images, about 60 % of the images show periodic patterns. Given the challenging
application scenario, solving the recognition task for this subset of the data is a
valuable contribution.
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The main contribution of this work is to extend the periodic pattern model
from Lin et al. [8], such that the localization and analysis of periodic patterns
under unconstrained, structured noise becomes possible. The reliable extraction
of the pattern model enables the compensation of rigid transformations, the
estimation of the scale of the repeating texture tile, and the exclusion of back-
ground information and noise from the pattern representation. After calculating
a local Fourier representation, we robustly segment the periodic pattern from
other structures in the image. Finally, during the image retrieval process we use
the extracted Fourier features to compute the similarity between images. Our
footwear impression database is available to the public at http://gravis.cs.unibas.
ch/fid/, enabling research on real case data and standardized comparisons for
the first time.

In Sect. 2, we will discuss in detail how the feature extraction is performed.
Afterwards, we introduce the detection of periodic patterns and the image retrie-
val algorithm. In Sect. 3, we introduce our footwear impression database and
perform a thorough experimental evaluation. We conclude with Sect. 4.

1.1 Previous Work

Early work on automated shoeprint recognition approached the problem by
either analyzing the frequency spectra of the whole images using the Fourier
transform [5,6], or by describing the image with respect to its axes through
Hu-Moment invariants [1]. Such global shoe print processing methods are par-
ticularly sensitive to noise distortions and incomplete data. Pavlou et al. [14,15]
and Su et al. [17] proposed to classify shoe print images based on local image
features. Their approaches are based on combinations of local interest point
detectors and SIFT feature descriptors. However, in general such gradient-based
methods are not sufficient for the application of crime scene impression retrieval
(see the experiments in Sect.3). The reason is that the image gradient of the
noisy data is strongly distorted compared to clean reference data. Therefore, a
reliable gradient-based detection of interest points or the correct rotational nor-
malization based on the image gradient are difficult. Patil et al. [13] divide the
image into a block structure of constant size and process each block individually
with Gabor features. Their approach is too rigid to capture different shoe print
orientations because of the constant sized block grid. Nevertheless, they show
that local normalization is a crucial step in processing noisy images. Regarding
rotational invariance, DeChazal et al. [5] are tolerant to rotation by brute force
rotating the images in one-degree steps. However, this is not usefull in practice
because of the computational costs. Nibouche et al. [12] use SIFT combined
with RANSAC to compensate for the rotation, but since the feature descriptors
are heavily distorted by the structured noise, the method is only applicable to
noiseless data. These and most other works in the field work on synthetically
generated training and testing data, assuming a very simple noise model such
as Gaussian or salt and pepper noise. However, one key challenge of real data
is that the noise is unconstrained and therefore cannot be simulated by such
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simple noise distributions. Dardi and Cervelli [2,4] published algorithms applied
to real data. However, the approach in [4] is based on a rigid partitioning of
images and thus is sensitive to image transformations and the approach in [2]
is rotationally invariant, but is not robust against noise and incomplete data.
Another approach was introduced by Tang et al. [18]. They extract basic shapes
(circles, lines and ellipses) out of the shoe print image with a modified Hough
transform and store these shapes in a graph representation. Attributes such as
distance, relative position, dimension and orientation are encoded into the graph
structure, making their recognition algorithm robust to image transformations.
But many shoe soles are comprised of more complex patterns which cannot
be described by such basic shapes. Additionally, in their experiments, crime
scene impressions are mixed with synthetic data, giving no clear performance
statements for the real case scenario. A general review on shoeprint recogni-
tion methods has been presented by Luostarinen and Lehmussola [11]. However,
the experimental setup is very restricted, because they assume known corre-
spondance between crime scene impression and reference impression. Since that
information can only be provided after already knowing the correctly matching
reference, that work has only limited relevance for the task of footwear impres-
sion retrieval.

Impression
Evidence

Periodicity
Extraction

Periodicity
Response

Pattern
Detection

Periodic
Patterns

Rotational
Normalization

Pattern
Representation

Fig. 2. Graphical abstract of the feature extraction procedure. We first extract the
periodicity at each point in the impression evidence. Then, we compute Fourier fea-
tures and use these to detect the periodic patterns. Finally, the periodic patterns are
represented by the rotationally normalized Fourier features.
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2 Impression Analysis Based on Periodic Patterns

The goal of this work is to compare images in the presence of unconstrained
noise, rigid transformations, without point-to-point correspondence and across
different modalities, based on their periodic patterns. A periodic pattern is fully
defined by a basic texture tile that is spatially distributed in two dimensions
according to two fixed distribution vectors. We begin with periodicity detection
by fitting a model of translational symmetries to local autocorrelation responses.
Then, we calculate translation-invariant Fourier descriptors and separate the
periodic patterns from other structures in the image by point-wise classification.
Afterwards, the individual periodic patterns can be rotationally normalized with
respect to their inherent translational symmetry distribution. Finally, the com-
parison between impressions is achieved by first recomputing the Fourier repre-
sentation of the crime scene pattern based on the extracted periodicity models
of the reference impressions, and the subsequent comparison of the feature rep-
resentations. An overview about our approach is depicted in Fig. 2.

2.1 Periodicity Extraction

The basic building block of the proposed image retrieval pipeline is the ability
to measure the periodicity at a point X in the image. This presumes a robust
extraction of translational symmetries in the local neighbourhood of X. We start
by extracting a quadratic image patch around X and correlating it within a local
region of interest around X by normalized cross correlation. Since the scale of
the pattern is initially unknown, we repeat this procedure with multiple patch
sizes and average the resulting correlation maps together. The advantage of the
local, patch-based correlation over a global autocorrelation is that translational
symmetries stay sharp in the correlation map, even if other structures are present
in the region of interest. Afterwards, the positions of peaks in the correlation map
are extracted through non-maximum-suppression. Since many spurious peaks are
extracted by the non-maximum-suppression, we propose to filter the peaks with
a threshold 7 on the correlation value. Compared to the filtering approach in [9],
this is more robust against distortions in the region of interest by strong noise or
other image structures (Fig.3). The resulting list C of candidate peak positions
¢y, for translational symmetries, still does not solely contain correct translational
symmetries of the pattern, as can be seen in the first and third row of Fig. 3.
We propose a periodicity extraction method that extracts the correct periodicity
despite the remaining spurious peaks.

Rigid periodic patterns follow a grid-like spatial distribution. Therefore, we
search for the two shortest linearly independent vectors that can describe the
spatial distribution of the points in C, with an integer linear combination of
themselves. To this end, we build on the Hough transform approach of [8] and
constrain the candidate vectors to originate at the center of the region of interest
and point to one of the candidate peaks c;. Thus introducing a vector space with
the origin set at the center of the region of interest. Additionally, the number of
possible candidate vectors is reduced to the number N of points in C'. We modify
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Fig. 3. Detection of translational symmetries. Left column: region of interest; middle
column: result of the approach of [9]; right column: result of our approach. The results
show the autocorrelation maps in gray, the candidate peaks for translational symmetries
in red and the detected periodicity indicated by two vectors in yellow. The proposed
approach extracts peaks more reliably and gives better periodicity estimates compared
to the approach of [9].

the scoring function of [8] by incorporating the correlation values at the peak
positions NCC(c) and by penalizing the length of both distribution vectors,
instead of just the largest one (Eq.1). The function nint(z) in Eq.1 rounds a
scalar = to the next integer.

h(cp,cq,C) =a - (NCC(cp) + NCCl(cq))
n Z (1 — 2max(|ar — m’nt|(|¢61k|)| |_;_|l|)|kc_|| nint(bg) |)) NCC(ck)

ck€C, k#p,q

[Z:] = [Cpacq]71 [Ck] i Ck,Cp,cq €C (1)

The variables a; and b, are coefficients related with the linear combina-
tion of ¢, and ¢, for the peak c;. The factor o performs the tradeoff between
the importance of the correlation values and the shortness of the distribution
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Fig. 4. Illustration of periodicity scores for different points in a reference impression;
the maximal value is colored in red. The periodicity score reflects the amount and the
similarities of translational symmetries in a local region of interest.

vectors. The periodicity at X is then determined by searching for the pair of
vectors (cp, cq) = argmax,, ,{h(cp,cq, C)|p = 1..N,q = 1..N}. In Fig. 4 the peri-
odicity score h is illustrated for each point in a reference impression. It can
be seen, that maxima of the score are reached predominantly at the centers of
the periodic patterns. We have illustrated the results of our approach and the
one of [9] in Fig.3. The combination of the multi-scale autocorrelation maps
with the modified scoring function is robust against local correlation maxima
as well as distortions through noise and additional structures in the region of
interest.

2.2 Periodic Pattern Detection and Representation

On the basis of the periodicity measurement introduced in Sect. 2.1, we compute
a low-dimensional representation of the periodic patterns by pooling redundan-
cies into one feature descriptor and subsequently determine the number of peri-
odic patterns in the image. We propose to extract Fourier based features to
encode the appearance and the periodicity of a periodic pattern. However, the
computation of discriminative local Fourier features presumes the selection of
the right window size. Especially for small window sizes this is critical, since
image structures that do not belong to the periodic pattern have a great dis-
tortive impact on the frequency spectrum, as do the discontinuities at the window
boundary. In the following, we describe a method to determine a suitable win-
dow for the Fourier transform based on the periodicity information. The Fourier
features are then applied to detect the number of periodic patterns contained in
the image in an iterative procedure.

We start by computing the periodicity at each point P = (4, j) in the image
I € R™"*™, The maximal periodicity scores h and the corresponding distribution
vectors v1 and vy are stored in a Matrix H = {H(P) = [h(P),v1(P),v2(P)] | i =
1..n,j = 1..m}. Based on that information, we apply an iterative grouping proce-
dure to determine if and how many periodic patterns are available in the image.
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Algorithm 1. Pseudocode of the Periodic Pattern Detection
1: Input: H <« Periodicity, I «+ Image
2: PPatterns < Empty
while max(H,h) > 0 do
X < maxpos (H,h)
f X « CalculateFourierDescriptor(X,H,I)
H(X)=0;
for (Y)€I do
if s(f_X,CalculateFourierDescriptor(Y,H,I))>p then
H(Y)=0;
PPatterns <+ fX
: Output: PPatterns

—_ =

12: function CALCULATEFOURIERDESCRIPTOR

13: Input: X, H, I

14: [vi,v2] « H[X]

15: Rr x < Rect(X,v1,v2,I)

16: fX ‘f(G(X72RIYAx)'RI,X)|
17: Output « £X

The procedure is summarized in pseudocode in Algorithm 1. An iteration starts
at the point X in the image with maximal periodicity score (see Algorithm 1,1.4).
High periodicity indicates that translational symmetries exist in the local neigh-
borhood. This also implies that other image structures are less likely to occur in
the surrounding area. Based on the corresponding distribution vectors v1(X) and
v2(X), a window R is determined as the smallest rectangle containing the points
{X =01 (X)—v2(X); X —01(X)4v2(X); X+v1(X)—v2(X); X+v1(X)+va}. Then,
the image patch Ry x of size R centered at position X is extracted. An important
advantage of determining the window R based on the periodicity of the pattern
is that we are able to capture approximately an integer number of periods of the
pattern. Additionally, no other structures are contained in R; x, thus making it
a particularly good basis for further feature extraction processes. In practice it
is still beneficial to reduce distortions in the frequency spectrum through small
discontinuities at the boundary, by multiplying Ry x with a Gaussian window of
size R centered at X before the Fourier transformation. We denote the Gaussian
window by G(X, X'r, ). Two periods of the pattern are extracted in each direc-
tion of repetition because that increases the sampling rate during the Fourier
transformation and thus leads to more discriminative Fourier features. A central
property of periodic patterns is that only the phase of the frequency spectrum
varies throughout the pattern, but the magnitude stays approximately constant.
We exploit this fact by using just the magnitude of the frequency spectrum of
R x as a feature descriptor for the periodic pattern:

f(Rrx)=|F(G(X,Xr, ) Ri.x)| (2)

With this translationally invariant descriptor we are able to classify if another
point Y belongs to the same pattern as X by evaluating the normalized
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Fig. 5. Results of the grouping procedure on reference images as well as crime scene
impressions. Different patterns in the same image are coded in different colors. Periodic
patterns on very different scales are well separated from other structures in the images
even under strong noise conditions.

cross-correlation of the Fourier descriptors at these points:

S(F(Rrx), F(Rry)) = (S(Brx) =ty ri ) (Bry) = pg(rsy)). @)

Of(Rr,x)9f(Ri,v)

An important detail to notice is that both Fourier descriptors are calculated with
the same window size R, ensuring that the feature descriptors have the same
dimensionality. By ignoring the phase of the frequency spectrum, the feature
descriptor gets invariant to inverse image modalities.

Based on the extracted Fourier feature f(R; x) we classify each point in the
image by computing the similarity measure of Eq. 2, followed by a thresholding
with a constant value p (see Algorithm 1, 1.8). For the points with a similarity
greater than p, we set the corresponding periodicity score in H to zero. This
procedure is repeated until the maximum remaining periodicity score is zero.
After this procedure, the image is decomposed into a set of periodic patterns,
each represented by its corresponding Fourier feature. In Fig. 5, example results
illustrate the extracted patterns for different impressions containing periodic pat-
terns from a wide variety of scales and appearances. It can be seen that different
periodic patterns are well separated from the background even under structured
noise, indicating that the extracted Fourier features are a good representation
of the corresponding patterns.

2.3 Similarity and Footwear Retrieval

We propose to compute the similarity between a crime scene impression and a
reference impression by means of the similarity between their periodic patterns.
Before two patterns are compared, we first actively normalize their rotation
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based on their translational symmetry structures computed above. We do so
instead of e.g. making the feature descriptor rotationally invariant, in order to
retain the discriminative power of the descriptors. The normalization is achieved
by rotating the image so that the smallest distribution vector points upright. In
cases where both vectors have the same length we align to the vector along
which the image gradient is greatest. After this, we recalculate the Fourier fea-
tures on the rotationally normalized images. In practice, the estimated window
sizes R for the Fourier transformation do not always have exactly the same
size for the same patterns in crime scene impressions and reference impressions.
This is due to differences in the noise conditions and the pixel discretization of
the image. By using the window size of the reference pattern for both impres-
sions, we ensure that the features have the same dimensionality. Although this
can lead to distortions of the frequency spectrum when the patterns differ, the
effect is negligible for similar patterns. Afterwards, we compare the features as
described in Eq. 2. The feature extraction for the crime scene impressions can
also be interpreted as an interest point detection with rotational normalization,
as the Fourier features are recomputed during the matching with the window
sizes of the respective reference impressions. The similarity between a refer-
ence impression A = {f(R}, x,), - f(R}, x,)} and a crime scene impression
B ={Ig;Y1,...,Y,} can now be computed by the following similarity measure:

S(A,B) = > max s(/(R], x), (R ) @

As the crime scene impression may not contain all periodic patterns from
the shoe outsole, only the subset of periodic patterns from the reference with
maximal similarity is evaluated.

3 Experiments

We test our approach on a database of real crime scene impressions. The data-
base consists of 170 crime scene impressions, among which 102 show periodic
patterns. Out of the 170 impressions the pattern extraction algorithm detects
for 133 impressions periodic patterns, including all true periodic patterns and
31 false positives. During the evaluation, we show the performance on all 133
impressions with detected periodic pattern in order to evaluate a fully automated
retrieval setting. Those 37 impressions that are not included in the evaluation
are also to be published with the database and are marked to enable a cor-
rect performance comparison of future works. The reference database consists of
1175 reference impressions. In a random subset of 230 impressions, 142 showed a
periodic pattern, thus we assume that roughly 60 % of the reference impressions
show periodic patterns.

3.1 Setup

In our approach, we do not account for scale changes, because this information
is provided by a ruler on each impression image and can thus be given manually.
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Fig. 6. Cumulative match characteristic for (a) crime scene impressions aligned to the
corresponding reference impression and (b) the original unaligned data.

For the experiments, the images are scaled to 10 pixels per centimeter. Also, the
crime scene images are cropped so that the impression is roughly centered in the
image frame (see Fig. 7). During the experiments we choose the parameter a = 2.
The patch sizes for the localized multi-scale autocorrelation are chosen to vary
from 11 to 37 pixels in a four pixel step size. With this configuration, we capture
all scales of periodic patterns that show at least two repetitions in both direc-
tions. We constrain the angle between the distribution vectors to be between 60
and 90 degrees as in [9]. This reduces the number of possible distribution vector
combinations and thus acts as a regularization and saves computational time.
Despite this constraint, we are still able to describe the translational symmetries
of all periodic patterns in the database. During the experiments, we first com-
pute the similarity between the query impression and all reference impressions in
the database. We sort the reference images by similarity, thus producing a rank-
ing list of the most similar reference impressions. As a performance measure,
we apply the cumulative match characteristic. This score reflects the question:
“What is the probability of a match if I look at the first n percent of the rank-
ing list?” (adapted from [5]). We split the experiments into two parts. For the
first part, we manually align all crime scene impressions to the corresponding
reference impressions. Thus, the remaining difference between the impressions
is of a structural nature. The normalization makes it possible to compare our
approach with robust methods that are not invariant to rigid transformations,
such as the normalized cross correlation (NCC) or the histogramm of oriented
gradients (HOG) [3]. In the second part, we compare the SIFT algorithm [10]
with the proposed approach on the original unaligned data.

3.2 Footwear Impression Retrieval Performance

The comparison methods in the first experiment are histogramms of oriented
gradients and normalized cross correlation. We combine HOG and NCC with
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Table 1. Summary of the experiments in terms of footwear impression retrieval per-
formance measured by the cumulative match characteristic.

Recall@
Method 1% 5% |[10% |156% 20%
Aligned HOG + Shi-Tomasi| 3.8 |15.8 |25.6 |37.6 |44.4
HOG + Harris 4.5 113.5 124.8 |30.1 |37.6

HOG + Periodic 9.8 [22.6 | 36.8 |45.9 |50.4
NCC + Shi-Tomasi | 3.8 | 9.8 |15.0 |19.6 |26.3

NCC + Harris 7.5 112.8 |17.3 |22.6 | 28.6
NCC + Periodic 2.3 /10.5 |17.3 |30.1 | 36.8
This work 27.1/56.4|70.0|76.7 85.0
Unaligned | STF'T 1.5 | 83 181 |24.1 |28.6
This Work 27.1/59.4|74.4 79.7|85.7

interest point detections by the Harris [7] and Shi-Tomasi [16] corner detectors
and with the feature locations detected by our approach. For the corner detec-
tion we use the algorithms implemented in Matlab. The patch size is fixed to
21 x 21 pixels since that leads to the best performance in the experiments.
Our approach estimates the window size by itself during the feature extraction.
Although the alignment to the correct reference impression is not possible in
forensic practice, this experiment is of interest because it measures the perfor-
mance of HOG and NCC and interest point detectors under structured noise.
During the experiments, we detect interest points on the crime scene impressions
and subsequently compute the descriptors at the interest point locations. Since
the crime scene impression and the reference impression are in correspondence,
we repeat this procedure at the same locations in the reference impressions. The
number of extracted features on a query impression is fixed to the number of fea-
tures detected by our approach, in order to allow for a comparison of the results.
The results are illustrated in Fig. 6a. NCC performs nearly equally for all inter-
est points, as it does not account for any structural information in the image
patches. HOG features perform better than NCC on average as they utilize local
structural information to a certain degree and gain robustness to small transfor-
mational deviations compared to NCC by pooling information locally into histro-
gramms. Combined with the periodic interest points detected by our approach,
it also performs better than on the Harris and Shi-Tomasi interest points. That
is mainly because the periodic interest points always lie inside the shoe impres-
sion, whereas the others also detect less discriminative points on the impression
boundary. Through the criterion of high periodicity during the interest point
extraction, these points are also less likely to be distorted by noise. Despite that
the alignment clearly introduces a positive bias on the matching performance, the
results in general show that neither HOG features nor NCC perform well under
the noisy environment. Our approach performs significantly better compared to
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the other feature detector and descriptor combinations. Especially under the first
10 % in the ranking list, the performance gain is about 33 %. Important is that
our procedure does not profit from the alignment of the data since the rotaion
is normalized during feature extraction. In Fig.6b, we compare our approach
on the original unaligned data with the SIFT feature extraction and description
approach. For the experiments we use the SIFT implementation from Andrea
Vedaldi and Brian Fulkerson [19]. Although, SIFT performs above chance rate,
especially for the more important first fifth of the ranking list, the performance
is still not satisfactory. Our proposed approach performs significantly better, so
that e.g. the Recall@10 % is improved from 18.1 % to 74.4 % compared to SIFT.
The performance results are summarized in Table 1. Another observation is that
our approach reaches faster to 100 % matching score than the other approaches.
This is because the algorithm does not detect a periodic pattern for 558 refer-
ence impressions and can thus exclude these from the candidate list early. Note
that the performance results of the proposed approach are nearly the same for
aligned and unaligned data, underlining the rotational invariance of the feature
extraction. The low result for the Recall@1 % originates from the fact the pro-
posed approach focuses on the periodic patterns in the impressions and no other
structures. Since many reference impression have e.g. grid like patterns, these
are all grouped together at the front of the ranking list (see Fig.7). But since
no other structures are included in the similarity measure, their order is not
clearly defined and depends on nuances in the scale or noise of the impressions.
We have illustrated two image retrieval results in Fig. 7. Despite strong struc-
tured noise and even different modalities in the first example, the grid-like and
circular structures of the periodic patterns are clearly reflected in the retrieval
results. The missing 25.6 % at Recall@10 % can be ordered in two categories.
One part are impressions that are smeared through liquid on the ground, such
that the rigid transformation assumption in the feature extraction does not hold
anymore. The other part are double-prints, meaning that two impressions are
overlayed on top of each other such that the algorithm is not able to extract the
correct periodicity.

4 Conclusion

In this work, we have proposed an image retrieval algorithm based on periodic
patterns. The algorithm is robust under unconstrained noise conditions by sep-
arating the meaningful pattern information from the structured background.
Additionally, it is robust against incomplete data and it overcomes the problem
of absence of point-to-point correspondence between impressions by extracting
a translation-invariant pattern representation. Furthermore, it is able to match
rotated data by actively normalizing the pattern representations with respect to
the intrinsic tranlational symmetry structure of the periodic patterns. Our exper-
iments demonstrate a significant performance gain over standard image retrieval
techniques for the task of footwear impression retrieval. By making the database
with real crime scene impressions and reference impressions publicly available,
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we open a new application to the field of computer vision, concerning the issue
of how to separate patterns from structured noise despite incompleteness and
spatial transformations. Thus, our publication enables standardized benchmark-
ing in the field for the first time. In the future, we plan to make the approach
scale invariant and, since regular patterns are only available on about 60 % of
the data, we will also focus on how to robustly incorporate other structures from
footwear impressions into the retrieval process.
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Fig. 7. Results of the image retrieval algorithm for two crime scene images. The column
shows the query image. The second to fifth columns show the top results in the ranking
list. And the last column shows the correct references. The correct references are found
at position five and 13 in the ranking lists.
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