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Abstract. Our goal is to obtain an eye gaze estimation and a face
description based on attributes (e.g. glasses, beard or thick lips) from
still images. An attribute-based face description reflects human vocab-
ulary and is therefore adequate as face description. Head pose and eye
gaze play an important role in human interaction and are a key element
to extract interaction information from still images. Pose variation is
a major challenge when analyzing them. Most current approaches for
facial image analysis are not explicitly pose-invariant. To obtain a pose-
invariant representation, we have to account the three dimensional nature
of a face. A 3D Morphable Model (3DMM) of faces is used to obtain
a dense 3D reconstruction of the face in the image. This Analysis-by-
Synthesis approach provides model parameters which contain an explicit
face description and a dense model to image correspondence. However,
the fit is restricted to the model space and cannot explain all variations.
Our model only contains straight gaze directions and lacks high detail
textural features. To overcome this limitations, we use the obtained cor-
respondence in a discriminative approach. The dense correspondence is
used to extract a pose-normalized version of the input image. The warped
image contains all information from the original image and preserves
gaze and detailed textural information. On the pose-normalized repre-
sentation we train a regression function to obtain gaze estimation and
attribute description. We provide results for pose-invariant gaze estima-
tion on still images on the UUlm Head Pose and Gaze Database and
attribute description on the Multi-PIE database. To the best of our
knowledge, this is the first pose-invariant approach to estimate gaze from
unconstrained still images.

1 Introduction

Faces play a fundamental role in human interaction. Facial attributes and gaze
direction are very important for understanding the plot of a scene. The field of
face analysis in still images evolved in the last years and a lot of very powerful
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methods have been developed. However, most of the research is put on the inter-
pretation of a face regardless of its context and ignoring effects of pose variation.
We take a step in the direction of facial interaction analysis by estimating the
eye gaze. Points of attention can be estimated and faces can be described in
their context (e.g. “Person A, male, is looking at Person B, female”). We show
an overview of the presented method in Fig. 1.

Fig. 1. System overview: The fully automatic 3DMM adaption method of Schönborn
[17] is used to obtain a dense correspondence from the input image to the model
reference. We extract a pose-invariant face representation preserving the texture from
the original image. HOG features and image intensities are used as features for a
Random Forest Regression. The output of the system is a gaze estimation and attribute-
based image description.

In the broad research field of gaze estimation, most methods focus on track-
ing. For a single still image there is no pose-invariant method to automatically
estimate eye gaze. We propose to use a pose-normalized version of the image
and apply simple methods on this pose-invariant representation. Since a face is
a three-dimensional object, a 3D Model is the natural way to obtain a pose-
normalized representation. We use a generative 3D Morphable Model (3DMM)
[3] of faces to solve the pose estimation and registration problem. A facial image
is interpreted in an Analysis-by-Synthesis approach. The model is adapted to
the face in the image as closely as possible (fitting).

The parameters (Shape, Color, Camera and Light) of the final representation
in the model space (fit) contain information on the face and the scene. The eye
gaze in the 3DMM is fixed and therefore the gaze estimation cannot be performed
on the model parameters directly. The description by the model parameters is
limited to what the model is able to reconstruct.

We overcome the model limitations with a discriminative approach. The nor-
malization is based on full and perfect correspondence. We warp the image into a
pose-normalized representation by the dense registration of the fit. The warped
texture can be seen in Fig. 2. The remaining challenge for features and the clas-
sifier are the small correspondence inaccuracies in our fit.

For gaze estimation, we rely on the good registration and work on the
histogram-normalized image intensities. For the attribute prediction, we use
HOG features [7]. High frequency texture details cannot be encoded in our PPCA
model parameters, and therefore the information captured by HOG features is
valuable. The HOG features used for attribute estimation are invariant to small
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Fig. 2. We present a frontal 0◦ (a) and side view 40◦ (e) image of the UUlm HPG
database. Both contain a relative eye gaze of 40◦. The model fits (b) and (f) do not
reflect the eye gaze (red circle). As one can see in (c) and (g), the pose-invariant
representation obtained by the correspondence of the fit preserves the eye gaze. One
can see small misalignments to the background at the border of the face model (green
circle). (d) and (h) show the cropped regions we use to estimate the eye gaze (Color
figure online).

misalignments due to the binning property. We use Random Forest Regression [6]
for the Gaze estimation task and Random Forest Classification for the attribute
estimation. To train our forests, we can use all image data which we can fit with
the 3DMM.

In a gaze estimation experiment we show that the pose-normalized represen-
tation is suitable for gaze analysis. To the best of our knowledge, we present the
first results for fully automatic gaze estimation on the UUlm Head Pose Gaze
datasets [18] up to yaw angles of 40◦. The database was chosen because of their
wide range of gaze. The attribute-description experiment and the recognition
experiment are based on the Multi-PIE database [9].

1.1 Prior Work

Most works on eye gaze estimation focus on tracking. Hansen et al. [10] give a
nice overview of current methods. On single still images there are fewer works
and all are limited to frontal pose or need-calibrated settings [8,13].

Kumar et al. [12] give a nice overview on prior work on facial attribute
classification and demonstrate the power of attributes for face description and
recognition. They classify attributes on affine-aligned face regions from near-
frontal images. We extend this idea through a 3D model which adds full pose-
invariance. Instead of a single global transformation we use dense local mappings
incorporating the full 3D knowledge obtained by the 3DMM.

The power of pose-normalization using a 3D model was demonstrated by
Blanz et al. [2]. The 3D Morphable Model is used for preprocessing for various
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face recognition methods to produce frontal renderings. The viewport transfor-
mation improves the performance of 9 out of 10 systems on the Face Recognition
Vendor Test FRVT2002.

Even though some facial attributes are encoded in the model parameters [1],
the analysis of them has have not yet been explored. We show the limitations
using the model parameters for attribute classification.

To obtain a pose-normalized face representation, we use the approach of
Schönborn [17] for a fully automatic fitting of the 3DMM to an input face image.
We work with a slightly modified version (without ears and throat) of the pub-
licly available Basel Face Model [15].

2 Methods

2.1 Face Model

In this work, we use the 3DMM to extract the scene and face description. Both
are obtained through a full adaption of the model to the input image. To achieve
full automation, we make use of the probabilistic Data-Driven Markov Chain
Monte Carlo integrative fitting algorithm of Schönborn [17], which can handle
unreliable detection input. The fitting algorithm recovers the best face descrip-
tion, camera setup and illumination to reconstruct the image. The result of the
adaption contains the image location of any point on the face through the cor-
respondence with the model and the obtained camera setup. It also delivers a
continuous face representation in terms of the PCA coefficients of the 3D face
model.

In contrast to other automatic methods for extracting facial feature points,
the 3DMM also results in a fully abstracted face representation which is invariant
with respect to pose and illumination. We directly use this representation in
terms of model coefficients for face recognition and attribute classification.

We adapted the model likelihood slightly to our needs by using a more gen-
eral background model. We replace the restrictive original Gaussian background
likelihood [17] by an empirical histogram model. Thus, we exchange

N (I(p) | μBG, ΣBG) by
1
δ
h (I(p)) , (1)

where δ is the bin volume and h(I(p)) is the relative frequency of the color
value I(p) at location p in input image I. Our histogram consists of 25 bins per
RGB color channel.

2.2 Pose Normalization

Our pose-normalized representation is using the full correspondence of the fit
for extraction of the image information. The 3D face is textured by the pixel
information extracted from the image. The obtained representation corresponds
to a texture map known from computer graphics. We use the texture represen-
tation proposed by Paysan [14] which builds on a quasi conformal mapping by
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Kharevych et al. [11]. This texture map is a warp of the original image and still
looks natural. We show examples for the pose-invariant representation in Fig. 2.

2.3 Gaze Estimation

We assume perfect registration and use the histogram-normalized image inten-
sities of the pose-normalized representation. The gaze direction is parametrized
relative to the head pose. A Random Forest regression is learned on a training
set and used to predict the gaze direction.

2.4 Attribute Classifiers

The attribute classifiers are obtained similarly to the gaze estimation. Histograms
of Oriented Gradients (HOG) [7] are used to represent textural details. The edge
responses are binned into small spatial regions and can therefore cope with small
misalignments.

We train a Random Forest Classifier to predict attributes. The output of
the classifier is a certainty of the input image belonging to a class, respectively
the face containing a specific attribute. The certainty gives us a more accurate
description of the face than a (possibly wrong) binary output (e.g., if the classifier
is “0.51 sure to see a male” than just “male”).

A classifier is calculated per attribute. The eye, nose, mouth and eyebrow
regions are used to predict the attributes. We combine different classifiers for
the same attribute by the average prediction of all classifiers to obtain a single
global attribute for face description.

2.5 Similarity Measure

A similarity measure in a face space is useful for all applications concerning
identity. Different appearances (e.g., through pose or illumination) of the same
face should always be similar.

The cosine angle between two face representations f1 and f2 is often used as
similarity measure for face recognition based on the 3DMM [4]:

d =
〈f1, f2〉

(‖f1 ‖·‖ f2‖)
(2)

In the classical setting, the vectors f1 and f2 are a concatenation of shape
and texture parameters. To integrate our attribute predictions into the similarity
measure, we concatenate them as a third component into the description vector.

3 Experiments and Results

To evaluate the pose-normalized face representation we performed two different
experiments. First, we predict the eye gaze from the eye region cropped out of
the normalized face texture. Second, we predict facial attributes from different
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regions of the texture and evaluate their performance for face description on a
face recognition task.

In all experiments we obtain a fit of the 3DMM to the image by a fully
automatic DDMCMC method [17]. We draw 10 000 samples and take the best
one (maximum posterior probability).

We use the OpenCV 2.4.4 [5] implementation of Random Forests and HOG
features. We choose a tree depth of 10, select 10 features per split and trained
with 2000 trees for all experiments. For the HOG features we took the preset
parameters.

3.1 Gaze Estimation

The gaze estimation experiment was performed on the UUlm Head Pose and
Gaze Database. It contains 20 subjects and 111 images per individual. We used
the horizontal poses between 0◦ and 40◦ and relative gaze direction from −40◦ to
40◦. The fitting is not reliable enough for gaze estimation for yaw angles above
45◦. This selection leads to 940 images for our evaluation. We performed leave-
one-out cross validation, always excluding all images of one subject. We show
variations of the database in Fig. 3. Our gaze estimation is trained on the relative
gaze (pose-corrected). The relative gaze is dependent on the estimated head pose
and therefore the pose estimation error is propagated to the gaze estimation. The
pose estimation error obtained by the model adaption is shown in Fig. 4a. For our
gaze estimation experiment we reach a total Mean Approximation Error (MAE)
of 9.74◦. In Fig. 4b we show the estimation error itemized on each pose seperately.
Both plots are reflected in Table 1. Note that due to pose normalization we are
able to train a single regression for all poses. The proposed gaze estimator trained
on the UUlm HPG database delivers reasonable results on real world images,
see Fig. 5.

Fig. 3. These are 5 of 20 subjects of the UUlm HPG database. The variation used
in our experiments is shown from left to right. We use yaw angles from 40◦ to 0◦

and relative gaze direction from 40◦ to −40◦. The database contains different lighting
conditions, glasses and occlusion through hair.

3.2 Attributes

We use 16 attributes to describe a face, see Table 2. For each attribute we learn
a regressor on the eyes, nose, mouth or eyebrows. We compare the prediction
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Fig. 4. (a) shows the pose estimation performance of the fully automatic fitting method
on UUlm HPG database. (b) shows gaze estimation performance per head pose on
UUlm HPG database. The baseline results are obtained by always predicting a gaze
of 0◦.

Table 1. head pose and gaze estimation error (MAE) in degree. The baseline results
are obtained by always predicting a gaze of 0◦.

0◦ 10◦ 20◦ 30◦ 40◦

Pose estimation error 2.73 2.16 3.22 3.65 10.26

Gaze estimation error 7.75 9.29 9.41 9.13 13.40

Baseline error 20.00 22.22 22.22 20.00 22.22

based on HOG features and color intensities by a prediction obtained on model
parameters. The performances of the particular attribute classifiers are shown
in Table 2. The attributes were learned and evaluated on separated subsets of
the Multi-PIE database [9]. The database contains over 750 000 images of 337
different persons. We used the 249 identities from the first session for evaluation
and the first appearance in session two to four of the other 88 identities for
training. The experiment was performed on five poses (15◦, 30◦, 45◦, 60◦ resp.
in Multi-PIE camera names 051, 140, 130, 080, 090) and illumination 16. This
leads to 440 images for the training of each classifier. For one attribute we train
a single classifier over all poses. There is no tuning to a specific pose.

3.3 Recognition

We use the similarity measure (2) for a face recognition experiment. The perfor-
mance of attributes estimated on the texture is compared with the recognition
rate obtained by the model parameters. We used the output of the classifiers
for all 16 attributes on all 4 selected regions (64 attribute estimations). We
evaluate our recognition method on the Multi-PIE database. We use the exact
same setting for the recognition as Schönborn et al. [17]. The 249 individuals
from the first session are used for the recognition task. The results are listed in
Table 3. The attribute classifiers are the same as in the attributes section and
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Table 2. Prediction performance in % of binarized attribute classifiers on pca coeffi-
cients and on the pose-normalized representation using HOG features and color inten-
sities. The region selected for the image-based classifier is shown in the fourth column.
Attributes indicated by a * are underrepresented in the test set (≤ 20 %). The pose-
normalized image is especially useful for attributes like glasses which are not contained
in the 3DMM.

Attribute PCA HOG Region

African American* 97.6 98.2 Mouth

Asian 83.4 85.1 Eye

Beard* 96.9 95.5 Eyebrow

Black hair 78.2 75.2 Nose

Blond hair* 87.9 87.4 Eyebrow

Bue eyes 70.9 77.7 Eye

brown eyes 67.8 80.6 Eye

Caucasian 85.4 82.9 Eye

Glasses 71.1 88.5 Nose

Hair on forehead 73.4 67.8 Eyebrow

Indian* 90.3 93.3 Eye

Male 76.2 76.0 Mouth

Mustache 95.3 94.8 Mouth

Nasolabial fold 74.8 75.7 Nose

Thick lips 66.0 69.0 Mouth

Wide nose 59.9 63.9 Nose

Table 3. Rank-1 Identification rates (percent) across pose, obtained by frontal 0◦

(051 16) images as gallery and the respective pose views as probes.

15◦ 30◦ 45◦ 60◦

(140 16) (130 16) (080 16) (090 16)

3DMM shape, texture and attributes 97.6 95.2 80.7 50.6

Attributes only 93.2 82.3 65.5 30.1

3DMM shape only 86.4 63.9 44.2 11.2

3DMM texture only 98.4 94.0 77.5 43.0

3DMM shape and texture 97.6 94.8 79.5 49.0

3DMM shape and texture [17] - 90.4 74.7 -

3DGEM [16] 97.6 86.7 65.0 44.9

were trained on images from subjects not occurring in the recognition exper-
iment. We compare our results to other fully automatic approaches based on
3D Generic Elastic Models [16] and previous results obtained with a 3DMM
[17]. The effect of the added attribute detections is shown in Table 3. As we use
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an empirical histogram background model, we obtain better recognition results
using shape and texture coefficients than previous results by Schönborn et al.
[17]. The experiment shows that the description by attributes is powerful and
slightly improves the recognition performance.

(a) (b)

(c) (d)

Fig. 5. Our gaze estimation approach also works on unconstrained real world images.
The automatically extracted gazes relative to head pose are (a): 15◦, (b): 27◦, (c):
20◦, (d): −2◦. The images where cropped to the face region after processing. Images:
(a) KEYSTONE/AP Photo/Richard Drew, (b) KEYSTONE/EPA/Justin Lane, (c)
KEYSTONE/EPA/Dennis M. Sabangan, (d) KEYSTONE/AP Photo/Alastair Grant
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4 Conclusion

We proposed to use the registration obtained from the 3DMM fit for gaze esti-
mation and attribute description. A pose-normalized face representation arises
through the dense image correspondence. A regression and classification function
is learned on the region of interest and profits from the pose normalization. The
pose-normalized input image conserves the textural information from the input
image. The information can be extracted by classical image features and lead to
a description not contained in the model parameters. In contrast to the 3DMM,
which needs high resolution 3D scans, our predictors can be learned directly
on image data. By this we overcome model limitations. This approach is fully
automatic, using a fully automatic 3DMM adaption method. In the experiments
we present the first fully automatic and pose-invariant gaze estimation results
on the UUlm HPG database. The gaze estimation is not limited to the data-
base. The learned regression can be applied on real world images, see Fig. 5. In
addition we show the limitation of the model parameters describing attributes
not contained in the model (e.g. glasses, see Table 2). Attribute-based descrip-
tion combined with the 3DMM parameters achieves higher face recognition rates
than other automatic approaches, especially for yaw angles larger than 30◦.
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